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Abstract

A connected graph is doubly connected if its complement is also connected. The following
Ramsey-type theorem is proved in this paper. There exists a function A(n), defined on the set of
integers exceeding three, such that every doubly connected graph on at least A(n) vertices must
contain, as an induced subgraph, a doubly connected graph, which is either one of the following
graphs or the complement of one of the following graphs:

(1) Py, a path on n vertices;
(2) Kj,, the graph obtained from K, by subdividing an edge once;
3) K, n\e, the graph obtained from K, by deleting an edge;
) K2 > the graph obtained from K, by adding an edge between the two degree-n vertices x;
and x2, and a pendent edge at each x;. .
Two applications of this result are also discussed in the paper.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

All graphs considered in this paper are finite and simple. We follow [12] for our
terminology. In particular, the complement of a graph G will be denoted by G. We
begin with a classical result of Ramsey [9].
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Ramsey’s Theorem. There exists a function r(n), defined on the set of positive inte-
gers, such that every graph on at least r(n) vertices must contain either K, or K, as
an induced subgraph.

In graph theory, there are many results that are similar to Ramsey’s Theorem and
they are known as Ramsey-type theorems. These results claim that if a graph G with
certain property is large enough, then G must contain a relatively large graph H, such
that H still has the same property but H is better structured than G. For instance, in
Ramsey’s Theorem, it is clear that both K, and its complement X, are better structured
than the general graph G.

In Ramsey’s Theorem, the graphs that are in consideration are not required to have
any special properties other than being big. The next is a Ramsey-type result where
the property we are interested in is being connected. As usual, a path on n vertices is
denoted by P,.

1.1. There exists a function r.(n), defined on the set of positive integers, such that
ievery connected graph on at least r.(n) vertices must contain a connected graph
K, Py, or Ky, as an induced subgraph.

This result is an easy consequence of Ramsey’s Theorem. For the sake of complete-
ness, a proof is given in the next section. A different way to formulate (1.1) is to
claim that, for every n, at least one of X, P,, and K), is unavoidable, as an induced
subgraph, in every sufficiently large connected graph. For 2-, 3-, and 4-connectivity,
there are results [8] analogous to (1.1). There are also similar results on matroids (see
[4,5]), which we do not discuss here.

A graph is doubly connected if its complement is also connected. For example, the
path P, is doubly connected, when n > 4. On the other hand, the complete bipartite
graph K, , is connected but not doubly connected, as its complement has two connected
components, Kp and K,. The main problem we are going to consider in this paper is:
what are the unavoidable doubly connected large induced subgraphs in a sufficiently
large doubly connected graph?

Let n be a positive integer. Let K}, be the graph obtained from K, by subdivid-
ing an edge once; let K, ,\e be the graph obtained from K, by deleting an edge;
furthermore, let K2 » be the graph obtained from K, by adding an edge between the
two degree-n vertices x; and x3, and, for i =1,2, a pendent edge at x;. These graphs,
together with P,, are illustrated in Fig. 1 below, for n=35.

_ For each positive integer n, let

Uy = {P0, P K3, KT o Kan\&, Ko n\&, K Ko )

Then it is straightforward to verify that, when n > 4, all graphs in %, are doubly
connected. The following, our first main result in this paper, says that graphs in %,

are unavoidable, as induced subgraphs, in every sufficiently large doubly connected
graph.
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Fig. 1. Unavoidable doubly connected graphs.

1.2 Theorem. There exists a function h(n), defined on the set of positive integers,
such that every doubly connected graph on at least h(n) vertices must contain a
graph in U, as an induced subgraph.

From an application point of view, (1.2) can be formulated in a different way,
which is explained below. We begin with some definitions. The subgraph of a graph
G induced by a set X of vertices is denoted by G[X]. The disjoint union of two graphs
G, and G, is a graph G, for which V(G) can be partitioned into X; and X3, such that
G has no edges between X; and X3, and, for i = 1,2, the induced subgraph G[X] is
isomorphic to Gi.

