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Abstract

For each nonnegative integer r, we determine a set of graph operations such that all 7-regular
loopless graphs can be generated from the smallest r-regular loopless graphs by using these
operations. We also discuss possible extensions of this result to r-regular graphs of girth at least
g, for each fixed g.
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1. Introduction

A well-known classical theorem of Steinitz and Rademacher [22] states that the class
% of 3-connected 3-regular planar simple graphs can be generated from the Tetrahedron
by adding handles, a graph operation illustrated in Fig. 1 below.

This result can be stated more precisely as follows. For every graph G in ¥, there
is a sequence Gy, Gi,...,G; of members of ¥ such that Gy is the Tetrahedron, G;
is G, and each G;, where 1 <i <¢, is obtained from G;_; by adding a handle. In
[1-3,6,8-12,15,21,23,24,26] and [27], analogous results are obtained for various other
families of 3-regular simple graphs. For instance, in [8] and [12], it is proved that
the class of cyclically 4-connected 3-regular planar graphs can be generated from the
Cube by adding handles. For 4-regular simple graphs, the situation is similar and the
readers are referred to [4,5,13,14,16-20,25]. In this paper, we will consider the general
problem of generating r-regular (not necessarily simple) graphs, for each fixed 7.
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Fig. 1. Adding a handle.
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Fig. 2. Splitting a vertex x.

As a matter of fact, instead of trying to generate all r-regular graphs, we will consider
how to reduce an r-regular graph to a smaller »-regular graph. This is an equivalent
problem but it is more convenient to work with. To be more precise, let % be a class of
graphs. We say that a graph G € ¢ can be reduced within % by a set ¢ of operations
to a graph H €% if there is a sequence Gy, Gy,...,G; of members of ¥ such that
Go=G, G;=H, and each G;, where 1 <i <¢, is obtained from G;_; by applying an
operation in @ only once.

We first define an operation that we are going to use in this paper. Let x be a vertex
of a graph G and let {e;: i=1,2,...,m} be the set of non-loop edges that are incident
with x. If x has an even degree and ¢; =xx;, for all i, then the result of splitting x (see
Fig. 2) is a graph obtained from G —x by adding m/2 new edges x1x2,X3X4, - . ., Xp—1 X
When m > 2, it is clear that, depending on how the non-loop edges are paired, there
are different ways to split x. ,

Observe that, splitting a vertex;does not change the degree of any other vertex in the
graph. In particular, when # is even, the result of splitting a vertex in an r-regular graph
remains being r-regular. Therefore, if ¥ is the class of all r-regular graphs, where r
is even, then every graph in % can be reduced within the class to the graph with one
vertex and r/2 loops by splitting vertices. Equivalently, we can say that, when r is
even, every r-regular graph can be constructed from the unique r-regular graph on one
vertex by the following operation (the reverse operation of splitting a vertex): Delete
any p < r/2 distinct edges, say xix2,x3xs,...,X%2p~1%2p, from the given graph, add a
new vertex x, add »/2 — p loops to x, and also add all edges in {xx;: i=1,2,...,2p}.
Similarly, if ¢ is the class of all r-regular graphs, where r is odd, then every graph
in % can be reduced within 4 to one of the (» + 1)/2 r-regular graphs on two vertices
by the following operation: Delete a non-loop edge xy from the given graph and then
split both x and y, in any order.
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Fig. 3. Graph I'.

From the above discussion one can see that, if loops are allowed, then the problem of
generating r-regular graphs is easy. Therefore, we will concentrate on loopless graphs.
For each positive integer 7, let %, be the class of all loopless r-regular graphs. Let us
denote by §' the operation of splitting vertices. We point out that, when r is even, there
are many r-regular graphs that cannot be reduced within %, by S. To see this, take any
graph G in 4 £ such that G has a perfect matching M. For each edge in M, add r/2

edges parallel to it. Then we end up with a graph G’ in %,. Now it is straightforward
to verify that splitting any vertex of G/ will result loops. This observation suggests
that, in order to reduce all even regular loopless graphs, another operation is necessary.

