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Abstract

We consider anonymous secure communication, where parties not only wish to conceal their com-
munications from outside observers, but also wish to conceal the very fact that they are communicating.
We consider the bus framework introduced by Beimel and Dolev (J. Cryptology 16 (2003) 25), where
messages are delivered by a bus traveling on a random walk. We generalize this idea to consider more
than one bus. We show thatif buses are allowed, then the expected delivery time for a message can
be decreased fro®(n) to ©(n//w) in the case of a complete graph. Additionally, we introduce a
class of graphs calledpartite directed collars and obtain analogous bounds on the expected delivery
time for these graphs. We also propose several new features that resolve possible shortcomings in the
systems proposed by Beimel and Dolev.
© 2004 Published by Elsevier B.V.
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1. Introduction

Suppose we have a communication network, modeled by a ggamlomposed oh
vertices ananedges (or arcs, in the case of a directed graph). Messages are passed through
this network, so that the various nodes can communicate with each other. A well-studied
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problem is that of how to encrypt messages, so that even if an outside observer is able to
intercept messages, the information being passed remains secret. A different and less well-
studied problem is the following: Suppose we wish to conceal not only the contents of a
message, but its point of origin and destination. We might imagine that the communications
network is a military network for countr, over which critical orders are transmitted. We
might wish to conceal which node is the command center, so that an enemy, say country
B, does not know where to attack. Further, we may wish to conceal the fact that orders of
some kind are being transmitted, as this may alert couBitiy a coming attack froma.

This is known as thanonymous communicatigmoblem.

Previous resultsThe anonymous communication problem was first explored by Chaum,
who proposed and analyzed a basic approach calietk §5]. Mixes are further explored
in [15—-17] Another approach to anonymous communication is to use generic secure multi-
party function evaluatiof8,4,7,6,12] However, such schemes can be very ineffidightTo
solve some of the problems with these methods, two further schemes have been proposed.
The first is thexor-treescheme developed by Dolev and Ostrovglg]. The second is the
busscheme introduced by Beimel and Do[&y. In this paper, we focus on the bus scheme.

Beimel and Dolev actually propose several different busing schemes. These schemes can
be classified as eithefeterministicor randomized Their main focus is on deterministic
schemes, whereas our main focus shall be on randomized schemes. A drawback of the
deterministic schemes of Beimel and Dolev is as follows: In all of the deterministic protocols
proposed by these authors, the route a message takes through the network is fixed. If an
enemy cuts a particular edge, or corrupts messages at a particular node, this could lead to the
situation where the communication path between two nodes is unusable. The protocols have
no possibility of exploring alternative paths. Essentially, in these protocols, it is possible to
discern the general communication pattern, and thus disrupt it, even though it is not possible
to know exactly who is communicating with whom. This criticism is also true of xor-trees
[10]. As we shall see in the next section, there are several other shortcomings with the bus
schemes proposed |8].

Our results The aforementioned problems with deterministic busing lead us to explore
further the randomized busing protocol proposedZh In this protocol, messages are
delivered by a single bus traveling on a random walGinf, for instance G is complete
then the expected delivery time@(n). We show that ifG is complete and there ate<n
buses, then the expected delivery time for a message can be reducéd/tg). We
further show that this result is tight, that the expected delivery time is lower bounded by
Q(n//w). This is somewhat surprising, as one might hope for linear speed-up; i.e., abound
of ®(n/w). We then define a new class of graphs catlgghrtite directed collars and we
obtain analogous bounds on the delivery time for this class of graphs. We also propose
several new features that overcome problems in the original bus system. We show that for
an appropriate choice of parameters these new features do not impact the expected delivery
time in the case of a complete graph.

2. Background

Before we present our results, we briefly describe the family of protocols presented in
[2], which our method builds upon. To get complete details, the reader should see the
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original paper. The basic idea explored®} is explained using the metaphor of a public
transportation system. We think of the nodes of the communication system as being “bus
stops” and of there being one or more “buses” that travel from stop to stop. Each bus has
“seats”s; j, 1<i <n, 1< j <n, each of which can hold a message.

When the bus arrives at no#teseatss, ;, 1< j <n, are all modified. If nodé wishes
to send a message to nogahen the message is encoded and placeq jn Otherwise
s, is filled with random bits. We assume a public key cryptosystem is used, so that node
k uses the public key of nogeo encrypt the message that is placed in sgaf but, other
cryptosystems, such as a symmetric key system, are possible. A basic assumption is that it
is computationally intractable to tell encrypted messages from random bits. Further, node
k checks each seat;, 1<i <n, for incoming messages. Each messageis decrypted
by nodek using its private key. If the result is garbage, then it is ignored. Otherwise, node
k receives the message.

