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Abstract 
Using data from a credit card issuer, a neural 

network based fraud detection system was trained on a 
large sample of labelled credit card account 
transactions and tested on a holdout data set that 
consisted of all account activity over a subsequent 
two-month period of time. The neural network was 
trained on examples of fraud due to lost cards, stolen 
cards, application fraud, counterfeit fraud, mail-order 
fraud and NRI (non-received issue) fraud. The 
network detected significantly more fraud accounts (an 
order of magnitude more) with significantly fewer 
false positives (reduced by a factor of 20) over rule- 
based fraud detection procedures. We discuss the 
performance of the network on this data set in terms 
of detection accuracy and earliness of fraud detection. 
The system has been installed on an IBM 3090 at 
Mellon Bank and is currently in use for fraud 
detection on that bank’s cmlit card portfolio. 

Credit Card Fraud Problem 

Credit card fraud is a growing problem in the 
credit card industry. In the US alone, losses from all 
types of credit card fraud are projected to exceed $850 
million, representing a 10% increase in fraud losses 
over 1991 111. Though small when compared to 
credit card losses due to charge-offs of seriously 
delinquent accounts (charge-offs accounted for $8.5 
billion of losses in 1992). fraud represents an 
increasing percentage of total charge volume, 
indicating that it is growing faster than the credit card 
business itself. From 1988 through 1991, the size of 
the fraud problem grew from 8 basis points to over 
20. 

Although credit card fraud takes many forms, 
there are several principal categories. Fraud due to 
lost cards and stolen cards generally accounts for a 
certain “base level” of fraud activity. The size of this 
base level can be affected by general economic 
conditions (e.g., times of high unemployment are 
correlated with increases in fraud losses due to lost 
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and stolen cards). Fraud due to counterfeit cards has 
become a growing problem over the past several 
years, despite the more sophisticated card 
manufacturing technologies (holograms on the cards) 
and the encrypting of information on the magnetic 
stripe. Obviously, counterfeit tends to be a more 
organized and systematic problem in certain areas, as 
opposed to the more “opportunistic” and thus 
randomly driven nature of most fraud due to lost or 
stolen cards. 

A special category of stolen cards has become a 
major problem in recent years: the theft of cards from 
the mail. This so-called NRI (non-receipt of issue) 
fraud affects issuers at the time of both new card 
issues as well as re-issues. Certain geographic 
regions of the country are more at risk than others for 
NRI. In some areas, the problem has been so severe 
that issuers have used alternate methods of card 
delivery (courier as opposed to mail), as well as 
special card activation programs. With card 
activation, a card is blocked (listed in the banks’ 
authorization systems as an account for which 
transaction requests will be denied) until the customer 
calls the bank to verify card receipt. The bank uses 
the call to establish that the caller is the rightful 
cardholder by asking a small number of background 
information questions taken from the card member’s 
application (if it is a new issue) or cardholder 
information file. Such programs, though expensive, 
have led to reductions in NRI losses. 

Additional fraud schemes involve the submission 
of fraudulent applications for a card. In such cases, 
perpetrators obtain access to actual personal 
background and financial information and use this data 
to submit an application, specifying a mail drop to 
which the card should be sent. If a card is issued in 
such circumstances, even cardmember activation 
cannot prevent the card from falling into the wrong 
hands, since the pepfrator, who authored the phony 
application information, can provide this information 
during the phone call to activate the account. 

Still another source of fraud losses is mail- 
ordedtelephone order fraud. In such cases, the 
purchaser is not physically present before the 
merchant at the time of the transaction, and there is 
no card imprint that can be obtained as a record of the 
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transaction. Efforts to combat such MOR0 fraud 
have included verification of address information over 
the phone with the cardholder at the time of the 

All of the above tend to be examples of 
cardholder or account fraud. There is also fraud that 
originates at the merchant. Such merchant fraud can 
involve the “laundering” of phony merchant receipts, 
garnering large sums of money for transactions that 
never occurred. In some cases, merchant collusion 
results in the merchant’s establishment being used as 
a location at which account information is copied 
during the course of legitimate transactions. This 
information is subsequently used to produce 
counterfeit duplicate cards, which are then used 
elsewhere for fraudulent transactions. In this scheme, 
the collusive merchant is regarded as a “point of 
compromise”; all such counterfeited cards have 
transaction histories that can be traced back to use at 
the given merchant’s establishment. 

