
954 PROCEEDINGS OF THE IEEE, VOL. 63, NO. 6 , JUNE 1975

Queueing Network Model of Interactive
Computing Systems

PETER PIN-SHAN CHEN

Abstruct-A closed queueing network model with state dependent
routingprobabilities is developed for the atudy of interactive computing
systems which use swapping as a memory management strategy. An
algorithm to obtain an approximate solution of the mathematical model
is proposed. Based on measurements of a dualprocessor PDP-10 sye
tem, the model is found to be better in predicting ffie system per-
formance than the classical model without state dependent routing
probabilities.

I. INTRODUCTION
HERE HAS BEEN considerable interest in developing
models for interactive computing systems. One of the
earliest analyses was done by Scherr [11 for the Com-

patible Time-sharing System (CTSS) at M.I.T., Cambridge,
Mass. Kleinrock, Chang, Coffman, Muntz, Adiri, Avi-itzhak,
and other researchers have also used queue-theoretic models to
study CPU scheduling algorithms [2] -[6]. Most of these
models are concerned with one system component-the CPU;
thus the interrelationships between the CPU and other system
components, such as disks, have been ignored.

To study an interactive computing system as a whole, a
“total system model” is needed. Using Gordon and Newell’s
method [71 , Moore [81 constructed a queueing network model
for the Michigan Time-sharing system at the University of
Michigan, Ann Arbor. His model consists of peripheral devices
as well as the CPU’s, but the effect of memory size on system
behavior is not considered. Queueing networks have also been
utilized by Buzen [9] and Rice [101 to study the behavior of
multiprogramming systems.

Using a different approach, Sekino [1 11 develops a model
for MULTICS at M.I.T.. Essentially, his model is a set of
hierarchically organized submodels such as the program be-
havior model, the secondary memory model, etc. His model
includes many important system parameters but is not suitable
in estimating the utilization factor and queue length of indi-
vidual system resources.

Both Sekino’s work and a major part of Moore’s work are
oriented toward interactive computing systems with virtual
memory. Since a large proportion of the existing systems still
use swapping as the memory management strategy [121, it is
the purpose of this paper to develop a model for this type of
system.

The classical approach to the modeling of program swapping
behavior is to assume that each program is always swapped in
at the start of the interaction, and always swapped out at the
end of the interaction. Moore [81 uses this approach to model
the GE435 time-sharing system. In reality, the program swap-
ping behavior is more complex and should depend on the main
memory size, the number of jobs competing for memory, and
the job sizes.

Manuscript received October 9, 1974;rwised January 15, 1975.
The author was with Digital Equipment Corporation, Maynard, Mass.

He is now with the Center for Information Systems Research, Sloan
School of Management, Massachusetts Institute of Technology, Cam-
bridge, Mass. 02139.

This paper proposes a new approach: the program swapping
behavior is represented by state dependent routing probabilities
in a closed queueing network. The probability that a program
needs to be swapped in (or out) is expressed as a function of
the system state and several important system parameters such
as main memory size. Since the exact solution for this type of
queueing network model is not available, we propose an
algorithm to obtain an approximate solution and discuss its
convergence. The model is compared with the classical model
using measurement data obtained from a dual-processor PDP-
10 system.

11. THE MODEL
A model of an interactive computing system which consists

of one CPU, one disk, one swapping drum, and a set of
terminals is shown in Fig. 1. There are queues ahead of the
CPU, the disk, and the swapping drum. There is no queue in
front of the terminals since each terminal is dedicated to a
user (i.e., a job). The mean service times of the CPU, the disk,
and the swapping drum are 1/pl , l /pz , l /p3, respectively. The
average “think time” of the users is denoted by 1/p4. All
service times are considered to be exponentially distributed.
The routing probability Pij is the probability that a job will
request the service of the jth facility after the service of the ith
facility is completed. The number of jobs in the system N is
assumed to be fixed during the time period we are concerned
with. Thus we have a closed queueing network system.

Queueing networks are good representations of interactive
systems, since each job usually goes through several service
facilities in order to satisfy the user’s request. The following
description will make this point clear. Consider a user who
sits in front of a terminal and types in a request. If his job
(program) is not in main memory (this event has probability
of P43), the job will need to be swapped in before it is put in
the CPU queue. When a job has been processed by the CPU
for a while (with an average l/pl time units), it has four
possible destinations. If the stoppage of processing is due to
the fact that the allocated quantum is expired (probability
PI1), it will be put back in the CPU queue; if the job needs
infarmation on a disk f i e (probability P r z) , it will be put in
the disk queue; if the main memory size is not sufficient
(probability P13), .it will- be swapped out; and finally, if all
service requirements of the user’s request have been satisfied,
the answer to the user’s request will appear on the terminal.
After “thinking” for an average l/p4 time units, the user will
type in another request and begin another “interaction.”