Note that if § is the security parameter used to encrypt each message, then the “bus” is
a message of size at leastff2). This is because there is a dedicated “seat” on the bus for
each of then nodes, and each seat is occupied by an encrypted message that is of size at
leastp.

Different schemes are distinguished by the number of buses and the patterns in which
they travel. The simplest scheme is to have a single bus that follows a Hamiltonian cycle
of G. A more communication intensive scheme involves havingRses traveling at each
time step with a bus traversing each edge in each direction. Messages are relayed from bus
to bus until they reach their destination. In order for this to work, each node must maintain
a routing table that indicates where a message should go next in order to reach a particular
destination (irf2] the routes are always shortest paths). An intermediate protocol involves
using the preceding method on some subset of the edg@s(im fact the first scheme
mentioned is just the case where the subgraph is a Hamiltonian cycle).

A basic problem with the schemes we have just described is that the path that a message
follows through the network is fixed. If an enemy is able to disrupt messages along the
path between two nodes (say by cutting an edge completely or replacing selected seats on
a bus with random bits), then it can effectively cut communication between them. Another
problem is that the schemes described so far require some sort of global control; i.e.,
nodes must either know how to route messages to their destination, which requires global
knowledge of the network, or in the case of a Hamiltonian cycle this cycle must somehow
be established, which again requires global knowledge.

To overcome the first problem, Beimel and Dolev proposed routing a bus randomly. The
route the bus follows is a random walk @ Specifically, at each time step, if the bus is at
nodeu, then we pick a neighbar of u uniformly and randomly, and send the bus along the
edge(u, v). This overcomes the problem of edge failure, since a message will simply not
travel through disabled edges. As long@semains connected, a message will eventually
reach its destination (with probability one). Randomized busing also eliminates the need
for global routing tables to be stored in each node. However, it introduces a number of new
problems:

1. The position of the bus is a random variable. When a node wants to send a message, it
has to wait for the bus to arrive first. There is no absolute guarantee on how long this
will take.
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2. The time a message takes to travel from its source to its destination is also a random
variable. Although it is possible to show that this travel time is reasonable with high
probability, there is no guarantee that a message will ever reach its destination.

3. Some sort of global control is still required to initialize the system; i.e., the nodes have
to agree where and when the bus will start traveling.

4. If the bus “crashes”, meaning it reaches a node and the bus or node becomes disabled
before the bus departs, either through accident or malicious behavior, then there is no
way for the system to rectify or even recognize this situation.

In this paper, we present a number of modifications to the random walk busing scheme that

seek to rectify these problems.

First, however, we make a comment about problem 2. Even in the case that buses travel on
deterministic paths, and there is no chance of buses being crashed or corrupted, there is some
very small probability of mis-communication. This is because we use random bits to fill
the unused seats of the bus. There is a small probability that these random bits will decrypt
to some message that seems plausible to the receiver. This problem could be overcome by
having the sender check the random bits that fill each unused seat to see if they, in fact,
decrypt to give a valid message, but one may not want to add this extra overhead to the
scheme.

3. Our schemes

We assume we are dealing with a “listening adversary,” who can monitor all commu-
nication links (either statically or dynamically). As [@], we assume this adversary is
honest-but-curious, meaning it cannot change, delete, or add any messages, or change the
state of any node. (Beimel and Dolg2] also consider the case of a Byzantine adversary
in the context of a fixed routing scheme.) Also, af?)) we assume semantic security; i.e.,
messages are encrypted, say by a public key cryptosystem, so that an eavesdropper cannot
effectively distinguish between encryptions of any pair of messages.

We consider two schemes that extend the basic idea of randomized busing introduced by
Beimel and Dole\2]:

Multiple persistent busesn this scheme there are a constant numbesf buses on
random walks in the system.

Multiple perishable busesdn this scheme, there are multiple buses on random walks.
These buses are periodically created and destroyed as part of the protocol. This creation
and destruction occurs in such a way that the anonymity of the scheme is preserved.

This second scheme requires no global knowledge of the network or coordination, other
than a global clock. The first scheme requires some coordination to start the buses initially,
but is easier to analyze.

Under the multiple perishable buses protocol, the creation of new buses is facilitated
as follows: Each node is equipped with a single counter. At each time step the counter is
incremented modulk, wherek is a parameter of the system. This counter is initialized to a
random value if0, ..., k — 1}. If at some time step the counter achieves a value of 0, then
a bus is created, and started on a random walk.

The destruction of buses is accomplished by using a “time to live” counter that is part of
the bus. When the bus is created, this counter is initialized to a ¥alieeach time step,
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this counter is decremented. When it reaches 0, the bus is destroyed.