Let e be an edge of a graph G in %,. We will call e heavy if there are at least
(r — 1)/2 other edges that are parallel with e. Equivalently, the parallel family that
contains e contains more than r/2 edges. If » is even and e =xy is heavy, then a
double split at e is the operation (denoted by DS) of splitting both x and y, in any
order. Clearly, when e is heavy, the result of splitting any one of x and y must have
loops. However, it is very possible that splitting both x and y, that is, a double split at
e, may result a graph in %,. The next is our first main result. For each positive integer
D, let pK, be the graph with two vertices and p parallel edges.

Theorem 1. If r is a positive even integer, then every graph in 9, can be reduced
within 4, to rK, by {S,DS}.

For odd regular graphs, the natural operation is the one we mentioned earlier: Delete
an edge xy and then split both x and y, in any order. We denote this operation by
Ds*. ‘

Theorem 2. Every graph in %; can be reduced within 95 to 3K, by DS™.

This result could have been discovered before, but we cannot find a reference. For
completeness, we include a proof of this result in this paper.

For odd r exceeding three, the situation is different. We point out that, similar to
the case for even regular graphs, the operation DS™ alone is not enough to reduce all
graphs in &,. To see this, consider the graph I illustrated in Fig. 3, where k=(r—1)/2,
and the label next to each edge indicates the size the corresponding parallel family.
Notice that the degrees of the five vertices are k+2, k+3, 2k+1, 2k+1, and 2k +1,
respectively.
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Fig. 4. Modifying each vertex of H.

Fig. 5. Graph V.

§ ﬁ — 7\
Fig. 6. Operation R.

Take any (2k — 3)-regular loopless graph H and modify each of its vertices as
illustrated in Fig. 4. That is, at each vertex, partition the 2k — 3 neighboring edges into
two groups, one of size k — 1 and one of size k — 2, and then attach each group of
edges to the corresponding vertex in a copy of I'. Clearly, the resulting graph G is
loopless and r-regular. It is straightforward to verify that applying DS* to any edge
of G must create at least one loop.

In particular, when r =5, it is clear that every component of H is K;. Suppose H
has p components. Then the above modified graph G also has p components, each of
which is isomorphic to the graph ¥ illustrated in Fig. 5. We will refer this graph G
as P72,

Theorem 3. Every graph in 9s can be reduced within 9s to 5K, or W7, for some p,
by {DST,R}, where R is the operation illustrated in Fig. 6.

Just like DS is the result of applying S twice, it is not difficult to see that operation
R can be realized by applying DS™ three times. If we insist on using operations of
this kind, i.e. repeatedly applying DS™ several times, it seems quite unlikely that there
is a set of operations, like in Theorem 1, that works. for all odd 7.

To deal with general odd regular loopless graphs, we need to introduce a different
operation. This is an analog of the operation defined in [10,21], which was also studied
in [25]. Let e =xy be an edge in a graph G € %,, where r is odd. The new operation,
which will be denoted by DS™, consists of two steps when it is applied to e. We first
contract all, say k, edges between x and y. That is, we delete all these k edges and
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also: identify x with y. Clearly, the new vertex has an even degree 2r — 2. Thus we
can split this new vertex, which is the second step - of our operation.:

Theorem 4. If r is odd, then every graph in %, can be reduced within 4, to rK, by
DS~

The next question is: how do.we generate regular simple graphs, or in general,
regular graphs of girth at least g? We can do it by modifying the known results if we
are allowed to relax a little on the generating procedure. More discussion ‘on this is
given in the last section of this paper. .« .. :

2. Even regular graphs

In this section, 7 is a positive even integer. To prove Theorem 1, we first prove two
lemmas. For any two vertices x and y of a graph G, let uc(x, ) be the number of
edges of G that are between x and y.

Lemma 2.1. Let x be a vertex of a loopless graph G, which has at least two vertices.
Suppose x has an even degree, say d, and be(x, ¥) <dJ2, for all y. Then x can be
split to result a loopless graph.