Let 4 be a class of graphs We define 4* to be the class of graphs that can be
constructed, starting from graphs in %, by repeatedly taking disjoint unions and taking
complements Let us call a class of graphs closed if the complement of any member
remains a member, and the disjoint union of any two members also remains a member.
Then the following is an equivalent definition of #*.

1.3. 9* is the smallest closed class that contains 4.

The proof of this pr?osition is easy, and it is given in the next section for com-
pleteness. For each positive integer n, let 4, be the class of graphs that do not contain
any graph in %, as an induced subgraph. Then the following is a reformulation of

(1.2).
1.4. Each %, can be expressed as 4*, for some finite 4.

The equivalence of (1.4) and (1.2) will be proved in the next section. In the fol-
lowing, we discuss two nice applications of (1.4). A graph property P is hereditary
if the induced subgraphs of a graph that has property P must also have property P.
For instance, being a complete graph is hereditary. It is well-known, and it is also
very easy to show, that, for every hereditary graph property P, there exists a unique
minimal (under inclusion) set ¥ of graphs, such that a graph has property P if and
only if the graph does not contain any graph in 4 as an induced subgraph. There
are many results in graph theory that determine % for various P. These results are
interesting theoretically, but they do not always have algorithmic implications since €
could be infinite. In the next theorem, which is our second main result in this paper,
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we describe a class of hereditary graph properties, for which the corresponding € is
guaranteed to be finite.

1.5 Theorem. Let P be a hereditary graph property and let n be a positive integer.
Suppose no graph in Uy, has property P. Then there exist finitely many graphs
Gy, Gs,...,Gi such that a graph has property P if and only if the graph does not
contain any G; as an induced subgraph.

Clearly, if P is a graph property as described in (1.5), then the problem of deciding
if a graph G has property P is equivalent to the problem of testing if G contains any
G; as an induced subgraph. Since, for any fixed graph H, the problem of testing if A
is an induced subgraph can be solved in polynomial time, we conclude from (1.5) the
following.

1.6. Suppose P is a graph property as described in (1.5). Then the problem of de-
ciding if a graph has property P can be solved in polynomial time.

There are two remarks that we would like to make about (1.6). First, (1.6) is
a very general result since P is a general graph property, which is only required
to satisfy certain very weak conditions. On the other hand, (1.6) only tells us the
existence of a polynomial time algorithm, it does not tell us how to construct such an
algorithm. In fact, our proof of (1.5) does not give us this information either because
it is non-constructive.

Next, we consider another application of (1.4), from which we will have our third
main result in this paper. This is about the structure of ¥* when ¢ is finite. We begin
with an explanation on why we are interested in this problem. Suppose %={K,}. Then
the class @* is known as the class of cographs [2], which was first introduced in [7]
and was also characterized in the same paper as follows.

1.7. A graph is a cograph if and only if it does not contain P4 as an induced subgraph

Cographs have been rediscovered several times by different researchers, under various
names, including dacey graphs [10], D*-graphs [6], and 2-parity graphs [1]. Such a
broad interest in these graphs naturally suggests the following question.

1.8 Question. When can a class of graphs be expressed as 4* for some finite 47

It turns out that reformulation (1.4) of our first main result (1.2) provides an answer
to this question. We will present three answers with the first being a partial answer.
This answer is much more clean than the next two and it is more or less equivalent
to (1.4).

1.9. A class o of graphs is contained in 9* for some finite 9 if and only if it'is
contained in some 4,.
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The next is a complete answer to Question (1.8).

1.10. Let o be a class of graphs. Then ¥ = %* for some finite 4 'if and only if.

(1) H is closed;

(2) # C %, for some n; and

(3) if & C # contains infinitely many pairwise non-isomorphic disconnected graphs,
then some graph in & is the disjoint union of two other graphs in J#.

By applying (1.5), the last result can be refined. An infinite sequence G;,G,... of
graphs is monotone if each G; is a proper induced subgraph of G;;;. Now our third
main result in this paper can be stated as follows.