Additionally, there is an entire area of fraud that 
is often referred to as abuse. In this category, the 
cardholder makes purchases on the card for which 
he/she has no intention of paying. In some cases, 
this is pre-meditated activity that occurs just prior to 
the cardholder’s filing for personal bankruptcy. 
Losses due to this “bankruptcy fraud” problem are not 
considered part of the credit card fraud problem itself, 
and are reported as part of charge-off losses. At least 
one estimate puts the size of bankruptcy fraud in the 
neighborhood of $2.65 billion in 1992, which would 
make it larger than all other fraud losses combined 
111. 

Current Methods of Fraud Detection 

P h i = *  

The diversity of fraudulent activity as evidenced 
by the many forms of fraud makes detection of 
fraudulent behavior a non-trivial task. At most 
banks, some part of the review process of new 
applications for new credit cards involves routine 
information checks to spot possible fraudulent 
applications. (In some cases, scrutiny of application 
forms for telltale methods of handwriting has led 
investigators to spot fraudulent applications 
submitted by organized criminal elements. Some 
fraudulent applications submitted by a Nigerian fraud 
ring have been caught in this way.) 

Once a card has been issued, however, most 
banks rely upon periodic scrutiny of account behavior 
to determine if there is suspicion of fraud. In 
particular, banks have developed a series of rule-based 
checks against which all portfolio activity is 
reviewed. Such checks might specify nominal limits 
on the number of transactions that should reasonably 
be expected to occur in a single day. This excessive 
transaction report might also be limited to a count of 

transactions above some threshold on purchase 
amount. 

These fraud rules are developed as a result of 
historical analyses of past fraudulent behavior in the 
portfolio. However, most banks use only the most 
basic of statistical analyses to develop the fraud rules, 
leading in most cases to rule sets that consist of a set 
of simple threshold conditions on account variables. 
Not surprisingly, the use of more sophisticated 
technologies for fraud detection can lead to 
dramatically improved results. In particular, when 
viewed as a problem in pattem recognition, the 
problem of fraud detection is an excellent application 
for an appropriately chosen neural network solution. 
Increasingly, a number of problems in financial 
services are being viewed in terms pattem recognition 
problems for which neural network solutions may be 
developed 121. 

The Mellon Bank Fraud Detection 
Feasibility Study 

A feasibility study was done for Mellon Bank to 
determine the effectiveness of a neural network for 
fraud detection on their credit card portfolio. The 
feasibility study consisted of training a neural 
network-based system on a sample of good and fraud 
accounts, followed by the execution of a blind test of 
the trained model on a separate, unsampled, holdout 
set of transactions. In the training set, transactions 
were provided together with gd f raud  labels, while 
in the blind test set, no fraud labels were initially 
pvided. 

The study was designed to simulate the 
effectiveness of a fraud dewtion system deployed as a 
postprocessing step to the bank’s authorization 
system. When a transaction arrives for authorization, 
it is characterized by a stream of authorization data 
fields that carry information identifying the cardholder 
(account number) and characteristics of the transaction 
(e.g., amount, merchant code). There are additional 
data fields that can be taken in a feed from the 
authorization system (e.g., time of day). In most 
cases, banks do not archive logs of their authorization 
files. Only transactions that are forwarded by the 
merchant for settlement are archived by the bank’s 
credit card processing system. Thus, a data set of 
transactions was composed from an extract of data 
stored in Mellon’s settlement file. In this extract, 
only that authorization information that was archived 
to the settlement file was available for model 
development. In particular, day but not time of 
transaction was available, as were amount of 
transaction and SIC code of the merchant. 
Transaction denials (authorization requests that were 
denied as opposed to authorized) were also not 
available. 
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Additionally, payment information on the 
account was also available as an extract from the 
settlement file. Non-financial information (e.g., date 
of issue or date of last re-issue) was also included as a 
data field that was available at the time of a 
transaction request for authorization. 

One of the objectives of the study was to 
determine if the use of a wide variety of information 
characterizing the transaction would be helpful in 
developing improved fraud detection capability. What 
was envisioned was a system that could review each 
transaction in the context of the recent history of 
account transactions and payments, along with other 
non-financial data on the account, to determine 
likelihood of fraud. 

In the design of neural network-based pattem 
recognition systems, there is always a process of 
feature extraction that is applied to the input “raw” 
data fields in order to present to the network a set of 
inputs that is meaningfully organized in terms of the 
particular pattern recognition problem at hand. In 
this case, values from a set of 50 data fields were 
combined to produce a set of 20 features that were 
used as input to the network. These features can be 
roughly grouped in the four categories shown in 
Figure 2. 