Proof. We prove the lemma by induction on d. Since the result is obviously true when
d =0, we may assume that d > 0. Notice that x has at least two neighboring vertices,
as tig(x, y) <d/2.<d, for all y. Thus we can choose distinct vertices y; and y,, other
than x, such that ug(x, y1) = pe(x, y2) = Ko(x, ), for all y s y;. Let G’ be obtained
from G by deleting two edges xy, and xy,, and also adding an edge y;y,. Clearly,
G’ is loopless and x has degree d —2 in G’. We claim that Uer(x, y) < (d — 2)/2, for
all y. Suppose, on the contrary, that ter (%, y0) > (d — 2)/2, for some yo. Then it is
obvious that yo & {x, y1, 2}, as ue/(x,x)=0, and Be (%, yi) = pe(x, i) — 1 < d/2, for
i=1,2. Therefore, uc(x, 1) = pue(x, y2) = puc(x, y0) = per (%, o) = d/2, and it follows
that d > uc(x, y1) + ue(x, y2) + po(x, Yo) 2 3d/2, a contradiction, which proves the
claim. Now, by induction, we can split x in G’ to obtain a loopless graph. Consequently,
by the definition of G’, we can split x in G to obtain a loopless graph. O

For any three distinct vertices x, y, and z of a graph G, let us define ug(x, y,z) to
be uc(x,y) + pe(y,2) + po(z,x).

Lemma 2.2. Let G€ %, have at least three vertices. If e=xy is a heavy edge in G
and pg(x,y,z) <r for all z # x,y. Then the operation. DS can be applied to e to
result a loopless graph.

Proof. Since G has more than two vertices, we only need to exhibit a way of splitting
x and y such that the resulting graph is loopless. Let p= uc(x,y). Then u > r/2, as
e is heavy. Let G; be obtained from G — ¥ by adding u — r/2 loops to x, and also
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adding ug(y,z) new edges between x and z, for all z # x, y. It is easy to see that G,
is an r-regular graph obtained from G by splitting y. In addition, ug, (x,z) = ug(x,z)+
H6(y,2), for all z # x,y. Let G| be obtained from G; by deleting its u— 5 loops at x.
Then Gy is loopless and x has degree d =r —2(u— §)=2r —2u in G{. Moreover, as
ve(x, y,z) < r, we have pgi(x,z) = pig,(x,z) < r — p=d/2. Now, by Lemma 2.1, we
can split x in G| to result a loopless graph G,. From the definition of G it is clear
that G, is also a result of splitting x in Gy. Therefore, the lemma is proved. O

Proof of Theorem 1. Clearly, we only need to show that, if G € ¢, has three or more
vertices, then at least one of S and DS can be applied to result a smaller graph in %,.
By Lemma 2.1, we may assume that every vertex is incident with a heavy edge. Let

p=min{us(x, y): xy is a heavy edge of G}

and let e=x;y; be an edge with ug(x;, y1)=u. We claim that pc(x;, y1,z) < r for all
z # x1, y1. Suppose, on the contrary, that ug(x, y1,z1) > r for some z; # x;, y;. Let
S =2ziu be a heavy edge incident with z;. Then u is not x; or y;, as any two incident
heavy edges must be in parallel. It follows that

Ho(z1,u) <1 — pe(z1,%1) — pa(z1, y1)
< pe(x1, y1,21) = pe(z1,%1) — pe(z1, y1)
= pe(xi, y1)
=4

contradicting the definition of y and thus our claim is proved. Now, by Lemma 2.2,
we conclude that, in this case, DS can be applied to e to result a graph in 4,. O

3. 3-regular and 5-regular graphs
We prove Theorems 2 and 3 in this section.