1.11 Theorem. Let & be a class of graphs. Then H = %* for some finite % if and
only if

(1) o is closed,

(2) # C 9, for some n; and

(3) if G1,Gy,... is a monotone sequence of disconnected graphs in H#, then some G;
is the disjoint union of two other graphs in K.

Finally, we point out a connection between (1.7) and our first main result- (1.2).
Notice that the main part of (1.7) is the “if” direction, which claims that, if a graph
G on two or more vertices does not contain P, as an induced subgraph, then either G
or G is disconnected. Meanwhile, (1.2) can be formulated similarly as: if a graph G
on h(n) or more vertices does not contain any graph in %, as an induced subgraph,
where n is a positive integer, then either G or G is disconnected. From this point of
view, we can say that (1.2) is a generalization of (1.7).

We close this section by outlining the rest of the paper. In Section 2, we prove our
first main result, (1.2), as well as its equivalent formulation (1.4). Proofs of (1.1) and
(1.3) are also given in this section. Then, in Section 3, we prove (1.5), our second
main result, by showing that %, is well quasi ordered under the induced subgraph
relation. Finally, in Section 4, we prove (1.11), our third main result, and two weaker
versions, (1.9) and (1.10), of this result.

2. Proving the first main result

Recall that »#(n) is the function defined in Ramsey’s Theorem. In this section, for
each positive integer n, we also need the following function:

Pa(x)=14x+x2 4 x"1

Let P be an induced path of a graph G. Let B= G — V(P) and let the ends of P be
u and v. Notice that u and v are identical if P =K;. In addition, B is an empty graph
if V(P)=V(G). Suppose u is adjacent to all vertices of B and no other vertices of P
are adjacent to any vertices of B. Then we call G a tadpole graph, with tail P and
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body B. We also call v the tip of its tail. The next is a simple observation, which will
be used more than once in our proofs,

2.1. Let k and n be a positive integers and let v be a vertex of a connected graph
G. If |V(G)| > pu(k), then G contains an induced tadpole graph with v as the tip of
its tail and such that either its tail has more than n vertices or its body has more
than k vertices.

Proof. Let T be a breadth-first search tree rooted at v, That is, T is a spanning tree
of G such that, for each vertex u of G, the unique uv-path in T is a shortest uv-path
in G. It is standard to call a vertex-w a child of a vertex u if uw € E(T) and u is
contained in the unique wu-path in 7. For each vertex u of G, let X, be the set of all
children of u and let Y, be the set of vertices in the unique uv-path in T. Then it is
easy to see that G, = G[X,, U Y,] is a tadpole graph with body G(X,), tail G(Y,), and
tip of its tail v,

If there is a vertex u with more than & children, then the tadpole graph G, has the
required properties as X, has more than k vertices. Therefore, we may assume that
each vertex can have at most &k children. For each integer ¢ > 0, let N, be the set of
vertices that are distance ¢ away from v. It is clear that [Ny| =1, and |N{| < k|N;—1],
for all positive integers ¢. Since |V(G)| > pu(k) and G is connected, N, must contain
at least one vertex, say u. Now it is clear that the tadpole graph G, has the required
properties as Y, has more than n vertices. []

The following is an immediate consequence of (2.1).

2.2. Let k and n be a positive integers and let G be a connected graph. If |V (G)| >
DPn(k), then G contains either an induced P, or a vertex of degree greater than k.

Proof of (1.1). Let r.(1)=1 and, for n = 2, r.(n) =1+ p,—1(k), where k =r(n) — 1.
Let G be a connected graph with at least 7.(n) vertices. We need to show that G has
Ky, Py, or Ky, as an induced subgraph. First, notice that, if n =1, then |V (G)| > 1
and thus G contains K; as an induced subgraph. Therefore, we may assume in the
following that n > 2. '

If the maximum degree of G is at most k, by (2.2), G must contain P, as an
induced subgraph. In this case, Proof of (1.1) is proved. Next, we consider the case
when some vertex of G, say x, is adjacent with a set X of k¥ 4+ 1 = r(n) vertices. By
applying Ramsey’s Theorem to G[X], we conclude that X has a subset X’ such that
G[X'] is either K, or K,. It follows that either G[X'] =K,, or G[X' U {x}] =K, both
satisfy the conclusion of (1.1). O

