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Abstract

We consider anonymous secure communication, where parties not only wish to conceal their com-
munications fromoutsideobservers, but alsowish to conceal thevery fact that theyare communicating.
We consider the bus framework introduced by Beimel and Dolev (J. Cryptology 16 (2003) 25), where
messages are delivered by a bus traveling on a randomwalk. We generalize this idea to consider more
than one bus. We show that ifw buses are allowed, then the expected delivery time for a message can
be decreased from�(n) to�(n/

√
w) in the case of a complete graph. Additionally, we introduce a

class of graphs calledr-partite directed collars and obtain analogous bounds on the expected delivery
time for these graphs. We also propose several new features that resolve possible shortcomings in the
systems proposed by Beimel and Dolev.
© 2004 Published by Elsevier B.V.
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1. Introduction

Suppose we have a communication network, modeled by a graphG, composed ofn
vertices andmedges (or arcs, in the case of a directed graph). Messages are passed through
this network, so that the various nodes can communicate with each other. A well-studied
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problem is that of how to encrypt messages, so that even if an outside observer is able to
intercept messages, the information being passed remains secret. A different and less well-
studied problem is the following: Suppose we wish to conceal not only the contents of a
message, but its point of origin and destination. Wemight imagine that the communications
network is a military network for countryA, over which critical orders are transmitted. We
might wish to conceal which node is the command center, so that an enemy, say country
B, does not know where to attack. Further, we may wish to conceal the fact that orders of
some kind are being transmitted, as this may alert countryB to a coming attack fromA.
This is known as theanonymous communicationproblem.
Previous results: The anonymous communication problem was first explored by Chaum,

who proposed and analyzed a basic approach called amix [5]. Mixes are further explored
in [15–17]. Another approach to anonymous communication is to use generic secure multi-
party function evaluation[3,4,7,6,12]. However, such schemes canbe very inefficient[2]. To
solve some of the problems with these methods, two further schemes have been proposed.
The first is thexor-treescheme developed by Dolev and Ostrovsky[10]. The second is the
busscheme introduced by Beimel and Dolev[2]. In this paper, we focus on the bus scheme.
Beimel and Dolev actually propose several different busing schemes. These schemes can

be classified as eitherdeterministicor randomized. Their main focus is on deterministic
schemes, whereas our main focus shall be on randomized schemes. A drawback of the
deterministic schemesofBeimel andDolev is as follows: In all of the deterministic protocols
proposed by these authors, the route a message takes through the network is fixed. If an
enemy cuts a particular edge, or corruptsmessages at a particular node, this could lead to the
situation where the communication path between two nodes is unusable. The protocols have
no possibility of exploring alternative paths. Essentially, in these protocols, it is possible to
discern the general communication pattern, and thus disrupt it, even though it is not possible
to know exactly who is communicating with whom. This criticism is also true of xor-trees
[10]. As we shall see in the next section, there are several other shortcomings with the bus
schemes proposed in[2].
Our results: The aforementioned problems with deterministic busing lead us to explore

further the randomized busing protocol proposed in[2]. In this protocol, messages are
delivered by a single bus traveling on a random walk inG. If, for instance,G is complete
then the expected delivery time is�(n). We show that ifG is complete and there arew�n
buses, then the expected delivery time for a message can be reduced to O(n/

√
w). We

further show that this result is tight, that the expected delivery time is lower bounded by
�(n/

√
w). This is somewhat surprising, as onemight hope for linear speed-up; i.e., a bound

of �(n/w). We then define a new class of graphs calledr-partite directed collars and we
obtain analogous bounds on the delivery time for this class of graphs. We also propose
several new features that overcome problems in the original bus system. We show that for
an appropriate choice of parameters these new features do not impact the expected delivery
time in the case of a complete graph.

2. Background

Before we present our results, we briefly describe the family of protocols presented in
[2], which our method builds upon. To get complete details, the reader should see the
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original paper. The basic idea explored in[2] is explained using the metaphor of a public
transportation system. We think of the nodes of the communication system as being “bus
stops” and of there being one or more “buses” that travel from stop to stop. Each bus has
“seats”si,j ,1� i�n,1�j�n, each of which can hold a message.
When the bus arrives at nodek, seatssk,j ,1�j�n, are all modified. If nodek wishes

to send a message to nodej, then the message is encoded and placed insk,j . Otherwise
sk,j is filled with random bits. We assume a public key cryptosystem is used, so that node
k uses the public key of nodej to encrypt the message that is placed in seatsk,j ; but, other
cryptosystems, such as a symmetric key system, are possible. A basic assumption is that it
is computationally intractable to tell encrypted messages from random bits. Further, node
k checks each seatsi,k,1� i�n, for incoming messages. Each messagesi,k is decrypted
by nodek using its private key. If the result is garbage, then it is ignored. Otherwise, node
k receives the message.
Note that if� is the security parameter used to encrypt each message, then the “bus” is

a message of size at least O(�n). This is because there is a dedicated “seat” on the bus for
each of then nodes, and each seat is occupied by an encrypted message that is of size at
least�.
Different schemes are distinguished by the number of buses and the patterns in which