Current transaction descriptors can include such 
features as the amount of the aansaction, the day and 
time at which it is occurring, (though time of day 
was not available for the Mellon study) as well as the 
standard industry code (SIC) of the merchant, a 
numeric code representing the nature of the merchant 
business (e.g., jewelry store, consumer electronics, 
restaurant, hotel, etc.) History descriptors contain 
features characterizing the use of the card for 
transactions and the payments made to the account 
over some immediately prior time interval. (For the 
Mellon study, the length of the history period for the 
account and payment-related variables was on the 
order of 8-10 weeks.) Other descriptors can include 
such factors as the date of issue (or most recent re- 
issue) of the card. This can be important for the 
detection of NRI fraud. 

The transaction data for the training set consisted 
of a sample of the transactions on Mellon’s portfolio 
during the months of January through June, 1991. 
The original set of portfolio transactions was sampled 
in such a way that all fraud transactions were 
included, while a sample of the good transactions was 
chosen so as to have a ratio of roughly 30 good 
accounts for each fraudulent account in the training 
set. An account was considered fraudulent if, during 
the course of the time represented by the training set, 
it had at least one transaction labelled as fraudulent. 
Altogether, some 450,000 transactions (as opposed to 

accounts) were used in the training set. The entire 
portfolio available for training consisted of 
approximately 650,000 accounts. 

As is often the case in dealing with real-world 
data, some effort was expended to validate the 
contents of data fields and to ensure that the data set 
did contain the full complement of fraudulent activity 
from the time period in question. To the extent that 
only a partial picture of account activity or fraudulent 
activity on the account is available during modeling, 
the model will train less effectively to detect fraud. 

The neural network used in this fraud detection 
feasibility study is the P-RCE neural network [3]. 
The P-RCE is a member of the family of radial-basis 
function networks that have been developed for 
application to pattem recognition. The P-RCE is a 
three-layer, feed-forward network that is distinguished 
by its use of only two training passes through the 
data set. The fust training pass involves a process of 
prototype cell commitment in which exemplars from 
the training set are stored in the weights between the 
fust and second (middle) layer cells of the network. A 
final training pass determines local a posteriori 
probabilities associated with each of these prototype 
cells. P-RCE training is not subject to problems of 
convergence that can afflict gradient-descent training 
algorithms. The P-RCE network and networks like it 
have been applied to a variety of pattem recognition 
problems both within and beyond the field of 
financial services, from character recognition to 
mortgage underwriting and risk assessment [4,5,6,71. 
More detail on the P-RCE network is provided in the 
Appendix. 

In this study, the P-RCE output layer consisted 
of a single cell that outputs a numeric response that 
can be considered as a “fraud score”. This is 
analogous to credit scoring systems that produce a 
score, as opposed to a strict probability. The 
objective of the neural network training process is to 
arrive at a trained network that produces a fraud score 
that gives the best ranking of the credit card 
transactions. If the ranking were perfect, all of the 
high scoring transactions down to some threshold 
would be fraud; below this threshold, only good 
transactions would be ranked. However, perfect 
separability of frauds from goods is not possible due 
to the inherently non-separable nature of the fraud and 
good distributions in the selected pattern recognition 
Space. 

Final evaluation of the trained network was done 
on the Blind Test data set. The Blind Test data 
represented an unsampled set of all Mellon Bank’s 
transactions for the two month period October- 
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November 1991. (Note that the model development 
data set was taken from transactions prior in time to 
that of the Blind Test data.) The network was tested 
on all (roughly) 2,000,000 transactions that were 
authorized in this two month period. Results are 
presented in the following figures. 

Figure 3 shows one measure of fraud detection 
accuracy: a rank curve of the the percentage of 
fraudulent transactions detected by the neural network 
plotted against the number of cardholder accounts that 
would be flagged by the system far review on a daily 
basis. We see from the shape of the curve that 
extremely high accuracies in fraud detection are 
obtained for those high fraud score values at which a 
small number of accounts are flagged for review each 
day. Further down the fraud score axis, the slope of 
the accuracy curve begins to flatten out. At lower 
fraud score cutoffs, where the number of accounts that 
are reviewed per day are in the neighborhood of 50 
accounts, nearly 40% of all fraudulent transactions 
will appear among the accounts under review. 

By comparison, the effectiveness of Mellon’s 
prior fraud detection efforts on this same data were 
such as to require them to review approximately 750 
accounts per day, yielding, on the average, only one 
detected fraudulent account per week. The 
improvement in detection performance is undeniably 
substantial. 