We prove (1.2) by proving a sequence of lemmas. We first extend the concept of a
tail to a general graph. Let u and v be vertices of a graph G and let P be an induced
uv-path. We call P a tail if all edges of G that are between V(P) and V(G)— V(P) are
incident with u. We also call v the tip of the tail. Clearly, the tip v must have degree
one, if  # v. Since u is not required to be adjacent with all vertices in V(G) — V(P),
the graph G does not have to be a tadpole graph.
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2.3. Suppose a graph G has a tail P of length at least two. If the non-tip end of P
has degree_greater than r(n — 1), where n > 2 is an integer, then G contains either
Ki, or Ka,\e as an induced subgraph.

Proof. Let x be the non-tip end of P. Let y be the unique neighbor of x in P and
let z be the only other neighbor of y in P, Let N be the set of neighbors of x that
are not in P. Clearly, |[N| 2 #(n — 1). By applying Ramsey’s Theorem to G[N], we
conclude that N has a subset X such that G[X] is either K,_, or K,_;. It follows that
G[X U {x, y,2}] is either K;,\e or K{,. The lemma is proved. . O

2.4. Let G be a connected graph with more than p,—i(r(n— 1)) vertices, where n 2 2
is an integer. If G has a tail P of length two, then G contains Py, K3, or K> n\e as
an induced subgraph.

Proof. Let v be the tip of P. By (2.1), G has an induced tadpole graph H, with v as
the tip of its tail, and such that either its tail has more than n — 1 vertices or its body
has more than r(n — 1) vertices. In the first case, H, and thus G, has an induced P,.
In the second case, the tail of H hag length at least two, as v is the tip of P, which
has length two. By applying (2.3) to H, we conclude that H, and hence G, contains
an induced K7 , or K, ,\e. The proof is completed. O

2.5. Let xy be an edge of a connected graph G such that x has degree one in G and
y has degree one in G. Suppose |V(G)| > 3r(n), where n > 2 is an integer. Then G
contains K3 ,, Ky »\e, K3\,,, or the complement of one of these graphs, as an induced
subgraph.

Proof. Let z be the unique neighbor of y in G and let X = V(G) — {x, y,z}. Notice
that |[X|=|V(G)| -3 2 3r — 2, where r =r(n). Let Y be the set of vertices in X that
are not incident with z in G. If |X — Y| > r, then, by applying (2.3) to the complement
of G~ Y, we conclude that G has X}, or Kp»\e as an induced subgraph. Thus we
may assume that |X — Y| < 7, and so |Y] 2 27— 1. Since G is connected, some vertex,
say u, must belong to X — Y. Let Z be the set of vertices in Y that are adjacent with
u in G. If |Y —Z| 2 r, then, by applying (2.3) to G[{», y,z} U(Y — Z)], we conclude
that G has K , or K;,,\e as an induced subgraph. Therefore, we may further assume
that |Y — Z| < r, and so |Z]| = r. Now, by applylng Ramsey’s Theorem to G[Z], we
conclude that Z has a subset U such that G[U] is either K, or R,. 1t follows that
G[{x,y,z,u} U U] is either K2,n or Kz": - The lemma is proved. [

2.6. Let xy be an edge of a connected graph G such that x has degree one and y
has degree less than |V(G)| — 1. Suppose |\V(G)| > pn—1(3r(n) — 3), where n 2 2 is
an integer. Then G contains a graph in U, as an induced subgraph.

Proof. By (2.1), G contains an induced tadpole graph H with x as the tip of its tail
and such that either its tail has more than n — 1 vertices or its body has more than
3r(n) — 3 vertices. In the first case, G contains an induced P,. Thus we may assume
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that the body of H has at least 37(n) — 2 vertices. If the tail of H has length at least
two, then, by applying (2.3) to H, we conclude that H, and so G, contains an induced

. or Kz ,\e. Therefore, we only need to consider the case when the tail of H is the
smgle edge xy. Clearly, it follows that y has degree greater than 3r(n) — 2.