A . Input Parameters
The input parameters to the model are:

1) number of jobs in the system (N)
2) main memory size (user area) (M)
3) average job size (J)
4) average CPU service time (1 / p 1)

CHEN: QUEUEING NETWORK MODEL 9 5 5

The number of jobs i n t h e system is N

The number of jobs that can res ide in main -ry i s A

1 I

P I 2 U P

TET(HINAI.5

Fig. 1 . A closed queueing network model for interactive systems.

5) average disk 1/0 time (l / pz)
6) average job swapping time (l/p3)
7) average user think time (l/p4)
8) average CPU time needed per interaction (T c p u)
9) average number of disk 1 / 0 requests per interaction

(NDIO).

The values of these parameters are assumed to be available
by measurements.

B. Derivation of P14 and P12
PI4 and Plz are derived from T c p u and NDIO as follows. As-

suming that Pi4 is known, the average number of CPU requests
per interaction is

OD

NCPU = kP14(1 - P14)k-1 = 1/P14. (1)
k = l

The average CPU time needed per interaction is

TCPU =(l /p i) (1/pi4). (2)

Therefore, we have

p14 = 1/@1 TCPU). (3)

Assuming that P1z is known, the probability that a job makes
exactly k disk I/O requests is

ating systems may have different rules for handling swapping.
Therefore, the expressions for P43 and P13 may be different
for different operating systems. In this paper, we derive the
expressions for P43 and P13 under a set of assumptions which
are reasonable in several operating systems including the
TOPS10 operating system for PDP-10.

The assumptions we made for deriving P43 are as follows.
1) Each job in the main memory is allocated the same

amount of memory. Therefore, the maximum number of jobs
that can be allocated in the main memory simultaneously is a
constant and denoted by A .

2) Among all jobs in the main memory, the jobs in the
“think” mode have the highest priority to be swapped out if
memory space is needed for the jobs to be swapped in.

Assumption 1) is justified in systems in which the main
memory is partitioned into a fixed number of parts. If the
memory allocated to jobs is a random variable, we let

A=IMIJI

where J is the average job size, and the resulting expression
of P43 and Pi3 can be used as an approximation.

Assumption 2) is actually the memory management strategy
used in many existing systems, since the jobs in the “think
mode” are very unlikely to need CPU service in the immediate
future (note that the average think time is in the order of
seconds).

The routing probability P43 is derived by analyzing the status
of jobs in the think mode. Let ni(i = 1, 2 , 3 , 4) denote the
number of jobs in the ith facility. If N , the total number of
jobs in the system, is not greater than A , there is no swapping
activity (all jobs can reside in the main memory all the time).
If N is greater than A , which is the common case, the number
of jobs which cannot stay in the main memory is N - A . Under
assumption 2), all jobs in the think mode will not be in the
main memory if n4 < N - A . Or, N - A jobs out of n4 jobs in
the think mode are not in the main memory if n4 > N - A .
Therefore, the probability that a job needs to be swapped in
at the beginning of the interaction, P43, is equal to the proba-
bility that a job in the think mode is not in the main memory.
We use the approximation

((N- A)/n4, if n4 > N - A

and N > A

if N < A

= (p14/(p1Z +p14)) (pl2 /(p12 + P14)lk. (4) at the beginning of the interaction is and the probability that a job does not need to be swapped in

The average number of disk 1 /0 requests per interaction is P41 = 1 - P43. (9)

NDIO = 5 k(P14/(P12 +P14)) (p12/(p12 +P14)lk =p12/p14.
k=O

(5)

Therefore, we have

p12 = NDIO * p14. (6)

C. Model of Program Swapping Behavior
The program swapping behavior is represented by state

dependent routing probabilities P43 and P13. Different oper-

To derive P13, two more assumptions are made:
3) P13 is linearly proportional to n l + n2 + n3 - A if n l +

nz + n 3 2 A . Otherwise, it is zero.
4) In the worst case, the maximum average number of times

that a job will be swapped out before the end of the interac-
tion is limited to one.