However, an increase in accuracy of detection 
does not necessarily, by itself, bring a comparable 
improvement in terms of economic benefit. Most 
fraud is fast moving, beginning and ending over a 
three day period. It is possible to imagine a system 
that might, with great accuracy, detect the last 
fraudulent transaction to occur on the card. Such a 
system would bring little economic benefit to the 
bank. It would have detected the fraud, but detected it 
too late to achieve any savings. Consequently, we 
also measm the earliness of the fraud detection. 

Figure 4 shows a histogram of a breakdown of 
when the fraud was detected far two different opefating 
points: a fraud score threshold at which, on average, 
one fraud account is detected per day and a lower 
detection threshold at which, on average, two fraud 
accounts are detected per day. Two observations are 
important to note. The first is that a significant 
percentage of detections are detections of accounts on 
either the first or second day of fraud activity. At the 
1-fraud-per-day operating point, 50% of detected 
accounts are detected on either the first or second day 
of fraud activity. 

Secondly, if the fraud detection threshold is 
reduced so as to catch more frauds, in particular to the 

point where the detections are averaging two fraud 
accounts per day, the percentage that are detected on 
either the first or second day of fraud activity climbs 
to 60%. Thus, lowering the fraud detection threshold 
can result not only in more fraud detections but also 
in earlier detection. This early detection provides the 
bank the opportunity to take action to prevent future 
use of the card for fraudulent transactions, thus 
reducing the average ‘“I” on the card and the average 
dollars lost to fraud per fraud account. 

Another measure of the detection performance 
concerns the types of fraud that the system is 
detecting. Figure 5 presents a breakdown, at the two 
different operating points, one fraud per day and two 
frauds per day, of the &taxed frauds as a percentage of 
the population of the major fraud categories. 
Importantly, the system is detecting fraud across all 
the major fraud categories. 

Since this is an historical study, it is possible to 
determine, in retrospect, a direct measure of savings 
that would have resulted from use of this technology 
and system for fraud detection. We compute the 
savings on a particular fraud accomt by summing the 
dollars associated with all fraudulent transactions on 
that account subsequent to (and in some cases 
including) the Fist detected transaction, given a 
particular fraud score detection threshold. The total 
fraud dollar savings is then summed for all fraud 
accounts. It is convenient to express this savings as 
a percentage of the total dollar fraud losses. Figure 6 
presents a plot of the percentage fraud loss saved 
versus total number of account reviews per day. (The 
explicit dependence on fraud score threshold is 
eliminated by casting this in terms of the number of 
accounts reviewed per day, which is directly 
demmined from the fraud score threshold.) 

Several graphs are presented in Figure 6. In the 
topmost curve (open squares), the percentage dollar 
fraud loss savings is plotted for a system that 
anticipates that the first detected transaction can be 
blocked at the point of sale. This requires that the 
system compute its fraud score for a given transaction 
request and message the authorization system in 
timely fashion to transmit a “Denial” response to the 
merchant. We call this the “real-time response” 
mode. The third curve from the top (open circles) 
shows the economic benefit for a system in which the 
first detected transaction is not blocked, but all 
subsequent transactions are blocked. This corresponds 
to a system that is perhaps scoring the transaction a 
short time interval after it has already been authorized. 
We might call this the “post-processing” mode. Each 
of these two curves gives rise to another curve, which 
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removes from consideration all transactions less than 
$50. These transactions would not be seen by 
Mellon’s authorization system either because the 
transaction amount was less than the merchant’s 
floor-limit, or because of Visa and MasterCard stand- 
in processing. Depending upon the mode of 
implementation and the selected operating point for 
fraud detection, savings in the range of 20% to in 
excess of 40% can be achieved. 

Importance of Payment Information 

In order to determine the contribution of the 
payment-related features to the accuracy of the model, 
a comparison was done of the performance of two 
different models, one trained with the benefit of 
payment-related features and one without. This 
comparison was done on the training set, (as opposed 
to the Blind Test set), where the good accounts had 
been sampled by a 1:17 factor. The graph below 
shows the performance of the two different models. 
At many points along the rank curve, the model 
trained without the benefit of payment-related features 
produces nearly twice as many accounts for review as 
the model trained with the benefit of payment-related 
features. Naturally, this factor will be influenced by 
the mix of fraud types in the portfolio. However, 
Figure 7 does present very firm evidence for the 
importance of payment-related information as input 
features to a neural network-based fraud detection 
system. 