Let X be the set of neighbors of y. Since G is connected and y has degree less than
|[V(G)| — 1, there is a vertex, say z, such that z & X U {y} and z is adjacent with at
least one vertex in X. It is easy to see that G[X U {y,z}] satisfies the assumptions in
(2.5). Therefore, we conclude, in this and all the above cases, that G contains a graph
in %, as an induced subgraph. O

2.7. Let x be a vertex of a doubly connected graph G such that every vertex is within
distance two from x. If the degree of x is at least 2p,_1(3r(n)) — 3, where n 2 2 is
an integer, then G contains a graph in U, as an induced subgraph.

Proof. Without loss of generality, let us assume that G is a minimal graph, under the
induced subgraph relation, that satisfies all the assumptions in (2.7). For i=1,2, let X;
be the set of vertices that are distance i away from x. Then V(G) is the disjoint union
of {x}, X1, and X;. Since G is connected, X, is not empty and thus we can choose a
vertex 'y from X,. By the minimality of G, it is clear that G — y must be disconnected.
Let C be a component of G — y that has the least number of vertices. Then G-V(C)
has at least

%(lV(G)l = 1)+ 12 ps1(3r(n))

vertices.

If y is not adjacent with a vertex z € ¥(C) in G, then we choose an induced yz-path
P in G. Let H be obtained from G by deleting all vertices in V(C)— V(P). It is easy
to see that H is connected, P is a tail of H, and H satisfies the assumptions in
(2.4). Therefore, H, and thus G, contains a graph in %, as an induced subgraph.
Next, we assume that, in G, y is adjacent to all vertices of C. Let z€ V(C) and let
H=G~—(V(C)~{z}). Notice that H is connected. In addition, in H, yz is an edge, z
~ has degree one, and y has degree less than |V(H)| — 1, as y cannot be adjacent with
all other vertices in G. Now the result follows from (2.6). 0O

With the above preparations, now we are ready to prove our first main result, (1.2).

Proof of (1.2). Let #(1) =1, and for n > 2, let h(n) = py—1(2pu-1(3r(n))) + 1 The
result is clear when n = 1. Thus we assume in the following that n > 2. Let G be a
doubly connected graph on at least A(n) vertices. We need to show that some member
of %, is an induced subgraph of G.

By (2.2), we may assume that G has a vertex x of degree greater than 2 p,_,(3r(n)),
for otherwise G would contain an induced P,, which is a member of %,. By (2.7), we
may further assume that some vertex y is distance three away from x. Let X be the
set of neighbors of x and let z be a neighbor of y such that z is adjacent to a vertex
in X. Let H = G[X U {x, y,z}]. Observe that |V(H)| > |X| > ps-1(3r(n)), yz€E(H),
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v has degree one in H, and z has degree less than |V(H)| — 1 in H, as zx & E(H).
Therefore, by applying (2.6) to H, we complete our proof of (1.2). [

For the sake of completeness, we also include a proof of (1.3).

Proof of (1.3). Notice that, by the definition of the closeness, the intersection of any
family of closed classes remains to be a closed class. Therefore, #, the smallest closed
class that contains &, does exist. From the definition of ¢* it is not difficult to verify
that ¥* is a closed class that contains ¥, and every closed class that contains ¢ must
also contains ¢*. Clearly, the first part of the last observation implies s# C %*, while
the second part implies 5 O #*. Thus # = %* is proved. O

We prove (1.4) by proving the following,
2.8. The two statements (1.2) and (1.4) are equivalent.

Proof. We first prove that (1.4) implies (1.2). Suppose the function / claimed in (1.2)
does not exist. Then there exists a positive integer n such that 4(n) cannot be defined.
What it means is that, for any positive integer k, there exists a doubly connected
graph G; on more than k vertices such that G, does not contain any graph in %, as
an induced subgraph. However, by (1.4), ¥, can be expressed as ¥* for a finite 4.
It follows that every Gy can be constructed, starting from graphs in ¥, by repeatedly
taking dls_]omt unions and taking complements. Since Gy is doubly connected, neither
Gy nor Gy is the dlsdomt union of any two graphs Therefore, at least one of Gy and
Gy must be contained in &. It follows that @ is infinite, and this contradiction proves
(1.2).