Proof of Theorem 2. Let G be a graph in ¢; such that G has more than two vertices.
We need to show that DS can be applied to some edge to result a loopless graph. If
G is simple, then it is clear that applying DS* to any edge of G will result a loopless
graph. Thus we may assume that G has an edge e=xy such that e is parallel to at least
one other edge. If e is parallel to two other edges, then the component that contains
e must have precisely two vertices and three edges. Notice that applying DS™ to e
is the same as deleting both x and y from G, which results a loopless graph. Thus
we may assume that e is parallel to exactly one other edge. Let u, be the only other
neighboring vertex of x and u, be the only other neighboring vertex of y. Observe
that applying DS™ to e is the same as deleting x and y, and then adding a new edge
uuy. Thus, if u, # u,, we can applying DS™ to e and we are done. Now, suppose
uy = uy = u. Clearly, u has a third neighboring vertex, say z. If z has three distinct
neighboring vertices, then applying DS™ to the edge uz will result a loopless graph.
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Else, z has only one other neighboring vertex, say v, and such that pg(z,v) = 2. Let
w be the other neighboring vertex of v. Notice that w # w. It follows that DS* can
be apphed to an edge between z and v to result a loopless graph. The theorem is
proved. ]

We prove Theorem 3 by proving a sequence of lemmas. If e is an edge of a graph
G, then G\ e is the graph obtained from’ G by deleting e.

Lemma 3.1. Let e = x\x; be an edge of G€%s. Suppose both ug(x;,y) <2 and
ba(x1,%2, ¥) < 5 hold for all i € {1,2} and all y € V(G)— {x1,x,}. Then DS* can be
applied to e to result a graph in %s, as long as |V(G)| > 2.

Proof. Let G'=G\e. We first consider the case when some x; is incident with a parallel
family of size three or more in G’. Notice that such a family must be between x; and
X2, a8 pe (X, y) = ug(x,,y) 2, for i=1,2 and y € V(G) — {x1,%:2}. If pe:(x1,x2) =14,
then applying DS™ to e in G means deletlng x1 and x, from G, which obviously results
a graph in %s, as |V(G)| > 2. If ug/(x1,x2) =3, then each x; has exactly one other
neighboring vertex, say y;. Since pg(x1,x2,y) <5, forall y€ V(G)—{x1,%2}, we must
have y; # y;. It follows that-applying DS™ to ¢ in G is the same as deleting vertices
x1;,%2 from G and then addmg a new edge y;y;. Again, it is clear that the resulting
graph is in ¥s.

. Next, we assume that, in G’, each parallel family that is incident with some x; must
have size at most two. Let us also assume, by renaming x; and x,, if necessary, that,
in @, either no.parallel family of size two is incident with any x;, or there is such
a famﬂy that is incident with x;. By Lemma 2.1, we can split.x; to result a loopless
graph, say Gy. We prove that

4o, (2, ¥) <2, for all yeV(G) - {m}. (*)

Suppose, on the contrary, that ug, (x2, y) = 3, for some y € V(G;)— {x,}. We consider
two cases.

. Case 1: At least two edges between x, and y in Gy are not in G’. To produce these
new edges we must have ug(x1,x2) =2 and pe(x1,y) > 2. Since x; has degree
four in G', we conclude that ug:(x1,x;) = e (x1, ¥) = 2, which in turn implies that
Hor (%2, ¥) = pg, (%2, ¥) — 2 = 1. Therefore, we have He(x1,%2, ¥) > 5, a contradiction.

Case 2: At most one edge between x, and y in Gy is not in . In other words,
e, (%2, ¥) — por(x2, ¥) < 1. Since ug, (x2, ) =3 and pc (x,, y) <2, it follows that

(i) pe/(x2,y)=2; and
(11) MGy (X2, J’) - HG’(xZa y) =1

By (ii), Gi has a new edge between x, and y, and thus we have ug/(x1,x) =1
and ﬂG/(xl,y) = 1. 0n the other hand, from (l) and ,u(;(xl,xz,y) < 5 we deduce that
por (x1,%2) + pgr(x1,v) < 2. Therefore,

(iii) por(x1,%2) = pg(x1,y) = 1.
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Fig. 7. There are only four kinds of heavy triangles.

Ay Ay

Fig. 8. How two heavy triangles meet.

Since, by (i), x; is incident with a parallel family of size two in'G’, the assumption
we made before (*) implies that ug/(x1,2z) =2, for some z. From (iii) it is clear that
z is a vertex other than x, and y. Consequently, (ii) implies that the way we split
x1 creates a loop, which is a contradiction. This contradiction settles Case 2 and thus
completes the proof of (*).