When a nodeai wishes to send a message to another ngdewaits until a bus arrives
or is created ati, and places the message on the bus. (If a bus arriveshatt already is
carrying a message faer, the nodeu should check to see thathas acknowledged receipt
of this message beforeoverwrites this message with a new message. This will not cause
significant problems in the case of a complete graph since the probability that a bus that
picked up a message atvisits v before returning tai is n/2(n — 1) > 1/2 by [13,
Proposition 2.3)

Since the bus might never arrivew(if it dies before it arrives), the message can be put
on more than one bus. In particular, we consider placing the message on thefissts
that reachu. Care must be taken to ensure that different copies of the message have different
encrypted texts. This might be accomplished by padding each copy with a string of random
bits. Whenv receives the message, it should send an acknowledgmentitothe same
method.

The first thing to note about this protocol is that it preserves anonymity, as long as
the messages are indistinguishable from random bits. Further, as advertised, no global
coordination is required. In fact, the protocol does not necessarily fail even if different
nodes use different values of the parameteemd k. We can also accommodate nodes
being “reset”; i.e., disabled either through accident or malevolence and then restarted at a
later point in time. In this case, we just reinitialize the counter randomly.

We do require that each node know its own “identity” and that of any other nodes it wishes
to send messages to, so that it can place messages in the correct seats of the bus. Further,
given that a public key cryptosystem is used to encrypt messages, the sender must have the
receiver’s public key. We also must have some upper bound on the number of n@gles in
to determine the number of seats on the bus.

However, unlike the situation in the random walk protocol[2f, we do have some
guarantee on how long we will wait before a message can be sent, since a bus is created at
each node everlgtime steps. Further, if a bus crashes, the system does not fail.

The parameters, A andk need to be tuned to provide a system that
e Avoids congestion. If many buses arrive at a node simultaneously, this could cause

problems for the system. In this situation, one possible solution is to drop some buses

randomly.

e Assures a high probability of quick message delivery. Obviously, the longer a bus lives,
the more likely it is to deliver messages successfully. Similarly, with more buses in the
system, we can expect buses to arrive at a sender more frequently.

Two types of graphs are considered in our randomized busing schemes. We first focus on
complete graphs in which there is a direct communication link between any pair of nodes.
Then we introduce a new type of graph callepartite directed collars, which are natural
generalizations of ring graphs, and we consider randomized busingpfantite directed
collars. A directed grapks is called arr-partite directed collar if the verticagin G are
partitioned into nonempty seig, Vo, ..., V, such that the arcs i consist of arcs from
every node inV; to every node iV, 1 fori = 1,2,...,r — 1 and from every node iW,
to every node irv/;.

Remark 1. Justifications for randomized busing schemes for complete gr&ptesmay
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argue why we need the randomized busing protocols for communication in the case of
complete graphs since every pair of nodes is directly connected. However, our goal of
anonymity could not be achieved if two nodes simply communicated directly whenever one
had a message to send to the other.

Anonymity could be achieved if one used a naive scheme in which every node sent every
other node a (possibly nonsensical) message at each time period, but this would result in
significant congestion with @) buses both arriving at and departing from every node at
every time step. We will show that in our scheme, even when the number of buses equals
the number of nodes, it is highly probable that no more thédn & In In ») buses are at any
single node at any time in the case of a complete graph. Thus, although our scheme involves
significant communication complexity if we employ&) buses, there will be advantages
if the message complexity is high since each node will be dealing with fewer messages than
in the naive scheme.

As we shall see in , the multiple perishable buses scheme will work well on a complete
graph if we takek = ¢ = n’/? and/ = /n.

Another possible criticism to considering the complete graph case may be that complete
graphs are too specialized to be useful in real life communication networks. While we
recognize that complete graphs are a special subclass of all graphs, it is not inconceivable
to find in the real world some communication networks with complete graph topology.
Moreover, the study of busing schemes in complete graphs forms the basis for studying
randomized busing inpartite directed collars, which are closely related to the ring topology
widely used in real communication networks.

Remark 2. Justifications for randomized busing scheme for directed collar graphs.
r-partite directed collar graph is a natural generalization of the ring graph. The ring topol-
ogy is a very commonly used topology in real communication networks. Understanding
anonymous messaging in directed collar networks has potential applications for real world
communication network security.

Similar to the case of complete graphs, fepartite directed collars, the naive method,
which requires every node in a blodk to send a message to every node in the next block
V41 at each time step, although achieving anonymity, would result in congestion. Our
busing scheme alleviates the congestion problem for arbitrary directed collars, and avoids
the problem in the case of directed collars with each block having equal size.

4. Mathematical preliminaries

We assume the reader is familiar with basic probability theory. For an introduction to
such material we refer the reader to the books FgliEfand Motwani and Raghavgb4].