they travel. The simplest scheme is to have a single bus that follows a Hamiltonian cycle
of G. A more communication intensive scheme involves having 2m buses traveling at each
time step with a bus traversing each edge in each direction. Messages are relayed from bus
to bus until they reach their destination. In order for this to work, each node must maintain
a routing table that indicates where a message should go next in order to reach a particular
destination (in[2] the routes are always shortest paths). An intermediate protocol involves
using the preceding method on some subset of the edges inG (in fact the first scheme
mentioned is just the case where the subgraph is a Hamiltonian cycle).
A basic problem with the schemes we have just described is that the path that a message

follows through the network is fixed. If an enemy is able to disrupt messages along the
path between two nodes (say by cutting an edge completely or replacing selected seats on
a bus with random bits), then it can effectively cut communication between them. Another
problem is that the schemes described so far require some sort of global control; i.e.,
nodes must either know how to route messages to their destination, which requires global
knowledge of the network, or in the case of a Hamiltonian cycle this cycle must somehow
be established, which again requires global knowledge.
To overcome the first problem, Beimel and Dolev proposed routing a bus randomly. The

route the bus follows is a random walk onG. Specifically, at each time step, if the bus is at
nodeu, then we pick a neighborv of u uniformly and randomly, and send the bus along the
edge(u, v). This overcomes the problem of edge failure, since a message will simply not
travel through disabled edges. As long asG remains connected, a message will eventually
reach its destination (with probability one). Randomized busing also eliminates the need
for global routing tables to be stored in each node. However, it introduces a number of new
problems:
1. The position of the bus is a random variable. When a node wants to send a message, it
has to wait for the bus to arrive first. There is no absolute guarantee on how long this
will take.
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2. The time a message takes to travel from its source to its destination is also a random
variable. Although it is possible to show that this travel time is reasonable with high
probability, there is no guarantee that a message will ever reach its destination.

3. Some sort of global control is still required to initialize the system; i.e., the nodes have
to agree where and when the bus will start traveling.

4. If the bus “crashes”, meaning it reaches a node and the bus or node becomes disabled
before the bus departs, either through accident or malicious behavior, then there is no
way for the system to rectify or even recognize this situation.

In this paper, we present a number of modifications to the random walk busing scheme that
seek to rectify these problems.
First, however, wemake a comment about problem2. Even in the case that buses travel on

deterministic paths, and there is no chance of buses being crashed or corrupted, there is some
very small probability of mis-communication. This is because we use random bits to fill
the unused seats of the bus. There is a small probability that these random bits will decrypt
to some message that seems plausible to the receiver. This problem could be overcome by
having the sender check the random bits that fill each unused seat to see if they, in fact,
decrypt to give a valid message, but one may not want to add this extra overhead to the
scheme.

3. Our schemes

We assume we are dealing with a “listening adversary,” who can monitor all commu-
nication links (either statically or dynamically). As in[2], we assume this adversary is
honest-but-curious, meaning it cannot change, delete, or add any messages, or change the
state of any node. (Beimel and Dolev[2] also consider the case of a Byzantine adversary
in the context of a fixed routing scheme.) Also, as in[2], we assume semantic security; i.e.,
messages are encrypted, say by a public key cryptosystem, so that an eavesdropper cannot
effectively distinguish between encryptions of any pair of messages.
We consider two schemes that extend the basic idea of randomized busing introduced by

Beimel and Dolev[2]:
Multiple persistent buses. In this scheme there are a constant numberw of buses on

random walks in the system.
Multiple perishable buses. In this scheme, there are multiple buses on random walks.

These buses are periodically created and destroyed as part of the protocol. This creation
and destruction occurs in such a way that the anonymity of the scheme is preserved.
This second scheme requires no global knowledge of the network or coordination, other

than a global clock. The first scheme requires some coordination to start the buses initially,
but is easier to analyze.
Under the multiple perishable buses protocol, the creation of new buses is facilitated

as follows: Each node is equipped with a single counter. At each time step the counter is
incremented modulok, wherek is a parameter of the system. This counter is initialized to a
random value in{0, . . . , k− 1}. If at some time step the counter achieves a value of 0, then
a bus is created, and started on a random walk.
The destruction of buses is accomplished by using a “time to live” counter that is part of

the bus. When the bus is created, this counter is initialized to a value�. At each time step,
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this counter is decremented. When it reaches 0, the bus is destroyed.
When a nodeu wishes to send a message to another nodev, it waits until a bus arrives

or is created atu, and places the message on the bus. (If a bus arrives atu that already is
carrying a message forv, the nodeu should check to see thatv has acknowledged receipt
of this message beforeu overwrites this message with a new message. This will not cause
significant problems in the case of a complete graph since the probability that a bus that
picked up a message atu visits v before returning tou is n/2(n − 1) > 1/2 by [13,
Proposition 2.3].)
Since the bus might never arrive atv (if it dies before it arrives), the message can be put

on more than one bus. In particular, we consider placing the message on the first� buses
that reachu. Caremust be taken to ensure that different copies of themessage have different
encrypted texts. This might be accomplished by padding each copy with a string of random
bits. Whenv receives the message, it should send an acknowledgment tou via the same
method.
The first thing to note about this protocol is that it preserves anonymity, as long as

the messages are indistinguishable from random bits. Further, as advertised, no global
coordination is required. In fact, the protocol does not necessarily fail even if different
nodes use different values of the parameters� andk. We can also accommodate nodes
being “reset”; i.e., disabled either through accident or malevolence and then restarted at a
later point in time. In this case, we just reinitialize the counter randomly.
Wedo require that each node know its own “identity” and that of any other nodes it wishes

to send messages to, so that it can place messages in the correct seats of the bus. Further,
given that a public key cryptosystem is used to encrypt messages, the sender must have the
receiver’s public key. We also must have some upper bound on the number of nodes inG
to determine the number of seats on the bus.
However, unlike the situation in the random walk protocol of[2], we do have some

guarantee on how long we will wait before a message can be sent, since a bus is created at
each node everyk time steps. Further, if a bus crashes, the system does not fail.
The parameters�, � andk need to be tuned to provide a system that