Now, Lemma 2.1 and (*) imply that we can split x, in G; to result a loopless graph.
Thus the lemma is proved. O

Motivated by the last lemma, we call the subgraph induced by three distinct vertices
x, y, and z a heavy triangle if ps(x, y,z) > 5.

Lemma 3.2. The only heavy triangles are those illustrated in Fig. 7.

Proof. Let T be a heavy triangle with vertices x;, x;, and x3. If pe(xi,x;) < 2, for all
i%j, then T=d4 If bo(xi,%;) = 4, for some i # j, then T = 4;. The only case left
is when pug(x;,x;) =3, for some i # j. In this case, T must be 4, or 45. [

Lemma 3.3. If two distinct heavy triangles have at least one vertex in common, then
they must be as illustrated in Fig. 8.

Proof. Let T be a heavy triangle with vertices x;, x,, and x;. Then, by Lemma 3.2,
for any i # j and any vertex y € V(G) — V(T), the subgraph induced by {x;,x;, y}
has at most four edges. It follows that no two distinct heavy triangles can have two
vertices in common. When two triangles have exactly one vertex in common, by
Lemma 3.2 again, it is easy to see that none of them is A3 or 44, and they can-
not be both 4,. Thus one of them is 4; and the other is either 4; or 4,. The lemma is
proved. O



G. Ding; P. Chen/ Discrete-Applied Mathematics 129 (2003) 329-343 337

‘Let us call a- graph in %5 irreducible if the application of DS* to any edge of
the graph results at least one loop. The next lemma tells us the edge distribution of
an-irreducible graph G. Let E; be the set of all edges that are contained in a heavy
triangle, and let E; = E(G) — E;. Let X be the set of vertices that are the degree four
vertex in a heavy triangle of type 4. o

Lemma 3.4. Every edge in E, is incident with a vertex in X.

Proof. Let e =x;x, € E,. Since G is irreducible and e is not contained in any heavy
triangle, by Lemma 3.1, we have ug(x;, y) > 3, for some i=1,2 and some ¥ # X1,%.
Now by applying Lemma 3.1'to edge f=x;y we conclude that f is contained in a heavy
triangle. It follows from Lemma 3.2 that x; €.X and thus the lemma is proved. [

Proof of Theorem 3. Let G = (V,E) be a graph in %s. We need to show that, unless
G is 5K; or ¥?, for some p, at least one of DS™ and R can be applied to G to result
a graph in %;s. ‘

If G=5K;, we do not need to do anything. Thus we may assume that G has more
than two vertices. We may also assume that G is irreducible. It follows that every
component of G has more than two vertices, because otherwise, 5K, is a component
of G and DS* can be applied to an edge in this component to result a graph in
¥s, contradicting the assumption that G is irreducible. In fact, by considering each
component, we may assume that G is connected and we only need to show that either
G =¥ or operation R can be applied to result a graph in %s. Let E;, E,, and X be
defined as in Lemma 3.4. : ‘

We observe, by Lemma 3.4, that G must have heavy triangles. We also observe that
E, is not empty. This is clear, if G has a heavy triangle T that does not meet any
other heavy triangles, as edges between V(T') and ¥ — V(T) must belong to E;. On
the other hand, when G has two heavy triangles, say T, and T», that meet, then, by
Lemma 3.3, there is a unique edge between V(T;)U V(T2) and V — (V(T})U V(12)).
It is clear that this edge must belong to E,.

Let E; be the set of edges in E, for which both of its ends are contained in X. We
first consider the case when Ej =E;. Let e=x,x, €E;. For i=1,2, let T; be the heavy
triangle of type 4, that contains x; as its degree four vertex, and let f; be an edge
that is not in {e} U E(T;) but is incident with a vertex of T;. By the definition of Ej},
we have f; & E; =E, and thus f; € E,. It follows that 7; meets another heavy triangle
and so, by Lemma 3.3, that G= V. , ‘

Next, we assume that E) = E; — E} # 0. To find a subgraph where operation R can
be applied, we define a directed graph as follows. For each e = xy €Ej}, by Lemma
3.4, exactly one of its ends, say x, is contained in X. Let us direct e from y to x.
Then we delete all edges in Ej; and contract all edges in E;. Let G* be the resulting
directed .graph.