Installed Software 

The fraud detection feasibility study has led to an 
installation of the fraud detection software (FDSm) at 
Mellon Bank. The installation configuration chosen 
by Mellon Bank involves the execution of the scoring 
function of FDS periodically during the day (as of 
this writing, every two hours), scoring all 
transactions that have been authorized since the last 
scoring run. Additionally, there is a final scoring that 
occurs at the end of the day after account posting, to 
process the settlement file. The settlement file 
consists of transactions that were authorized by 
Mellon Bank and have now come in for posting, 
transactions that were authorized by Mastercard and 
Visa as “stand-in” processing and transactions of 
amounts less than the merchant’s floor limit which 
were not authorized. (For transactions below agreed- 
upon amoun’ts, the credit card associations provide 
“stand-in” authorization in order to help reduce overall 
transaction traffic on the communications network. 

These transactions are transmitted electronically to the 
bank at day’s end.) 

The FDS scoring functions execute at roughly 
200,000 transactions per CPU hour on Mellon’s IBM 
mainframe, a model 3090-6005. A rapid processing 
“Pre-scoring” neural network is available in the FDS 
software to enhance scoring speed of execution. The 
above quoted speed does not reflect the use of that 
network. prior experience indicates that a factor of 10 
increase in speed is achieved when this pre-screening 
network is used. 

The Mellon FDSm fraud detection system has 
been fully operational since March 3, 1993. In-field 
performance consistent with or better than that of the 
feasibility study reported in this paper is being 
achieved. 

Conclusion 

The alarming increase in fraudulent credit card 
usage has stressed the fraud management systems 
currently in use at banks and other institutions that 
process credit card transactions. In a rigidly controlled 
test on real world data from Mellon Bank‘s credit card 
portfolio, a neural network-based fraud detection 
system has been shown to provide substantial 
improvements in both accuracy and timeliness of 
fraud detection. The feasibility study demonstrated 
that due to its ability to detect fraudulent patterns on 
credit card accounts, it is possible to achieve a 
reduction of from 20% to 40% in total fraud losses, at 
significantly reduced caseload for human review. 
Software implementing this neural network approach 
to fraud detection has been successfully installed and 
integrated into the production environment on Mellon 
Bank’s mainframe computer, and Mellon is achieving 
fraud loss reductions consistent with those predicted 
in the study. 
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Appendix 

Over the years, a great diversity of artificial 
neural network (ANN) architectures and learning 
techniques has been developed. Very general ANN 
architectures require enormous processing element 
inter-connectivity that can make them impratical for 
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software simulation on complex pattern recognition 
problems involving large scale data sets. 

Fortunately, it is now well known that the three- 
layer feed-forward architecture permits arbitrary 
mappings between input and output data distributions 
[8]. The three-layer, feed-forward, radius-limited 
perceptron network permits accurate modeling of 
statistical distributions when the data may be 
described by a small number of Gaussian-like 
distributions. This type of network is ideal for 
compact, non-linearly meshed class regions. Among 
the several training procedures known for such 
networks [9,10], Reilly et al. defined a rapid, non- 
gradient-descent procedure [ l l ,  121 which requires 
limited connectivity for error correction. 

Feed-forward, three-layer networks that combine 
radius-limited perceptrons with inner-product 
perceptrons are currently called radial basis function 
networks (RBFs)[9,10]. The notion of radius-limited 
perceptrons was discussed by some of the earliest 
neural network investigators [ 131, and RBF networks 
themselves have received much attention in the past 
[14,15,16,17]. 

In an RBF network, cells of the input layer 
transmit the input pattern vector to all of the cells in 
the second layer. The second layer cells are radius- 
limited perceptrons which compute activations 
according to: 

N1 

x2i = G(+)= G( ( x (xlj dijj2)1Q - ei). A. 1 
j=l 

In the above notation, superscripts identify the 
layer index. ak refers to the weight matrix 
connecting the kth layer to the (k+l)* layer; Nk is 
the number of cells in the k* layer; G(.) is a reverse 
step function such that G(4) = 0 for 4 > 0 and G(4) 
= 1 for 4 < 0. The classification cells in the output 
layer use a step function F(.), F(4) = 0 for 4 s 0 and 
F($) = 1 for 4 > 0, to compute activations according 
to: 

N2 

j=l 
x3i = F(4) = F( ~ ~ i j x ~ j ) .  A.2 

This network performs well when class regions 
are separable, that is when a boundary of some kind 
exists between them. However, many problems are 
characterized by class regions which share points in 
the feature space. These shared regions are said to be 
non-separable, and are best characterized by 
probability density functions (pdfs) p(f I C), which 
specify the dependence of the distribution for class C 

on the random input pattem f. Bayes rule permits 
classification of patterns in non-separable regions if 
the pdfs are known. 