• Avoids congestion. If many buses arrive at a node simultaneously, this could cause
problems for the system. In this situation, one possible solution is to drop some buses
randomly.

• Assures a high probability of quick message delivery. Obviously, the longer a bus lives,
the more likely it is to deliver messages successfully. Similarly, with more buses in the
system, we can expect buses to arrive at a sender more frequently.
Two types of graphs are considered in our randomized busing schemes. We first focus on

complete graphs in which there is a direct communication link between any pair of nodes.
Then we introduce a new type of graph calledr-partite directed collars, which are natural
generalizations of ring graphs, and we consider randomized busing forr-partite directed
collars. A directed graphG is called anr-partite directed collar if the verticesV in G are
partitioned into nonempty setsV1, V2, . . . , Vr such that the arcs inG consist of arcs from
every node inVi to every node inVi+1 for i = 1,2, . . . , r − 1 and from every node inVr
to every node inV1.

Remark 1. Justifications for randomized busing schemes for complete graphs.One may
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argue why we need the randomized busing protocols for communication in the case of
complete graphs since every pair of nodes is directly connected. However, our goal of
anonymity could not be achieved if two nodes simply communicated directly whenever one
had a message to send to the other.
Anonymity could be achieved if one used a naive scheme in which every node sent every

other node a (possibly nonsensical) message at each time period, but this would result in
significant congestion with O(n) buses both arriving at and departing from every node at
every time step. We will show that in our scheme, even when the number of buses equals
the number of nodes, it is highly probable that nomore thanO(ln n/ ln ln n) buses are at any
single node at any time in the case of a complete graph. Thus, although our scheme involves
significant communication complexity if we employ O(n) buses, there will be advantages
if the message complexity is high since each node will be dealing with fewer messages than
in the naive scheme.
As we shall see in , the multiple perishable buses scheme will work well on a complete

graph if we takek = � = n7/2 and� = √
n.

Another possible criticism to considering the complete graph case may be that complete
graphs are too specialized to be useful in real life communication networks. While we
recognize that complete graphs are a special subclass of all graphs, it is not inconceivable
to find in the real world some communication networks with complete graph topology.
Moreover, the study of busing schemes in complete graphs forms the basis for studying
randomizedbusing inr-partite directed collars,whichare closely related to the ring topology
widely used in real communication networks.

Remark 2. Justifications for randomized busing scheme for directed collar graphs.The
r-partite directed collar graph is a natural generalization of the ring graph. The ring topol-
ogy is a very commonly used topology in real communication networks. Understanding
anonymous messaging in directed collar networks has potential applications for real world
communication network security.
Similar to the case of complete graphs, forr-partite directed collars, the naive method,

which requires every node in a blockVj to send a message to every node in the next block
Vj+1 at each time step, although achieving anonymity, would result in congestion. Our
busing scheme alleviates the congestion problem for arbitrary directed collars, and avoids
the problem in the case of directed collars with each block having equal size.

4. Mathematical preliminaries

We assume the reader is familiar with basic probability theory. For an introduction to
such material we refer the reader to the books Feller[11] and Motwani and Raghavan[14].
We briefly review some relevantmaterial regarding standard randomwalks[1,13,14]. For

v, u ∈ V (G), thehitting timeh(u, v) is the expected number of steps for a random walk
starting atu to reachv.Wedefine themaximumhitting timeto beh∗ = maxu,v∈V (G) h(u, v).
For v ∈ V (G), the cover time fromv, denotedC(v), is the expected number of steps
in a random walk starting atv that reaches every vertex. The cover time ofG is C∗ =
minv∈V (G) C(v). The hitting time seems to be the most relevant parameter in our situation.
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However, the cover time is obviously an upper bound on the maximum hitting time, and,
as we shall see, in the worst case, they have the same value asymptotically. A random walk
on a graph is a special type of Markov chain. If the exact topology ofG is known and fixed,
then the hitting time can be calculated directly, using the theory of Markov chains.
If G is complete, then it is not hard to see thath∗ is �(n), whereasC∗ is �(n logn).