We briefly review some relevant material regarding standard random {#a1l&14] For
v,u € V(G), thehitting timeh(u, v) is the expected number of steps for a random walk
starting atito reachy. We define thenaximum hitting timeéo beh* = max, yev (G) h(u, v).
Forv € V(G), the cover time fromw, denotedC (v), is the expected number of steps
in a random walk starting at that reaches every vertex. The cover time®is C* =
min,ev(c) C(v). The hitting time seems to be the most relevant parameter in our situation.
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However, the cover time is obviously an upper bound on the maximum hitting time, and,
as we shall see, in the worst case, they have the same value asymptotically. A random walk
on a graph is a special type of Markov chain. If the exact topolody isfknown and fixed,
then the hitting time can be calculated directly, using the theory of Markov chains.
If Gis complete, then it is not hard to see tlétis @(n), whereasC* is O (nlogn).
In the case thab is a lollipop graph (a clique connected to a path; [de#4]), theni* =
C* = @(n®). In general, for any grapB we haveh* < C* <2m(n — 1) < n3. If we know
more abouG, better bounds are possible. For instance it is possible to show that

mR<C*<288mRInn + n,

whereR s the resistance d& [13,14]
We will make use of the following inequalities (¢L.4, Proposition B.3}

<1+XT)Z <e' fori>O0andx> —i, @)
1
x+1<e forallx. 2)

5. Multiple persistent buses: complete graphs

We begin by providing some analysis of the multiple persistent bus protocol where there
are w buses on random walks on a complete gr&phFor technical reasons, we shall
consider onlyw <n, and we assume throughout twat 3. Our main result shows that the
expected delivery time of a messag&iér//w + n/2) for all 1< A< w < n. Admittedly,
this analysis does not take into account the sort of destructive attacks on the system that we
mentioned earlier; however, we should first verify that the system works well under normal
conditions. We also consider the question of congestion.

We begin by considering the situation wharduses initially located atwalk randomly
throughG. Define thew-bus hitting timeh,, («, v) to be the expected number of steps for
one of thew randomly walking buses to reachThen

Lemma5.1. (n — 2)/w<hy(u,v)<(n—2)/w+ 1.

Proof. Leto! = {a;}, for 1<i <w, be the sequence of vertices visited by ittiebus. So,

for j >0, the vertex visited by thigh bus aftelj steps i975..

First consider the question “Given a fixed vertext u, what is the minimum indeX
such thats'y, = v for somei?” Note that EX] = £, (u, v). We define a new sequence
from thesew sequences as follows:

. _(jmodw)+1

55 = OLjjw)
Note that;; = u for 0<j < w andg; # ¢;_,, for all j>w. Now consider the question
“Given a fixed vertexv # u, what is the minimum inde¥X such that;y = v?” Note
thatX = |Y/w] <Y /w and thereforés,, (u, v) <E[Y/w] = E[Y]/w, Sincew is constant.

for j >0.
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Further note thal, («, v) = E[X]> (E[Y]/w) — 1. For all 0<i < w, we haves; # v. For
alli>w, given thatg; # v for all 0<j < i, the probability that; = v is just 1/(n — 1).
Using the fact tha@ is complete, it follows that — w + 1 is a geometric random variable
with parameter A(n — 1). Hence, we have [f — w + 1] = n — 1. We conclude that
n—2)/w<hyw,v)<@m —2)/w+1. O

Similar results can be shown for cover time, but we do not need them here.

Suppose the grap@ is r-regular, but not complete. Consider the following experiment:
Choose a verten’ different fromv at random. What is the probabilifythat a bus at this
chosen vertex will arrive at on the next step? There araeighbors ob, so the probability
that we chose one of these neighbors/ig: — 1). Given that we chose a neighbor of
the probability that the bus goesi@n the next step is/k (sinceu’ also has neighbors).
Therefore, we havep = (r/(n — 1))(1/r) = 1/(n — 1). However, the above proof of
Lemmab5.1 doesnot remain valid for regular graphs. The problem is that the random
variableY — w + 1 would not be a geometric random variable if the graph is not complete.
Indeed, if the bus went from’ to v’ # v, then the probability that the bus would go from
v’ to v on the next step would depend on whetheéris or is not a neighbor of, so we
do not have a sequence of independent trials. (Of course, it is clear that Lerhowuld
not hold for regular graphs since, in the case that 1, the hitting time for an arbitrary
regular graphis not @). For example, one may consider a “cycle” of cliques with the same
number of vertices in each one, where an edge is removed from each clique to allow the
connection of adjacent cliques without violating regularity, [e@. 306] Such a graph is
sometimes called a necklace.) However, we will show in the next section that we can obtain
similar results for a class of graphs we call directed collars.

We now consider how buses arrive at a nodén particular, we consider the question,
“Starting at a particular timg how many steps do we have to wait befordistinct buses
arrive atu?” Call this valueA;.