Next we prove that (1.2) implies (1.4). Let n be a positive integer and let ¥ be
the set of graphs in ¥, that have fewer than h(n) vertices, where 4(n) is the function
defined in (1.2). Then it is enough for us to show that %, = %*. By the definition
of @, it is clear that ¥* C ¥,. Thus we only need to show that 4, C 9*. Suppose
otherwise. Then we can choose a graph G in ¥, ~%* with the least number of vertices.
From the definition of ¢ we know that |V'(G)| = h(n). We also know, by (1.2), that
G is not doubly connected. It follows that either G or G is the disjoint union of two
smaller graphs Gy and G,. Since both G and G are in %,, both G, and G, are in
%, Now we deduce from the minimality of G that both G| and G, are in ¥*, which
implies that their disjoint union is in ¥*. Consequently, both G and G are in %*. This
contradiction proves (1.4). O

3. The first application

To prove (1.5), our second main result, we need some definitions. A binary relation
< on a set Q is a quasi order if < is reflexive and transitive. It is a well quasi
order (or a wqo) if, for every infinite sequence q;,4s,... of members of Q, there exist
indices i and j such that i < j and ¢; < g;. In this section, we denote by < the induced
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subgraph relation. That is, we write G < G’ if G is isomorphic to an induced subgraph
of G'. Clearly, < is a quasi order on the class of all graphs. However, < is not a
wqo, as shown by the sequence Cs,Cs,..., where C, is the cycle on n vertices. In this
section, we prove the following result and we show that it implies (1.5).

3.1. For each positive integer n, graphs in 9, are well quasi ordered by <

Let IT be a set of commutative and associative binary graph operations with the
additional properties that: -

(1) if GX G, H<H', and n€ I, then n(G,H) < n(G',H'); and
(2) if ne, then G < n(G,H) and H < n(G,H), for all graphs G and H.

Then, for any n and #’ in IT, we define
n <7 if n(G H) < n'(G,H) for all graphs G and H.

For each class ¥ of graphs, we also define %(IT) to be the class of all graphs con-
structed, starting from graphs in &, by repeatedly using operations in I1. We will use
the following result from [3] to prove (3.1).

3.2. If both (9,X) and (11, <) are well quasi orders, then so is (9(I1),<).

Proof of (3.1). We consider two graph operations. Let 7,(G,H) be the disjoint union
of G and H; let n2(G,H) be the complement of 7(G, H). Equivalently, m(G,H) is
obtained from the disjoint union of G and H by adding all edges between V(G) and
V(H). 1t is obvious that each 7; is both commutative and associative. Let IT={m, 72}
Then (11, <) is a wqo since IT is finite.

Let ¥ be the finite class of graphs determined in (1.4). Let %={G:Ge¥%)} and
let # =% U%. Then 9* C(9U %) C (9" UF)* =(%*) = %", which implies that

=@*=9,. Since ¥ is finite, it follows that J# is finite, and thus (J, <) is a wqo. .

Therefore, by (3.2), in order to prove (3.1), we only need to show that #°(IT) = ™.

Notice that each 7; can be expressed in terms of taking disjoint unions and taking
complements. Thus #(IT) C #*. On the other hand, we claim that o™ — H#(II)
is empty. Suppose otherwise. Then we can choose a graph G in #™* — H#'(II) with
the least number of vertices. Since s C #(IT), our graph G does not belong to .
It follows from the definition of # that G does not belong to ¢ either. Therefore,.
either G or G is the disjoint union of two smaller graphs, say G, and G, in A,
Equivalently, either G = m,(Gy,G,) or G = 72(G1, G2). By the definition of J*, it
is clear that both G; and G, belong to #*. Now we conclude from the mlmmahty
of G that Gy, Gy, Gy, and G, must all belong to J(IT). Consequently, our chosen
graph G, which is either 7,(G1,Gy) or mx(Gy, Gy), must belong to H#(IT). This is a
contradiction, which completes the proof of (3.1). O

Proof of (1.5). Let % be the set of graphs G for which G does not have property P
but all its proper induced subgraphs do. Since P is hereditary, it is easy to verify that
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a graph has property P if and only if it does not contain any graph in % as an induced
subgraph. We need to show that % is finite.