In the case thatG is a lollipop graph (a clique connected to a path; see[1,14]), thenh∗ =
C∗ = �(n3). In general, for any graphGwe haveh∗ �C∗ �2m(n− 1) < n3. If we know
more aboutG, better bounds are possible. For instance it is possible to show that

mR�C∗ �2e3mR ln n+ n,
whereR is the resistance ofG [13,14].
We will make use of the following inequalities (cf.[14, Proposition B.3]):(

1+ x

i

)i
� ex for i > 0 andx� − i, (1)

x + 1 � ex for all x. (2)

5. Multiple persistent buses: complete graphs

We begin by providing some analysis of the multiple persistent bus protocol where there
arew buses on random walks on a complete graphG. For technical reasons, we shall
consider onlyw�n, and we assume throughout thatn�3. Our main result shows that the
expected delivery time of a message is�(n/

√
w + n/�) for all 1���w�n. Admittedly,

this analysis does not take into account the sort of destructive attacks on the system that we
mentioned earlier; however, we should first verify that the system works well under normal
conditions. We also consider the question of congestion.
We begin by considering the situation wherew buses initially located atuwalk randomly

throughG. Define thew-bus hitting timehw(u, v) to be the expected number of steps for
one of thew randomly walking buses to reachv. Then

Lemma 5.1. (n− 2)/w�hw(u, v)�(n− 2)/w + 1.

Proof. Let �i = {�ij }, for 1� i�w, be the sequence of vertices visited by theith bus. So,
for j�0, the vertex visited by theith bus afterj steps is�ij .
First consider the question “Given a fixed vertexv 
= u, what is the minimum indexX

such that�iX = v for somei?” Note that E[X] = hw(u, v). We define a new sequence�
from thesew sequences as follows:

�j = �(j modw)+1
j/w� for j�0.

Note that�j = u for 0�j < w and�j 
= �j−w for all j�w. Now consider the question
“Given a fixed vertexv 
= u, what is the minimum indexY such that�Y = v?” Note
thatX = 
Y/w��Y/w and thereforehw(u, v)�E[Y/w] = E[Y ]/w, sincew is constant.
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Further note thathw(u, v) = E[X]�(E[Y ]/w)−1. For all 0� i < w, we have�i 
= v. For
all i�w, given that�j 
= v for all 0�j < i, the probability that�i = v is just 1/(n− 1).
Using the fact thatG is complete, it follows thatY −w+ 1 is a geometric random variable
with parameter 1/(n − 1). Hence, we have E[Y − w + 1] = n − 1. We conclude that
(n− 2)/w�hw(u, v)�(n− 2)/w + 1. �
Similar results can be shown for cover time, but we do not need them here.
Suppose the graphG is r-regular, but not complete. Consider the following experiment:

Choose a vertexu′ different fromv at random. What is the probabilityp that a bus at this
chosen vertex will arrive atv on the next step? There arer neighbors ofv, so the probability
that we chose one of these neighbors isr/(n − 1). Given that we chose a neighbor ofv,
the probability that the bus goes tov on the next step is 1/r (sinceu′ also hasr neighbors).
Therefore, we havep = (r/(n − 1))(1/r) = 1/(n − 1). However, the above proof of
Lemma5.1 doesnot remain valid for regular graphs. The problem is that the random
variableY −w+ 1 would not be a geometric random variable if the graph is not complete.
Indeed, if the bus went fromu′ to v′ 
= v, then the probability that the bus would go from
v′ to v on the next step would depend on whetherv′ is or is not a neighbor ofv, so we
do not have a sequence of independent trials. (Of course, it is clear that Lemma5.1could
not hold for regular graphs since, in the case thatw = 1, the hitting time for an arbitrary
regular graph is not O(n). For example, onemay consider a “cycle” of cliques with the same
number of vertices in each one, where an edge is removed from each clique to allow the
connection of adjacent cliques without violating regularity, see[9, p. 306]. Such a graph is
sometimes called a necklace.) However, we will show in the next section that we can obtain
similar results for a class of graphs we call directed collars.
We now consider how buses arrive at a nodeu. In particular, we consider the question,

“Starting at a particular timet, how many steps do we have to wait beforei distinct buses
arrive atu?” Call this valueAi .

Proposition 5.1. E[Ai]� i(n− 1)

w − i + 1
.

Proof. DefineBj to be the number of steps between the arrival of the(j −1)st distinct bus
and the arrival of thejth distinct bus.
ThenAi = ∑i

j=1 Bj and so E[Ai] = ∑i
j=1 E[Bj ]. ConsiderBj . For any fixed bus that

has not yet arrived atu, the probability that it does not arrive atu on a given time step is
(n− 2)/(n− 1). The probability that none of thew− j + 1 buses that have yet to arrive at
uwill arrive on the next step is

qj =
(
n− 2

n− 1

)w−j+1
,

since the buses move independently. Note thatBj could equal 0 if the(j − 1)st andjth bus
arrive simultaneously, and we have Pr[Bj = 0] = 1− qj . ForBj to equal 1, it must be the
case that none of thew−j+1 buses yet to arrive atuarrives at the same time as the(j−1)st
bus and one of them arrives atu at the next time step. Hence, Pr[Bj = 1] = (1− qj )qj .
In general, we have Pr[Bj = b] = (1− qj )qbj . (SoBj is a geometric random variable that
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can take the values 0,1, . . . .)
From the definition of expected value, we have

E[Bj ] =
∞∑
b=0

b(1− qj )qbj = 1

1− qj − 1= 1

1− ((n− 2)/(n− 1))w−j+1 − 1,

and therefore,

E[Ai] = −i +
i∑
j=1

1

1− ((n− 2)/(n− 1))w−j+1

= −i +
i∑
j=1

1

1− (1+ (−(w − j + 1)/(n− 1))/(w − j + 1))w−j+1

� −i +
i∑
j=1

1

1− e−(w−j+1)/(n−1) , using(1)