In the P-RCE network, the reverse step 
activation function of the second layer cells is 
replaced by an exponential: 

and the activation function of the third layer cells is 
the identity function so that 

N2 

x3i= E d i j X Z j  A.4 
j = l  

Training of the P-RCE network begins with the 
simple procedural learning algorithm for the RCE 
network described in detail in [ll] and [18]. An 
illustration is provided in Figure A.1. A pattern from 
the training set is presented to the network, and if any 
cells are present in the second layer, they are activated 
according to Equation A.l; output cells are activated 
according to Equation A.2. If an output cell of a 
different class than the pattem is activated, then the 
thresholds of the middle-layer cells which activated it 
are adjusted so that they are no longer activated by the 
pattern (Figure A.lb). In addition, if none of the 
middle-layer cells connected to the correct output cell 
are active, then a new cell is added to the network 
with weights which correspond to the location of the 
pattern (Figure A.lc). At the same time, the new cell 
is connected to the corresponding output layer cell 
with a unit weight. The new cell's threshold is then 
initialized to the distance between the input pattem 
and the nearest weight vector of a cell belonging to 
another class. 

As a result of the learning procedure, the cells of 
the second layer of the network form a "covering" of 
the class regions that can represent arbitrarily non- 
linear interclass boundaries. (Figure A.ld). This 
mapping of the training data distributions typically 
requires from four to six passes through a randomly 
ordered training set, depending on the complexity of 
the distributions and the ordering of the data in the 
training set. 

For overlapping class distributions, pdfs may be 
estimated by maintaining a count of correctly 
classified patterns which fall within the radius of each 
of the middle layer of cells 1121. This local counter 
of correctly classified patterns is stored in the second 
layer weight W2ij which links the j* cell of the 
middle layer with the ith output cell. Thus during 
training, correctly identified patterns of class i, which 
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elicit activity in middle-layer cell j, cause an 
increment to the weight W2ij: 

WZij(t+l) = W2ij(t) + 1. A. 5 

Patterns which are not correctly identified by 
middle-layer cell j do not alter the value of 02ij. 
Note that since the radial threshold of cell j may 
”shrink” as a result of RCE leaming, the counter W2ij 
may not be an accurate estimate of correctly identified 
patterns during RCE training. To ensure that the 
second layer of weights correctly estimates the local 
pdfs, a final pass on the full training set is required in 
which no addition of second layer cells and no 
adjustment of the cell thresholds occurs. 
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Figure 1: Fraud growth as percentage of charge volume, 1988-1991. 
(Source: Visa, Mastercard) 
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Figure 2: Groups of input features characterizing each transaction to the network 
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Figure 3: Percentage of fraud transactions detected as a function of 
number of accounts flagged for review by the system each day. 



Figure 4: Percentage of detected accounts, broken down by date of 
detection, referenced to the day of the first observed fraud transaction. 
Small negative bin is an artifact of uncertain data labelling that may not 

have accurately established first fraud transaction. Light histograms 
correspond to the operating point at which 1 fraud is detected per day; 
dark histograms correspond to the operating point at which 2 frauds are 

detected per day. 

I Loo1 Stolrm NRI FnrdApp Countm Not0p.c Y.llOrdrt 
F*."d TIC. 

Figure 5: Fraudulent accounts detected at two different operating 
points, broken down by category. Within each category, number of 

frauds detected is expressed as a percentage of total fraudulent 
accounts belonging to that category. 

Figure 6: Percentage dollar fraud loss savings as a function of different 
installation-related assumptions. 
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Figure 7: Performance comparison of models trained with and without 
payment-related information. Detection accuracy is quoted on sampled 

data set. (Good account sampling factor is 1:17.) 

Figure A.l: (a) A training pattern from class region A, represented by an -.x", is 
presented to the network and activates a second layer cell belonging to class 6, 
represented by the 
circle.) (b) That cell's "region-of-influence" (defined by the cell threshold, e) is 
decreased to the point where the pattern no longer activates the cell. (c) New 
cells are added to the second layer when no cells of the correct class are 
activated by the pattern. (d) Class regions are defined by the final assemblage 
of second layer, radius-limited cells. 

because it falls within the cell's influence region (the 

630 