Proposition 5.1. E[A; 1< u
w—i+1

Proof. DefineB; to be the number of steps between the arrival of(the 1)st distinct bus
and the arrival of th¢th distinct bus. ‘

ThenA; = Z’j:l Bj and so EA;] = le‘:l E[B;]. ConsiderB;. For any fixed bus that
has not yet arrived at, the probability that it does not arrive aton a given time step is
(n —2)/(n — 1). The probability that none of the — j + 1 buses that have yet to arrive at
u will arrive on the next step is

n—2\v/tt
qj = m )

since the buses move independently. Note thatould equal O if the j — 1)st andjth bus
arrive simultaneously, and we haveg Bf = 0] = 1 — ¢;. For B; to equal 1, it must be the
case that none of the— j 41 buses yet to arrive atarrives at the same time as ttye- 1)st
bus and one of them arrives @@t the next time step. Hence,[Br, = 1] = (1 — ¢;)q;.

In general, we have PB; = b] = (1 — qj)qj?. (SoB; is a geometric random variable that
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can take the values @, ... .)
From the definition of expected value, we have
e 1 1
E[Bjl=Y b(l—g)¢t = —— —1= a——
=2 pAmaa; = 1=y 1= (1 —2)/(n — v+t
and therefore,
E[A:] + Xl: -
il = —1
21 1-((n—2)/(n—1)w-itt
i 1
= —l + N . i
‘,21 1-A+(w—=j+D/n=1)/(w—j+1)w-i+l
Cd 1 .
< —i -|-]§1 1 e D/=D" using(1)

o gw—j+h/(n=1)
—i+ ng ew—j+1)/(n-1) _ 1

i gw—j+Dh/n=1) _ 141

=i+ ng ew—j+D/(i-1) _ 1

1
ew—j+D/n=1) _ 1

i

=i+ Y1+
=

= jgl ew—j+D/(n-1) _ 1

i

S ew—itD)/m—-1) _ 1
<D
w—1i+1

, sincej <i

using(2). O

Now we consider how long a message takes to get fuotm v. Suppose we put the
message on the firgt< w distinct buses that arrive at Without loss of generality, we
can assume these buses are numberd.1., 1. As before, letA; be the number of steps
beforei distinct buses arrive ak Let D; be the number of steps taken by ttiedistinct bus
intraveling fromuto v. By the “expected delivery time” we mear{ Bin; <, < ,{A; + D;}].

(So this includes the time must wait to put messages on buses and the time it takes for
some bus to react) We have

E[ min {Ai+Dl~}} < E[ min {A1+Di}]
1<i<i 1<i<i
1<i<A

=E[A;] + E[ min D,} .

We claim that fmin; <; < ; D;] = h;(u, v). To see this, suppose that itiebus receives
the message atat timeo;. As above, let’ = {o-il.} be the sequence of vertices visited by
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theith bus. Then Eminy <; < ; D;] is the minimum index such thaw!, |, = v for some

i €{1,2,...,2}). ltis then clear that fmin; <; < ; D;] is the same a8, (u, v). Hence,
using Lemmab.1, we have

E|: min {A; +D}:| [A;]+ h)(u, v)
1<i<i
Aln—1) n—2
< 1 3
w—/1+1+ A + 3

If we choosel. < /w, then
An — 1) Am —1)
w—2+1")2_)4+1
so the expected delivery time ig&) 2). Further note that

E|: min {A; +D}} [ min Di:| =hi(u,v)>n_

1<i<i L

1<i</A

Therefore, for. < ./w the expected delivery time @(n /). So, in this case, linear speed-up
in / is achieved.
For A > /w, an upper bound of @/./w) holds, since, using (3), we have

i n
E [1QIQA{A + D; }] [lgirgl{lﬁJ{Ai + Di}j| =0 (ﬁ) '

We now develop a lower bound for the expected delivery time when /w. Put
0 = [/w] + 1. Note that

E[ min {A; +D}] [min{ min {A + D;}, ein-iﬁ;{Af*D"}”

1<i<i 1<i<0

> E[min{ min D;, AOH.
1<i<f

Now, by Markov’s Inequality, we have

E[min{ min D;, A()” 2Pr[min{ min D;, Ao} >a] -a

1<i<0 1<i<0

for any positive numbea. Also, since the random variables min; -y D; and A, are
independent, we have

Pr[min{ min D;, Ag} >a] =Pr[< min Di>a> ﬂA(;}a}
1<i<0 1<i<0

= Pr[ min D; 2a] Pr[Ap>a].

1<i<0

Hence, we have

n n
=i a2 2 min, > 0 ez
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for any positive numbet. Our goal now is to show that fer= 2€® each of the probabilities
in this last inequality are bounded away from 0. If we can do this, then the expected delivery
time isQ(n//w) for 1 > Jw.