= −i +
i∑
j=1

e(w−j+1)/(n−1)

e(w−j+1)/(n−1) − 1

= −i +
i∑
j=1

e(w−j+1)/(n−1) − 1+ 1

e(w−j+1)/(n−1) − 1

= −i +
i∑
j=1

1+ 1

e(w−j+1)/(n−1) − 1

=
i∑
j=1

1

e(w−j+1)/(n−1) − 1

� i

e(w−i+1)/(n−1) − 1
, sincej� i

� i(n− 1)

w − i + 1
, using(2). �

Now we consider how long a message takes to get fromu to v. Suppose we put the
message on the first��w distinct buses that arrive atu. Without loss of generality, we
can assume these buses are numbered 1,2, . . . , �. As before, letAi be the number of steps
beforei distinct buses arrive atu. LetDi be the number of steps taken by theith distinct bus
in traveling fromu tov. By the “expected delivery time”wemeanE

[
min1� i��{Ai +Di}

]
.

(So this includes the timeumust wait to put messages on buses and the time it takes for
some bus to reachv.) We have

E

[
min

1� i��
{Ai +Di}

]
� E

[
min

1� i��
{A� +Di}

]

= E[A�] + E

[
min

1� i��
Di

]
.

Weclaim that E
[
min1� i�� Di

] = h�(u, v). To see this, suppose that theith bus receives
the message atu at time�i . As above, let�i = {�ij } be the sequence of vertices visited by
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theith bus. Then E
[
min1� i�� Di

]
is the minimum indexX such that�i�i+X = v for some

i ∈ {1,2, . . . , �}. It is then clear that E[min1� i�� Di
]
is the same ash�(u, v). Hence,

using Lemma5.1, we have

E

[
min

1� i��
{Ai +Di}

]
� E[A�] + h�(u, v)

� �(n− 1)

w − � + 1
+ n− 2

�
+ 1. (3)

If we choose��√
w, then

�(n− 1)

w − � + 1
� �(n− 1)

�2 − � + 1
,

so the expected delivery time is O(n/�). Further note that

E

[
min

1� i��
{Ai +Di}

]
�E

[
min

1� i��
Di

]
= h�(u, v)�

n− 2

�
.

Therefore, for��√
w the expected delivery time is�(n/�). So, in this case, linear speed-up

in � is achieved.
For� >

√
w, an upper bound of O(n/

√
w) holds, since, using (3), we have

E

[
min

1� i��
{Ai +Di}

]
≤ E

[
min

1� i�
√w�
{Ai +Di}

]
= O

(
n√
w

)
.

We now develop a lower bound for the expected delivery time when� >
√
w. Put

� = 
√w� + 1. Note that

E

[
min

1� i��
{Ai +Di}

]
= E

[
min

{
min
1� i<�

{Ai +Di}, min
�� i��

{Ai +Di}
}]

� E

[
min

{
min
1� i<�

Di, A�

}]
.

Now, by Markov’s Inequality, we have

E

[
min

{
min
1� i<�

Di, A�

}]
�Pr

[
min

{
min
1� i<�

Di, A�

}
�a

]
· a

for any positive numbera. Also, since the random variables min1� i<�Di andA� are
independent, we have

Pr

[
min

{
min
1� i<�

Di, A�

}
�a

]
=Pr

[(
min
1� i<�

Di�a
)

∩ A��a
]

=Pr
[
min
1� i<�

Di�a
]
Pr

[
A��a

]
.

Hence, we have

E

[
min

1� i��
{Ai +Di}

]
�Pr

[
min
1� i<�

Di�
n

c
√
w

]
Pr

[
A�� n

c
√
w

]
n

c
√
w
,
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for any positive numberc. Our goal now is to show that forc = 2e6 each of the probabilities
in this last inequality are bounded away from 0. If we can do this, then the expected delivery
time is�(n/

√
w) for � >

√
w.

We first establish a positive lower bound for the probability thatA��n/(2e6√w). Put
ϑ = �n/w�. DefineZi to be 1 ifBi�ϑ and 0 otherwise. The variablesZ1, . . . , Z� are
independent Poisson trials with

Pr[Zi = 1] = Pr[Bi�ϑ] =
∞∑
b=ϑ
(1− qi)qbi = qϑ

i .

DefineZ = ∑�
i=1 Zi and	 = E[Z]. Then the Chernoff bound[14, Theorem 4.2], tells us

that

Pr
[
Z < 1

2 	
]
< e−	/8.

Hence, we have

Pr
[
Z� 1

2 	
]

�1− 1

e	/8
.

Forn�3 andw�1, we have

	 =
�∑
i=1
qϑ
i =

�∑
i=1

(
n− 2

n− 1

)ϑ·(w−i+1)
��

(
n− 2

n− 1

)ϑw

= �

(1+ (ϑw/(n− 2))/ϑw)ϑw
� �

eϑw/(n−2)
,

using (1). Now,ϑw < n+ w�2n, soϑw/(n− 2) < 6 (sincen�3). Hence

	 >
�
e6
>

√
w

e6
.