In every directed graph, since the sum of the outdegrees of the vertices equals the
sum of the indegrees of the vertices, there must be a vertex for which its indegree is
greater than or equal to its outdegree. Let v be such a vertex in G*. Since Ef # 0, we
may choose v with an additional property that its indegree is greater than zero.
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Notice that G* has two kinds of vertices, those that are vertices of G and those
that are created when contracting edges in E;. It is easy to see that each vertex of the
second kind corresponds to a component of Gy, the subgraph of G induced by edges
in E;. By Lemmas 3:2 and 3.3, these components are graphs in Figs. 7 and 8.

Let a=uv be a directed (from u to v) edge in G* and let e=xy be the corresponding
undirected edge in E. By definition, precisely one end of e, say x, is contained in
a heavy triangle, say T, of type 4,, as a degree four vertex. According to the way
each edge in Ej is directed, we can see that v corresponds to x. Since x is contained
in T and all edges of T are contracted, v is not x. Moreover, v is not the result of
contracting E(T), because otherwise, v would have indegree one and outdegree two in
G*, contradicting the choice of v. Therefore, v is the result of contracting a component
C of Gy of type 412.

To complete our proof, it is enough to show that operation R can be applied to the
component C. That is, by Lemma 2.1, we need to show that y is not incident in G with
a parallel family of size three or more. Suppose; on the contrary, that uc(y,z) = 3, for
some z. Since G is irreducible, applying DS* to an edge f = yz will result:a loop. It
follows from Lemma 3.1 that f is contained in a heavy triangle 7’. By Lemma 3.2,
T’ is of type Ay and y is the degree four vertex of T"..But this means that e€E;, a
contradiction. The theorem is proved.. [ S T R ’ Co

4. Odd regular graphs

In this section, » is a positive odd integer. We prove Theorem 4, like before, by
proving a sequence of lemmas. :

Lemma 4.1. Let G €%, have more than two vertices. If e=xy is an edge in G and
to(x, y,2) <r for all z # x,y. Then operation DS™ can be applied to e to result a
loopless graph.

Proof. Let G/ be obtained from G by contracting all edges between x and y. Let u
be the new vertex in G’. Then u has degree d = 2r — 2ug(x, y). Moreover, for each
vertex z € V(G') — {u}, it is easy to see that : L

po () = pe(x,2) + pe(z)
= po(x, y,z) — pe(%, »)
<7 = pe(x, y)
=d/2.

By Lemma 2.1, we conclude that u can be split to result a loopless graph. Therefore,
DS~ can be applied to e to result a loopless graph. - [1 \

Like in the last section, if G€ ¥, and us(x, y,z) >, then we call the subgraph
induced by x, y, and z a heavy triangle. In this section, we do not need to distinguish
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different types of the heavy triangles, but it is worth noticing that in a heavy triangle
there is at least one edge between each pair of vertices. Next, we study the distribution
of the heavy triangles, . ' : ‘

Lemma 4.2. No two heavy triangles have exactly two vertices in common.

Proof. Suppose, on the contrary, that there are two heavy triangles with vertex sets
{x,y,u} and {x, y,v}, respectively, and such. that u # v. Then

2r < ,UG(JC, Y, u) + MG(X’ Vs U)
= (uo(x, ¥) + uc(y, u) + pe(u,x)) + (ue(x, ¥) + to(3,v) + pc(v,x))
= (Ho(x, ¥) + po(x,u) + ue(x, v)) + (4 (y,x) + pc(y, u) + pe(y,v))
< 2r,

a contradiction. [

Now we define a bipartite graph H with vertex set T U V(G), where J is the set
of all heavy triangles, and such that x € ¥(G) is adjacent to T € 7 in the new graph
H .if and only if x € V(T).

Lemma 4.3. H is a forest.