We first establish a positive lower bound for the probability that>rn/(2€8/w). Put
¥ = [n/w]. DefineZ; to be 1 if B; >4 and 0 otherwise. The variablés, ..., Zy are
independent Poisson trials with

o0
Pz, =1 =PiB;>0]1= Y 1—q)q" =q.
b=1

DefineZ = Z?:l Z; andu = E[Z]. Then the Chernoff bound4, Theorem 4.2]tells us
that

Pr[Z < %,u] < e M8,
Hence, we have
1
/8’
Forn>3 andw >1, we have

=5 )
i=

Zi\n—-1 n—1
_ 0 < 0
T (14 Ww/(n — 2)/dw)lw T edw/(m=2)’
using @0). Now, Jw < n + w < 2n, sovw/(n — 2) < 6 (sincen >3). Hence

Prlz>3u]>1-

0 Jw
> —= > /.
H= ™ e
Sincel > 2 forw > 1, we find that
Jw 1 1 1
Pr[z>ﬁ >Pr[Z>ﬂ/2]>l—m>l—60/86621—91/465>0.0006

We note that

N

0
Ag=Y B2 Z; =97,
j=1

1

J

and therefore 1- 1/e%/4€ is also a lower bound on the probability thap>d./w/
2P)=n/ (26 /w).

The other probability is much simpler to bound. For any nonnegative integer have

) _ 2 (6—1)\7
Pr[ min Di2v+1}=<" )
1<i<0 n—1
1

T (n—1)/(n — 2) 0D’
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since at each of steps each of — 1 buses goes to one of the- 2 vertices other than
and the vertex the bus was at. Writing

n—1\0 0 —Dv/(n —2)\ P
(n—Z) - (H -y )

and applying 1), we get

: 1

P = >

Prl:lrgnilz() Dizv 1} 7 e0-1v/(1-2)
1

> -
~ ew/m-2)’
Forv = |n/(2€8\/w)] andn >3 (son/(n — 2) <3), we have

> 0.99.

1<i<

1
P in D;>n/2 >Pr| min Di>v+1|>———
r[ min D; n/( eﬁ)] r[lrgilg() P>V + } Fo®

We have shown the following.

Theorem 5.1. When G is complet¢he expected delivery time of a message in the persistent
multiple bus protocol is

n n
of—+=
(«/w + 2)
forall 1<Ai<w<n.

We now consider the question of congestion. Suppose the initial locationswfiihses
are chosen independently and uniformly at random floaw). Then if we consider any
fixed time step, bus positions are chosen independently and uniformly at random. The
expected number of buses at a vertex is jugk. What is the maximum number of buses
at a vertex? This is modeled by the situation of throwindalls inn bins independently
and uniformly at random. Puttin* = [(3wInnr)/nInlnn], and reasoning as ii4, p.
44], we see that no bin has more thignballs in it with probability at least + 1/n, so the
amount of congestion is reasonable.

6. Multiple persistent buses: directed collars

We now consider graphs that we will call directed collars. These graphs may be considered
generalizations of a unidirectional ring, as considere@in Also, results on complete
bipartite graphs may be inferred from results on these directed collars, as we will note at
the end of this section.

Definition 6.1. An r-partite directed collar is a directed gra@tsuch that

(1) the vertex se¥ is the disjoint union of nonempty subseétg V>, ..., V,.

(2) the arcs ofs consist of arcs directed from each verteXdinto each vertex irV; 1 for
i=1,...,r —1andfrom each vertex i, to each vertex irV;.
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For this sectionG will denote anr-partite directed collar. Let; = #V; for i =
1,2,...,r. Putn = }°/_; n; and putn, = max <, <, n;. We assume throughout this
section thatw <n... We also assume thais a fixed number, and our goal is to bound the
expected delivery time in terms of.

Let u andv be two vertices ofs. If u € V; andv € V;, withi # j, then the distance
fromuto v (which is the length of the shortast- v path) isj —i if i < jandisr — (i — )
if i > j.If uandv are distinct vertices in the samg, then the distance fromto v is k.
We again considew buses initially located at that are randomly walking o (only in
the direction of the arcs, of course).

Lemma 6.1. Let d denote the distance fromaiv. Suppose < V,,. Then

—w—1 —1
d—i—r(M) <hw(u,v)<d~|—r<nm )
w w

Proof. As in the proof of Lemmé.1, let o' = {d'}, for 1<i<w, be the sequence of
vertices visited by théh bus. Now, define a new sequericby

__(jmodw)+1 .
$j =04y jwr for j=0.

So,

_ 1 w 1 w 1
C={04s s 00O s s Og s Ogynps oo}

If Y is the minimum index such thdt, = v, thenY is a geometric random variable with
parameter An,, that may take the values 0, .. .. Therefore, EY] = n,, — 1. Note that
here we havé,, (u, v) =d +r - E[|Y/w]]. Since

ElY] n,-—-1

—w—1 -1 Y
w w w

w

it follows that

—w-1 m—1
d—i—r(M) <hw(u,v)<d—|—r(nn ) O
w w

We now consider how buses arrive at a node the case of a directed collar. Again,
let A; denote the number of time steps we have to wait befdiistinct buses arrive at,
starting from some particular time.