Since��2 forw�1, we find that

Pr

[
Z�

√
w

2e6

]
�Pr[Z�	/2]�1− 1

e	/8
�1− 1

e�/8e6
�1− 1

e1/4e6
> 0.0006.

We note that

A� =
�∑
j=1

Bj�ϑ
�∑
j=1

Zj = ϑZ,

and therefore 1− 1/e1/4e
6
is also a lower bound on the probability thatA��ϑ

√
w/

(2e6)�n/(2e6√w).
The other probability is much simpler to bound. For any nonnegative integer
, we have

Pr

[
min
1� i<�

Di�
 + 1

]
=

(
n− 2

n− 1

)(�−1)


= 1

((n− 1)/(n− 2))(�−1)
 ,



74 S.S. Seiden et al. / Theoretical Computer Science 332 (2005) 63–81

since at each of
 steps each of� − 1 buses goes to one of then − 2 vertices other thanv
and the vertex the bus was at. Writing(

n− 1

n− 2

)(�−1)

=

(
1+ (� − 1)
/(n− 2)

(� − 1)


)(�−1)


and applying (1), we get

Pr

[
min
1� i<�

Di�
 + 1

]
� 1

e(�−1)
/(n−2)

� 1

e

√
w/(n−2) .

For 
 = 
n/(2e6√w)� andn�3 (son/(n− 2)�3), we have

Pr

[
min
1� i<�

Di�n/(2e6
√
w)

]
�Pr

[
min
1� i<�

Di�
 + 1

]
� 1

e3/(2e6)
> 0.99.

We have shown the following.

Theorem 5.1.WhenG is complete, the expected delivery time of amessage in the persistent
multiple bus protocol is

�
(
n√
w

+ n

�

)

for all 1���w�n.

We now consider the question of congestion. Suppose the initial locations of thew buses
are chosen independently and uniformly at random fromV (G). Then if we consider any
fixed time step, bus positions are chosen independently and uniformly at random. The
expected number of buses at a vertex is justw/n. What is the maximum number of buses
at a vertex? This is modeled by the situation of throwingw balls inn bins independently
and uniformly at random. Puttingk∗ = �(3w ln n)/n ln ln n�, and reasoning as in[14, p.
44], we see that no bin has more thank∗ balls in it with probability at least 1− 1/n, so the
amount of congestion is reasonable.

6. Multiple persistent buses: directed collars

Wenowconsider graphs thatwewill call directedcollars. Thesegraphsmaybeconsidered
generalizations of a unidirectional ring, as considered in[8]. Also, results on complete
bipartite graphs may be inferred from results on these directed collars, as we will note at
the end of this section.

Definition 6.1. An r-partite directed collar is a directed graphG such that
(1) the vertex setV is the disjoint union of nonempty subsetsV1, V2, . . . , Vr .
(2) the arcs ofG consist of arcs directed from each vertex inVi to each vertex inVi+1 for

i = 1, . . . , r − 1 and from each vertex inVr to each vertex inV1.



S.S. Seiden et al. / Theoretical Computer Science 332 (2005) 63–81 75

For this section,G will denote anr-partite directed collar. Letni = #Vi for i =
1,2, . . . , r. Putn = ∑r

i=1 ni and putn∗ = max1� i� r ni . We assume throughout this
section thatw�n∗. We also assume thatr is a fixed number, and our goal is to bound the
expected delivery time in terms ofn∗.
Let u andv be two vertices ofG. If u ∈ Vi andv ∈ Vj , with i 
= j , then the distance

fromu to v (which is the length of the shortestu−v path) isj − i if i < j and isr− (i− j)
if i > j . If u andv are distinct vertices in the sameVi , then the distance fromu to v is k.
We again considerw buses initially located atu that are randomly walking onG (only in
the direction of the arcs, of course).

Lemma 6.1. Let d denote the distance from uto v. Supposev ∈ Vm. Then

d + r
(
nm − w − 1

w

)
�hw(u, v)�d + r

(
nm − 1

w

)
.

Proof. As in the proof of Lemma5.1, let �i = {�ij }, for 1� i�w, be the sequence of
vertices visited by theith bus. Now, define a new sequence� by

�j = �(j modw)+1d+
j/w�r for j�0.

So,

� = {�1d , . . . ,�wd ,�1d+r , . . . ,�wd+r ,�1d+2r , . . .}.
If Y is the minimum index such that�Y = v, thenY is a geometric random variable with
parameter 1/nm that may take the values 0,1, . . .. Therefore, E[Y ] = nm − 1. Note that
here we havehw(u, v) = d + r · E[
Y/w�]. Since

nm − w − 1

w
= nm − 1

w
− 1= E

[
Y

w
− 1

]
�E[
Y/w�]� E[Y ]

w
= nm − 1

w
,

it follows that

d + r
(
nm − w − 1

w

)
�hw(u, v)�d + r

(
nm − 1

w

)
. �

We now consider how buses arrive at a nodeu in the case of a directed collar. Again,
let Ai denote the number of time steps we have to wait beforei distinct buses arrive atu,
starting from some particular time.

Proposition 6.1. Supposeu ∈ Vl . Then

E[Ai]�r
(
i + inl

w − i + 1

)
− i.