From the definition of % it is easy to see that any two of its distinct members
are incomparable under <. Let &/ be the set of members G of # such that G is an
induced subgraph of some graph in %,. We first claim that all graphs in % — &/ are
contained in ¥,. Suppose, on the contrary, that there exists a graph Ge ¥ — o — %,
Then G contains a graph H in %, as an induced subgraph. By the assumption of (1.5),
H does not have property P. Thus, H contains a graph in &/ as an induced subgraph.
It follows that G contains a graph in &/ as an induced subgraph. This is impossible,
as no two distinct graphs in % are comparable under <, so our claim is proved.

Clearly, & is finite. If % — o/ were infinite, then there would exist an infinite
sequence G, Gy,... of distinct graphs in # — o/ C ¥,. However, by (3.1), there would
exist indices i < j with G; < G;. This is certainly impossible, as no two distinct graphs
in % are comparable. Therefore, we conclude that % — &, and thus %, is finite, [

4. The second application
We first prove (1.9), which is an easy corollary of (1.4).

Proof of (1.9). Suppose o C %,, for some positive integer n. Then, by (1.4), o# C
@*, for some finite ¥. Conversely, suppose H# C %*, for some finite %. Let n be
an integer such that every graph in ¢ has fewer than n vertices. Then no graph in
@ contains any graph in %, as an induced subgraph. That is, ¥ C ¥,. Consequently,
@* C %,, and thus ¢ C %,, as required. [J

In the rest of the paper, we prove (1.10) and (1.11). We need the following well
known fact on well quasi orders, which can be found, for instance, in [11].

4.1. Let (Q, <) be a wqo and let R be an infinite subset of Q. Then R contains an
infinite sequence r\,ry,... such that r; < riyy, for all i.

Proof of (1.10) and (1.11). We prove (1.10) and (1.11) together. First notice that the
three conditions in (1.10) obviously imply the three conditions in (1.11). Thus, we
only need to prove the “only if” part of (1.10) and the “if part of (1.11).

To prove the “only if” part of (1.10), let o = %*, for some finite 4. Then (1)
follows from (1.3) and (2) follows from (1 9). Now we prove (3). Since & is infinite
and ¥ is finite, we can take a graph G in & such that every graph in ¥ has fewer
than |V(G)| vertices. Clearly, neither G nor G is in . Therefore, one of these two
graphs has to be the disjoint union of two other graphs in %*. By our assumption on
&, ¢ is disconnected, and thus G is connected. It follows that G is the disjoint union
of two other graphs in %*, and so (3) is proved.

Next, we prove the “if” part of (1.11). Let us call a graph G in # essential if
neither G nor G is the disjoint union of two other graphs in . Let & be the class of
all essential graphs in . Notice that every graph in 5 can be constructed, starting
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from graphs in %, by repeatedly taking d1s30mt unions and taking complements, so
H C g*. On the other hand, since & is closed, by (1), and J# D @, it follows from
(1.3) that & 2 *. Therefore, we have o# = %*. Now it remains to show that ¢ is
finite. -

Suppose, on the contrary, that & is infinite. It follows from (2) and (1.4) that &
contains an infinite set & of graphs G such that either G or G is disconnected. From
the definition of ¥ we deduced that a graph is in & if and only if its complement
is in 9. Therefore, without loss of generality, we may assume that all graphs in &
are disconnected. Consequently, by (3.1) and (4.1), there exists an infinite monotone
sequence Gy, Gy,... such that every G is in &. Now, by (3), some G; is the disjoint
union of two other graphs in 5, contradicting the definition of %. This contradiction
completes our proof. [J
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