Proof. Suppose, on the contrary, that H has a cycle, say C. Let the vertices of C be
x1, T1,%s, T2,.,.;,xp, Tp. Let F;=E(T}), for i=1,2,..., p,andlet F=F UFU--. UFp.
By Lemma 4.2, it is clear that |[F| = |F\| +|F| +--- + |F,|. For each i =1,2,..., p,
let d; be the number of edges in F that are incident with x;. Since each T; contains at
least two vertices in {x1,x,,...,x,}, it follows that every edge in F is incident with at
least one x;, and thus |F| < d) +d, + - -- + d,,. Consequently,

przditdyt+dy 2 |F|=|Fi|+ P+ +|Fyl > p-r

a contradiction. [

Let us call a sequence T, T5,..., T, of distinct heavy triangles connected if, for each
i=2,3,..., p, there exists j € {1,2,...,i — 1} such that V(T;) N V(T}) # .

Lemma 4.4. If p >2 and the sequence n,n,...,T, of distinct heavy triangles is
connected, then |V, (ViU Vo U---UV,_y)| =1, where each V; is V(T}).

Proof. For each i=1,2,...,p, let ; =V, UV, U---U¥; and let H; be the subgraph
of H induced by X;U{Ty,T3,...,T;}. Since the sequence T}, T5,..., T, is connected, it
is not difficult to see that each H; is connected. Suppose |V, N X,_;| > 2. Then there
are two distinct vertices, say x and y, that belong to both V, and X,_;. It follows that
xT, € E(H), yT, € E(H), and H,_, has a path, say P, between x and y. Consequently,
H has a cycle PU {xT,, yT,}, contradicting Lemma 4.3. [J
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Proof of Theorem 4. Clearly, we only need to show that, for each G € ¥, with more
than two vertices, DS~ can-be applied to G to result a loopless graph. By Lemma 4.1,
we may assume that G has at least one heavy triangle. Let T3, 75, ..., T, be a connected
sequence of heavy triangles such that p is maximum. For i = L2,....,p, let V;=V(T})
and let X; =V; UV, U--- UV, Then, by Lemma 4.4, each X;; where 2 <i < p, has
exactly two vertices more than X;_;. Therefore, | X »|=2p+1, which is an odd number.
As G is odd regular, there must exist an edge e for which precisely one of its ends
is in X,. We claim that there is no heavy triangle that contains e. Suppose that there
exists such a heavy triangle T. Then X, pNV(T)#0 and T # T;, for all i. It follows
that the sequence Ty, T5,..., Tp, T is connected, contradicting the maximality of p, and
thus the claim is proved. Now, by Lemma 4.1 again, we conclude that the result of
applying DS™ to e is a graph in &,. [ ’

5. Regular graphs of large girth

Results in this paper are about loopless graph. A natural question: is: - what. about
simple graphs, or more generally, what about graphs 6f girth' at. leastg? We do not
intent to propose any conjecture on what kind of operations ‘Would: work, since we do
not know. What we are going to discuss here is the possibility of the existence of such
operations. In order to make it clear, we need to introduce some' definitions.

Let & be a class of graphs that we would like to generate. First we need to have a
subclass, say %o, such that the rest of the graphs will be built starting from graphs in
%o. We also need to have a set of rules which dictate, if a graph G; in ¢ is given,
how to produce a new graph G, in %. Since we are only interested in rules that are
similar to our earlier results, we impose an extra condition on these rules that Gy and
G, should not differ too much. , -

To be a little more precise, for a fixed number ¢, let us say that-G; and G, are
e-close if each G; has a set X; of at most ¢ vertices and such that G1—X, is isomorphic
to G2 —X,. Let us say that & can be ¢-generated from %, if, for every graph G in ¥,
there exists a sequence Gy, Gy,...,G; of graphs in ¥ such that Gy € %, G; = G, and
any two consecutive terms in the sequence are e-close. From our discussion in Section
1 we can say that: the class of r-regular graphs, for even r, can be (r + 1)-generated
from the unique one-vertex r-regular graph; and, the class of r-regular graphs, for
odd r, can be 2r-generated from the class of two-vertex r-regular graphs. A general
problem is to characterize all classes ¥ that can be e-generated, for some ¢, from a
finite class %;. Here, we only study regular graphs,

For each pair of nonnegative integers » and g, let %1y be the class of r-regular
graphs of girth at least g, where the girth of a forest is considered as oo. A classical
result of Erdos and Sachs [7] says that 94 is not empty. Let us fix a graph G, in
%, with the least number of vertices.