Proof. As in the proof of Proposition5.1, we haveAi = ∑i
j=1 Bj , whereBj is the number

of time steps between the arrival of the(j−1)st distinct bus and the arrival of thejth distinct
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bus. However, we must make some modifications to the argument used in Proposition5.1
in the case of a directed collar.
Define a new random variableBj to be equal tos if (s − 1)r�Bj�sr − 1. ThenBj

may take the values 1,2, . . .. In the case of a directed collar, the probability that none of
thew − j + 1 buses that have yet to arrive atuwill arrive atu during the next rsteps is

q̄j =
(
nl − 1

nl

)w−j+1
.

Then Pr[Bj = s] = q̄(s−1)j (1− q̄j ). ThusBj is a geometric random variable and

E[Bj ] = 1

1− q̄j .

Now, since(Bj − 1)r�Bj�Bjr − 1, we have

r

(
1

1− q̄j − 1

)
�E[Bj ]�r

(
1

1− q̄j
)

− 1.

Therefore,

i∑
j=1

r

(
1

1− q̄j − 1

)
�E[Ai]�

i∑
j=1

r

(
1

1− q̄j
)

− i.

Proceeding as in the proof of Proposition5.1, we obtain

E[Ai]�r
(
i + inl

w − i + 1

)
− i. �

As in the previous section, letDi be the number of steps taken by theith distinct bus in
traveling fromu to v. We recall that the expected delivery time is E

[
min1� i��{Ai +Di}

]
.

Here, ifu ∈ Vl andv ∈ Vm, we have

E

[
min

1� i��
{Ai +Di}

]
� E[A�] + h�(u, v)

� r

(
� + �nl

w − � + 1

)
− � + d + r

(
nm − 1

�

)

� r� + r �n∗
w − � + 1

− � + r + r
(
n∗ − 1

�

)
. (4)

If we choose��√
w, then notice that�2�n∗, and so��n∗/�. It follows then from (4)

that the expected delivery time is O(rn∗/�). For� >
√
w, we have

E

[
min

1� i��
{Ai +Di}

]
�E

[
min

1� i�
√w�
{Ai +Di}

]
= O

(
rn∗√
w

)
.
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Thus, we have shown

Theorem 6.1.When G is an r-partite directed collar, the expected delivery time of a mes-
sage in the persistent multiple bus protocol is

O

(
rn∗√
w

+ rn∗
�

)

for all 1���w�n∗.

A lower bound for delivery time for a directed collar would depend on the minimum of
the number of vertices in eachVi . However, it is of more interest to find a lower bound for
the maximum of the delivery time over all pairs of vertices. This maximum delivery time
would occur whenu andv both belong to aVi with n∗ vertices.

Theorem 6.2. Let G be an r-partite directed collar. Suppose u andv are distinct vertices
in Vl and#Vl = n∗, wheren∗ �2.Then the expected delivery time of a message from u to
v is

�
(
rn∗√
w

+ rn∗
�

)
.

Proof. If ��√
w, then

E

[
min

1� i��
{Ai +Di}

]
� E

[
min

1� i��
Di

]

= h�(u, v)�r + r
(
n∗ − � − 1

�

)
= r

(
n∗ − 1

�

)
.

It then suffices to show that the expected delivery time when� >
√
w is�(rn∗/

√
w). To

do that, we will proceed in a similar manner to the proof of the lower bound in Theorem
5.1. As in that proof, we have

E

[
min

1� i��
{Ai +Di}

]
�Pr

[
min
1� i<�

Di�
rn∗
c
√
w

]
Pr

[
A�� rn∗

c
√
w

]
rn∗
c
√
w
,

for any positive numberc, where� = 
√w� + 1.
Putϑ = �n∗/w�.WithBj as in theproof ofProposition6.1, defineZj to be1 ifBj−1�ϑ

and 0 otherwise. Then

Pr[Zj = 1] = Pr[Bj�ϑ + 1] =
∞∑

s=ϑ+1
q̄
(s−1)
j (1− q̄j ) = q̄ϑ

j .

PutZ = ∑�
j=1 Zj and let	̄ = E[Z]. Then

	̄ =
�∑
j=1

q̄ϑ
j =

�∑
j=1

(
n∗ − 1

n∗

)ϑ·(w−j+1)
��

(
n∗ − 1

n∗

)ϑw

= �

(1+ (ϑw/(n∗ − 1))/ϑw)ϑw
� �

eϑw/(n∗−1) .
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Now, ϑw < n∗ + w�2n∗. Hence,ϑw/(n∗ − 1) < 2n∗/(n∗ − 1)�4 (sincen∗ �2).
Therefore, we have

	̄ >
�
e4
>

√
w

e4
.

Applying the Chernoff bound as in the proof of Theorem5.1, we obtain

Pr

[
Z�

√
w

2e4

]
�Pr

[
Z�	/2

]
�1− 1

e	/8
�1− 1

e�/8e4
�1− 1

e1/4e4
> 0.004.

Now, we have

A� =
�∑
j=1

Bj�
�∑
j=1
(Bj − 1)r�rϑ

�∑
j=1

Zj = rϑZ.

Thus,

Pr

[
A�� rn∗

2e4
√
w

]
� Pr

[
A�� rϑ

√
w

2e4

]

� Pr

[
rϑZ� rϑ

√
w

2e4

]
= Pr

[
Z�

√
w

2e4

]
> 0.004.