Proposition 6.1. Suppose: € V;. Then

. ing .
E[A]< )
Al r<l+w—i+l) ’

Proof. Asinthe proof of PropositioB.1, we haved; = Zi’:l Bj,whereB; is the number
of time steps between the arrival of tie— 1)st distinct bus and the arrival of th distinct
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bus. However, we must make some modifications to the argument used in Propgdition
in the case of a directed collar.

Define a new random variablg; to be equal teif (s — 1)r < B; <sr — 1. ThenB;
may take the values, 2, .. .. In the case of a directed collar, the probability that none of
thew — j 4+ 1 buses that have yet to arrivelawvill arrive atu during the next steps is

_ n; — 1 w—j+1
=" :

Then P{B; = s] = qj(.s’l)(l — ;). ThusB; is a geometric random variable and

E[B;] =

1-q;

Now, since(B; — 1)r < B; < Br — 1, we have

1 1
r( - —1>§E[Bj]§r< _)—1.
1-g; 1-g;

Therefore,

i 1 i 1
Zr( - —l)éE[Aﬂng( _)—i.
=1 \1-—g; =1 \1—g;

Proceeding as in the proof of Propositisri, we obtain

in
E[Al]<r<l+ﬁl+l> —1. O

As in the previous section, |dd; be the number of steps taken by iiedistinct bus in
traveling fromuto v. We recall that the expected delivery time ifrin; <; < ,{A; + D;}].
Here, ifu € V; andv € V,,, we have

E|: min {A; +Di}} < E[A;]+ hy(u, v)

1<i<A
Any Ny —1
<r|li+——m)—4+4d
r(+w_;b+1) A+ +r< - )

ANy ny —1
<ri+r—————14 . 4
r +rw—A+1 —i—r—l—r( 7 ) 4)

If we choosel < /w, then notice thaizgn*, and sal < n, /. It follows then from (4)
that the expected delivery time i@,/ A). For A > /w, we have

E|: min {Ai+Di}:| <E|: min {Ai+D,-}:| =o<m*>.
1<i<ih 1<i < [V Jw
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Thus, we have shown

Theorem 6.1. When G is an r-partite directed collathe expected delivery time of a mes-
sage in the persistent multiple bus protocol is

Tny TNy

O =+ —
<«/w l)
forall 1<A<w < ny,.

A lower bound for delivery time for a directed collar would depend on the minimum of
the number of vertices in eadh. However, it is of more interest to find a lower bound for
the maximum of the delivery time over all pairs of vertices. This maximum delivery time
would occur whemu andv both belong to &; with n, vertices.

Theorem 6.2. Let G be an r-partite directed collar. Suppose u andre distinct vertices
in V; and#V; = n,, wheren, > 2. Then the expected delivery time of a message from u to

vis
TNy TNy
O|l—+—).
<ﬂ+ z)
Proof. If A<.y/w, then
E[ min {A; +D}] [ min D,}

1<i<4 1<i<4i

e (B 2 (52)
A s

It then suffices to show that the expected delivery time when./w is Q(rny//w). To
do that, we will proceed in a similar manner to the proof of the lower bound in Theorem
5.1 As in that proof, we have

rn
E| min {A; + D;}| >Pr| min D;> PriAy>—= *
[1<,<4{ + }] |:1<i<0 c\/_:| [ 0 c\/_} cyw’
for any positive numbet, whered = | J/w] + 1. B _
Putd = [n./w]. With B; asinthe proof of Propositioh 1, defineZ ; tobe 1ifB; — 1>
and O otherwise. Then

= a1 DdB o= -(s 1
PiZ; =1 =PiB;>0+1= Y (11— q,)—q]

s 19+1
PutZ = Z?:l and letii = E[Z]. Then
0 0 _ 1\ Y w—j+D o\
A=y q! = (" ) >0<”* )
j=1 J=1\ T M
0 0

T A+ Ww/(ny — )/Iw)P Z gl
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Now, dw < n, + w<2n,. Hence,dw/(ny — 1) < 2n,/(n, — 1)<4 (sincen, >2).
Therefore, we have

0 Jw
> — > —.
Hog ™ e
Applying the Chernoff bound as in the proof of TheorBri, we obtain
«/ 1 1

Now, we have

0 0
Ag=> B;>> (B; —1)r>r1922 =ridZ.
j =1

~
1
=

~.