In assumption 3), n l + n2 + n3 - A can be interpreted as the
number of jobs which need space in the main memory but can
not have it. When n l + n2 + n3 > A , some jobs have to be
swapped out before the end of the interactions (note that all
jobs in the think mode are already swapped out under assump-

956

tion 2). When n l + nz + n 3 < A , Pi3 is zero since no jobs
need to be swapped out except those in the think mode.

Assumption 4) represents the effect of some schemes used in
the operating systems to prevent serious swapping. One such
scheme is to lock the jobs which have been swapped once in
the main memory until they enter the think mode.

From assumption 3), Pi3 achieves its maximum when nl +
nz + n3 achieves the maximum value N . Similar to (6) , the
maximum value of P13, which is given in assumption 4), is
equal to P14. Following assumption 3), Pi3 varies linearly
from 0 to P14 as n l + n 2 + n3 varies from A to N .

Note also that the sum of P l l , P l z , P13, and P14 is one, and
Plz and P14 are determined by (3) and (6) . Thus the value of
P13 is bounded by 1 - P l z - P14. Therefore, we have

{
min 11 - P I Z - P 1 4 , P ~ ((n 1 + n z + n 3 - A M N - A)) l ,

p13 = if n l + n z + n 3 > A and N > A

0, otherwise (10)

and

PI1 = 1 - P13. (11)

111. APPROXIMATE SOLUTION OF THE MODEL
From (8) and (1 0), we can see that P43 and Pi3 depend on

n4 (noting that n4 = N - n l - nz - n3) . That is, we have a
queueing network in which some of the routing probabilities
depend on the state of the system (in this case, the number
of jobs in a particular service facility).

A . Algorithm
Since the solution technique for queueing network models

with state dependent routing probabilities is not available, we
propose the following algorithm to obtain the approximate
solution.

Step 1.

Step 2.
Step 3.

Step 4.

First we assume an initial value for F4, the average
number of jobs in the think mode.
U s e 5 t o calculate P43 and P13 by (8) and (10).
Treat P43 and P i 3 as fixed values and solve the model
using Buzen’s method [131.
If the new value of G, which is one of the outputs
of the model, is very close to its old value, the
algorithm stops. Otherwise, Steps 2, 3, and 4 are
repeated.

We shall examine the problem of convergence for the algo-
rithm. It can be shown that the output value of2, (produced
in Step 4) increases as the input value of 2, increases. Note
that the output value of is between 0 and N . Since a
bounded monotonically increasing (or decreasing) sequence
will converge, our algorithm will converge. From our com-
putational experience, the algorithm converges to the same
point, independent of its starting values.

B. Output of the Model
At the time the algorithm stops, the utilization factor Ui and

average queue length Q i (i = 1, 2, 3,4) of the ith service facility
can be calculated by [131. The average time that a request
spends in the first three facilities (i.e., the waiting time plus the
service time) can be derived by Little’s formula [141 :

R i = Qi/& Ut), i = 1, 2, 3. (12)

PROCEEDINGS OF THE IEEE. JUNE 1975

TErauNALs

Fig, 2. Model for multiprocessor and rnultidevice systems.

Since each job has a dedicated terminal, we have

R4 = 1/c(4. (13)
The average system response time, which is the average time

the system takes to serve a user’s request, can be derived by
considering the average number of times a job passes each
facility during one interaction. The average number of “swap-
ping in” operations at the beginning of the interaction is

NBEG = P43. (14)

Following the same argument in the derivation for (5), the
average number of swapping operations per interaction (not
including the initial swapping) is

N W A P = pi3 /p14. (15)

From (l) , (9 , (14), and (1 5), the average system response time
is

R = R 3 N B E G + R 1 N C P U + R 2 N D I O + R 3 N S W A P

=R3P43 +Rl /P14 + R z P i z / P 1 4 +R3P13/P14- (16)

Therefore, the model can be used to predict the average sys-
tem response time as well as the utilization factor and the
queue length of an individual system resource.

Iv. MULTICPU AND MULTIDEVICE CASE

In large interactive systems, there are usually many disks
and sometimes more than one swapping drum and CPU. The
approach we take to model this case is to treat each device or
CPU as an independent server with a separate request queue.
Fig. 2 illustrates a model using this approach. The solution to
the extended model is a simple extension of the original model.

V. COMPARISON WITH THE CLASSICAL MODEL
The model developed in this paper is compared with the

classical model (P43 = 1 and P13 = 0) and with several sets of
measured data from a real system.