Finally, we need to obtain a lower bound for Pr
[
min1� i<� Di� rn∗

2e4
√
w

]
. Recall thatDi

is the number of steps taken by theith distinct bus in traveling fromu to v. Sinceu andv
are both inVl , it follows thatDi will be a multiple ofr. For any nonnegative integer
, we
have

Pr

[
min
1� i<�

Di�r(
 + 1)

]
=

(
n∗ − 1

n∗

)(�−1)


= 1

(n∗/(n∗ − 1))(�−1)
 ,

since at each of
 trips completely around the collar (starting atu) each of� − 1 buses goes
through one of then∗ − 1 vertices inVl other thanv. Writing

(
n∗

n∗ − 1

)(�−1)

=

(
1+ (� − 1)
/(n∗ − 1)

(� − 1)


)(�−1)


and applying (1), we get

Pr

[
min
1� i<�

Di�r(
 + 1)

]
� 1

e(�−1)
/(n∗−1)

� 1

e

√
w/(n∗−1) .
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For 
 = 
n∗/(2e4
√
w)� andn∗ �2 (son∗/(n∗ − 1)�2), we have

Pr

[
min
1� i<�

Di�rn∗/(2e4
√
w)

]
� Pr

[
min
1� i<�

Di�r(
 + 1)

]

� 1

e1/e4
> 0.98. �

We now consider the question of congestion in the directed collar case. Letwi denote
the number of buses initially at vertices inVi . Then it is clear that there will never be more
than max1� i� r wi buses at any vertex. In the case when #Vi = n/r for all i, by applying
the balls into bins model as in the complete graph case to the “blocks”Vi and then to the
vertices in each block, we see that ifk∗ = �(9w/n)(ln r/ ln ln r)(ln(n/r)/ ln ln(n/r))�,
then no vertex will have more thank∗ buses with probability at least(1− 1/r)(1− r/n).

Remark 3. A complete (undirected) bipartite graph may be viewed as a 2-partite directed
collar with the arcs fromV1 to V2 and fromV2 to V1 being replaced by the edges of the
complete bipartite graph. Hence, the results from this section, withr = 2, apply to the case
of a complete bipartite graph.

7. Multiple perishable buses

We now return to the case of a complete graph and consider the situation where buses
are perishable. This situation is significantly more complicated than the situation where
buses are persistent. However, intuitively, if we choosek and� large, then we expect that
the performance of the system will be close to that where buses live forever. We show that
for k = � = n7/2, with high probability, the expected delivery time of a message is O(

√
n).

If we choosek = �, then after the firstk steps, we will have exactlynbuses in the system
at all times (assuming buses do not crash and no node needs to be reset). This seems to be
a nice choice, as the number of buses in the system is constant. (However, with so many
buses, one may wish to consider using the naive system in which each node sends a real or
nonsensemessage to every other node at each time step.) In this situation, as noted at the end
of the previous section, the number of buses at any vertex is at most�3 lnn/ ln ln n� with
probability at least 1− 1/n, so the level of congestion is reasonable. So, for the remainder
of this section we assume thatw = n and� = √

n.
In the situation where buses are not destroyed, a message placed on a bus is delivered

with probability 1. If buses have lifetimes, this is no longer true. However, we are able to
show that with high probability a message will be delivered.
Suppose we want to send a message at timet. Recall that each bus dies every� time

steps, and the times at which buses are initially created at nodes are uniformly distributed
between 0 andk − 1 = �− 1. We calculate the probability that no bus is destroyed in the
time period starting att and ending att + n3/2. The probability that a given bus dies during
this period is exactly max{n3/2/�,1}. Assume from now on that��n3/2. Using Boole’s
Inequality, the probability that some bus dies during the previous mentioned time period is
at mostwn3/2/� = n5/2/�. So, if we pick� = n7/2, then the probability thatno bus dies
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during this time period is at least 1− 1/n. LetYdenote the number of buses that die during
this time period. Then, we’ve seen that Pr[Y = 0]�1− 1/n.
Markov’s inequality (which holds for conditional probabilities and expectations) tells us

that

Pr

[
min

1� i��
{Ai +Di} < n3/2 |Y = 0

]
� 1− E

[
min

1� i��
{Ai +Di}|Y = 0

] /
n3/2

= 1−O

(
1

n

)
,

since, by the previous section, E
[
min1� i��{Ai +Di}|Y = 0

]
is O(n/�) = O(

√
n). Then,

since

Pr

[
min

1� i��
{Ai +Di} < n3/2

]
�Pr

[
min

1� i��
{Ai +Di} < n3/2 |Y = 0

]
Pr[Y = 0],

the probability that themessage gets delivered during this time period is at least 1−O(1/n).
The expected delivery time given these circumstances is clearly O(

√
n).

8. Conclusions

We have presented further analysis of the random walk anonymous message system
proposed by Beimel and Dolev[2]. We have shown that by increasing the number of buses
w in a system, delivery time is decreased. However, our lower bound of�(n/

√
w) in the

complete graph case shows that message delivery time does not decrease linearly with the
number of buses. It would be quite interesting to obtain upper bound results for other types
of communication network topologies besides complete graphs and directed collars.
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