Proposition. 4, , can be c-generated from {G.y}, where ¢ depends only on r
and g.
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Proof. The result is trivial ‘wheti 7 < 1y and thus we assume that » > 2. By our early
results in this paper we may also assutiie that g > 3. Let L be obtained from G, , by
deleting an edge, say ab. The two verticés d and b are called the roots of L."

"Let G be a graph and let F be a.sét of edges of G. We construct a new graph
L(G,F) as follows. First, for each edge. ¢ in F, we take a copy L. of L such that
all the copies and G are mutually vertex disjoint. Then, for each edge e=xy €F, we
delete e and add two new edges xa, and yb,, ‘where a, and b, are the roots of L.
Notice that the resultmg graph L(G FY has |V(G)| + |F| - |V(G,g)| vertices.

Clalm 1 Af G is r-regular, then so is L(G,F). .

From the above construction it is clear that, for each vertex in V(G), its degree in
G is the same as its degree in L(G,F). Thus the claim follows.

Claim 2. If the girth of G\F is ‘dt least g,\ then the girth of L(G,F) is at least g.k

- We need to show that every cycle C of L(G,F) has length at least g. This is clear
if C is completely contained in G\ F or in some L. If C is not contained in G\ F and
not in any L., then C contains an edge of the form xa, or yb,, for some e=xy€F.
Notice that xa, and yb, form an edge-cut of L(G,F'), thus the cycle C must contain
both of these two edges. It follows that part of -C is a path P in L., between its two
roots. Since adding the edge a.b. to L. results a graph of girth at least g, we conclude
that P must have length at least g — 1. Therefore, C has length greater than g and the
claim is proved. .

Let O =S when 7 is even and 0 Ds*, when r is odd. Let Fy be a set of edges
of an r-regular Gy, let G, be obtained-from G by applying operation O once, and let
F, be the union of E(G;YNF; and E(G3)~ E(Gy). For i = 1,2, let H;=L(G;,F;). Let
£=2r|V(G,y)l. '

Claim 3. H; and H, are &-close.

Let Z=V(Gy) - V(Gz), E~ = E(G1) — E(G;), and E* = E(G,) — E(G)). Let X,
be the union of Z and V(L.), for all ec Fy N E~. Let X; be the union of V(L,), for
all e€cE*. Since G \E- —Z=G, \ Et, it follows that H; — X; = H, — X,. Notice
that |Z| <2, |[ET| <r—1, and |E~| < 2r— 1. It follows that |X| <s, for i=1,2, and
thus the_ claxm is proved.

Claim 4. If G = (V,E) is an r-regular graph on at most two vertices, . then L(G,E)
has-at most ¢ vertices, ‘

Clearly, G has at most r edges. Thus L(G, E) has at most r|V(G,,;)|+2 < ¢ vertices.
Now, let G € ,,,. From our discussion in Section 1 we know that there is a sequence
Gy, Gy,...,G; of r-regular graphs such that Gy is G, G; has at most two vertices, and
each: Gj, where 1. < i < ¢, is obtained from G;_; by applying operation O once. Notice
that, in each G, there are two kinds of edges: those that are edges of G= Gy and those
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that are created when we split vertices. Let F; be the set of the second kind of edges in
G; and let H;=L(G;,F;). Let Hyy1 =G, 4. Clearly, Hy=Go=G, as Fy=0. Furthermore,
by Claim 1 and Claim 2, every graph H; belongs ¥, ;. Finally, by Claim 3 and Claim
4, any two consecutive terms in the sequence Hy,H,,...,H,H,, are e-close. Thus the
proposition is proved. O

The value of ¢ given in this proof is certainly not the best possible and, in fact, it
might be very far away from the real value. The importance of this proposition is that
it tells us that there does exist a procedure, the kind of procedure we had in mind,
that generate all graphs in %, ,. The remaining problem is to find a better one.
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