Pr[Ag> ﬂ} > Pr|:Ag> ryw

Pr|:m9Z> ”;‘/_} - Pr[7> *2/—3] ~ 0.004

| I

Finally, we need to obtain a lower bound for[l?m|n1<,<9 D; > 2e4f] Recall thatD;

is the number of steps taken by title distinct bus in traveling fronu to v. Sinceu andv
are both inV;, it follows that D; will be a multiple ofr. For any nonnegative integerwe
have

O-1)v
ne — 1
Pr[ min D,>r(v+1)] ( )
1<i<0 %
1

T (1e/(ny — 1)@V’

since at each of trips completely around the collar (startinggteach ofd — 1 buses goes
through one of the, — 1 vertices inV; other tharv. Writing

e\ (0 = /(e =
(m—l) Z(” @~ Dy )

and applying 1), we get

; 1

> >

Prl:lg]ilge Przrivt 1)] Z e0-Dv/(.—D)
1

D R —
N
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Forv = |n,/(2e"/w)] andn, > 2 (son,/(n, — 1) <2), we have

Pr[ mine D; >rn*/(2e4ﬁ)] > Pr[ mine Di>r(v+ 1):|

1<i< 1<i<

1
> e > 0.98 g

We now consider the question of congestion in the directed collar case;; lagnote
the number of buses initially at verticesW. Then it is clear that there will never be more
than max <; <, w; buses at any vertex. In the case whéf # n/r for all i, by applying
the balls into bins model as in the complete graph case to the “bld¢kaiid then to the
vertices in each block, we see thatif = [(Qw/n)(Inr/InInr)(n@m/r)/InIn(n/r))],
then no vertex will have more tharf buses with probability at leagt — 1/r)(1 — r/n).

Remark 3. A complete (undirected) bipartite graph may be viewed as a 2-partite directed
collar with the arcs from1 to vV, and fromV, to V; being replaced by the edges of the
complete bipartite graph. Hence, the results from this section witt2, apply to the case

of a complete bipartite graph.

7. Multiple perishable buses

We now return to the case of a complete graph and consider the situation where buses
are perishable. This situation is significantly more complicated than the situation where
buses are persistent. However, intuitively, if we choksad large, then we expect that
the performance of the system will be close to that where buses live forever. We show that
for k = £ = n"/2, with high probability, the expected delivery time of a message igi0).

If we choosek = ¢, then after the firdt steps, we will have exactlybuses in the system
at all times (assuming buses do not crash and no node needs to be reset). This seems to be
a nice choice, as the number of buses in the system is constant. (However, with so many
buses, one may wish to consider using the naive system in which each node sends a real or
nonsense message to every other node at each time step.) In this situation, as noted at the end
of the previous section, the number of buses at any vertex is at[ilBost/ In In n] with
probability at least - 1/n, so the level of congestion is reasonable. So, for the remainder
of this section we assume that=n andi = /n.

In the situation where buses are not destroyed, a message placed on a bus is delivered
with probability 1. If buses have lifetimes, this is no longer true. However, we are able to
show that with high probability a message will be delivered.

Suppose we want to send a message at tinecall that each bus dies evetyime
steps, and the times at which buses are initially created at nodes are uniformly distributed
between 0 and — 1 = ¢ — 1. We calculate the probability that no bus is destroyed in the
time period starting atand ending at + n3/2. The probability that a given bus dies during
this period is exactly mgx®/2/¢, 1}. Assume from now on that>n%2. Using Boole’s
Inequality, the probability that some bus dies during the previous mentioned time period is
at mostwn®?2/¢ = n®?/¢. So, if we pick¢ = n’/2, then the probability thato bus dies
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during this time period is at leastd1/n. LetY denote the number of buses that die during
this time period. Then, we've seen thafP=0]>1— 1/n.

Markov's inequality (which holds for conditional probabilities and expectations) tells us
that

1<i</i

-+-o(3)

since, by the previous section[8in, <; < ;{A; + D;}| ¥ = 0]is O(n/4) = O(/n). Then,
since

Pr[ min {Ai+Di}<n3/2|Y=O] >1—E[ min {A,-+Di}|Y=O} /n3/2
1<i <2 <)

Pr[ min {A; + D;} < n3/2i| 2Pr[ min {A; + D;} < n®?|Y = o] PrY = 0],
1<i<) 1<i <)
the probability that the message gets delivered during this time period is atie@giln).
The expected delivery time given these circumstances is cleay:D

8. Conclusions

We have presented further analysis of the random walk anonymous message system
proposed by Beimel and Dolg2]. We have shown that by increasing the number of buses
w in a system, delivery time is decreased. However, our lower boutof,/w) in the
complete graph case shows that message delivery time does not decrease linearly with the
number of buses. It would be quite interesting to obtain upper bound results for other types
of communication network topologies besides complete graphs and directed collars.
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