The data were collected at the end of August 1974 from an
in-house dual-processor PDP-10 system at Digital Equipment
Corporation, Maynard, Massachusetts. Since this system is
dedicated to internal uses only, the system performance may
not be the same as it is in systems offered to the public.

The model we developed for the system is similar to the one
shown in Fig. 2. In the actual system, one CPU is used pri-
marily for processing short jobs and another CPU for long jobs.
For simplicity, we treat them equally so that a request for CPU
service has the equal probability to be served by either CPU.
Although the system has two physical swapping drums, we

CHEN: QUEUEING NETWORK MODEL 957

TABLE I
COMPARISON OF THE STATE DEPENDENT MODEL WITH THE CLASSICAL MODEL

model them as one logical drum since that is the way the
operating system treats it. The number of disks in the system
is six. The disk 1 / 0 requests are also assumed to be distributed
with equal probabilities over all disks. The disk service time
is 80 ms, and the swapping time (the time to swap a job out
and another job in) is 108 ms.

Table I contains five sets of measured data. Note that there
is a pirameter called overhead in job switching, which is the
overhead associated with each CPU service. Therefore, in
using (3) to calculate P14, the value of l/pl should be replaced
by the CPU service time minus the overhead in job switching.

These five sets of data are used as input to both our model
and the classical model, and the response times predicted by
two models are compared against the measured data. In four
out of five cases, the values predicted by our model are closer
to the measured data. In cases 1 and 5 , the swapping ac-
tivities are lower in our model (P43 < 1 and P13 = 0) than
that in the classical model (P43 = 1 and PI3 = 0). In cases 3
and 4, our model predicts more swapping activities (P43 = 1
and P13 > 0). Only in case 2 does the classical model predict
better than our model, but the difference between the two
predicted values is quite small.

ACKNOWLEDGMENT
The author wishes to express his thanks to R. Turner for his

effort in collecting the data and his help in formulating the
model for the PDP-IO. The author is also indebted to J. Buzen
and J. Bell for many stimulating discussions.

REFERENCES

A. L. Scherr, “An analysis of time-shared computer systems,”
Ph.D. dissertation, M.I.T., Cambridge, Mass., Tech. Rep. MAC-

W. Chang, “A queueing model for a simple case of time-sharing,”
ZBMSyst. J.,vol. 5, no. 2, pp. 115-125, 1966.
L. Kleinrock, “Analysis of a time-shared processor,” Naval Res.

E. G. Coffman, Jr. and L. Kleinrock, “Feedback queueing models
for time-shared systems,” J. A s . Comput. Mach., pp. 549-516,
Oct. 1968.
E. G. Coffman, Jr., R. R. Muntz, and H. Trotter, “Waiting time
distributionsfor process-sharing systems,” J. Ass. Compur. Mach.,
vol. 17, pp. 123-130, Jan. 1970.
I. Adiri and B. Avi-Itzhak, “A time-sharing queue with a finite
number of customers,” J. Ass. Comput. Mach., vol. 2, pp. 315-
323, Apr. 1969.
W. I. Gordon and G. F. Newell, “Closed queueing systems with
exponential servers,” Oper. Res., vol. 15, pp. 254-265, Mar.
1967.
G. G. Moore, “Network models for large-scale time-sharing sys-
tems,” Ph.D. dissertation, Univ. Michigan, Ann Arbor, 1971.
J . P. Buzen, “Queueing network models of multiprogramming,”

bridge, Mass., 1971.
Ph.D. dissertation, Div. Eng. Appl. Phys., Harvard Univ., Cam-

D. R. Rice, “An analytical model for computer system perfor-
mance analysis,” Ph.D. dissertation, Univ. Florida, Gainesville,
1971.
A. Sekino, “Performance evaluation of multiprogrammed time-
shared computer systems,” Ph.D. dissertation, Dep. Elec. Eng.,
M.I.T., Cambridge, Mass., Tech. Rep. MAC-TR-103, 1973.
S. E. Madnick and J . J . Donovan, Operating Systems. New York:
McGraw-Hill, 1974.
J . P. Buzen, “Computational algorithms for closed queueing net-
work with exponential servers,” Commun. Ass. Comput. Mach.,
vol. 16, pp. 527-531, Sept. 1973.
J . D. C. Little, “A proof of the queueing formula: L = AW,”
Oper. Res., vol. 9, pp. 383-387, 1961.

TR-18, 1965.

LO*. Q~nrt., VOI. 11, pp. 59-73, Mar. 1964.

