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ABSTRACT 
 
Using fuzzy c-means as the data-mining tool, this study evaluates the 
effectiveness of sampling methods in producing the knowledge of interest.  
The effectiveness is shown in terms of the representative-ness of sampling 
data and both the accuracy and errors of sampled data sets when subjected to 
the fuzzy clustering algorithm.  Two population data in the weld inspection 
domain were used for the evaluation.  Based on the results obtained, a number 
of observations are made.   
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INTRODUCTION 
 
Data mining is the application of specific algorithms for extracting knowledge 
from data (Fayyad et al., 1996). Typical kinds of knowledge extracted include 
association rules, characteristic rules, classification rules, discriminant rules, 
clustering, etc. Chen et al. (1996) surveyed data mining techniques developed 
in several research communities according to the kinds of knowledge to be 
mined. This study makes use of a clustering algorithm, specifically the fuzzy 
c-means (Bezdek, 1987). The possibilistic c-means algorithm (Krishnapuram 
and Keller, 1993) was tried but eventually not used because of unsatisfactory 
results.  

Clustering or unsupervised classification is the process of grouping 
physical or abstract objects into classes of similar objects.  Consider the 
partition of a database with N tuples into m clusters. The number of ways in 
which this can be done, denoted by P(N, m), is as follows (Duran and Odell, 
1974): 

 
   (1) 
 

As N increases, P(N, m) grows exponentially. Given this huge search space, 
much effort has been spent to devise better clustering algorithms. Current 
clustering algorithms can be broadly classified into two categories: partitional 
and hierarchical.  Partitional clustering algorithms attempt to determine m 
partitions that optimize a clustering criterion.  Algorithms in this category 
include the popular c-means, CLARANS (Ng and Han, 1994), BIRCH (Zhang 
et al., 1996), and CLIQUE (Agrawal et al., 1998).  A hierarchical clustering 
algorithm performs a nested sequence of partitions by either an agglomerative 
or divisive approach. The agglomerative approach starts by placing each 
object in its own cluster and then merges them into larger and larger cluster 
until all objects are in one cluster (Guha et al., 1998; Loslever et al., 1996). 
The divisive approach reverses the process.  

Use of a distributed framework for parallel data mining offers another 
alternative to handle large data sets. Rana and Fisk (1999) described a 
distributed framework employing task and data parallelism using HPJava. A 
commercial tool that follows this strategy is Darwin of Oracle. The other 
alternative, called focusing, is to reduce data before applying data mining 
algorithms.  Data reduction can be achieved by reducing the number of tuples 
and/or attribtues.  Using C4.5 (Quinlan, 1993) and IB in MLC++ (Kohavi et 
al., 1995) as the algorithms for mining classification rules, Reinartz (1999) 
analyzed the potentials of focusing tuples in data mining.  SAS's Enterprise 
Miner implements most sampling methods.  

Our study applies the same methods used by Reinartz (1999) for 
focusing tuples, but employs clustering instead of classification algorithms on 
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different data sets.  In the next section, fuzzy c-means is briefly described.  
Section 3 presents the sampling methods used, followed by a description of 
the data set and knowledge sought.  Section 5 discusses the results obtained in 
this study. The paper ends with a conclusion section. 
 
 
FUZZY CLUSTERING 
 
Fuzzy c-means (FCM) is used to serve as the data mining technique in this 
study.  It is an unsupervised classification method, belonging to the partitional 
clustering category.  It was derived from the hard (or crisp) c-means 
algorithm. 

The hard c-means and its variants (Ball and Hall, 1967) are based on 
the minimization of the sum of squared Euclidean distances between data (xk, 

k=1, …, n) and cluster centers (vi, i =1, …, c), which indirectly minimizes the 
variance as follows:  

 
 
  (2) 
 

In the above equation, U = [uik] denotes the matrix of a hard c-partition and 
V={vi} denotes the vector of all cluster centers.  The partition constraints in c-
means are: (1) uik ∈ {0, 1} ∀i, k, (2) ∑i=1,c uik=1, ∀k, and (3) 0 < ∑k=1,n uik < n, 
∀i.  In other words, each xk either belongs or does not belong to a cluster and 
it can only belong to one cluster. 

Dunn first extended the hard c-means algorithm to allow for fuzzy 
partition with the objective function as given in Eq. 3 below (Dunn, 1974): 

 
   (3) 
 
 

Note that U = [µik] in this and following equations denotes the matrix of a 
fuzzy c-partition. The fuzzy c-partition constraints are: (1) µik ∈ [0, 1] ∀i, k, 
(2) ∑i=1,c µik=1, ∀k, and (3) 0 < ∑k=1,n µik < n, ∀i.  In other words, each xk 
could belong to more than one cluster with each belonging-ness taking a 
fractional value between 0 and 1.  Bezdek (1987) generalized J2(U, V) to an 
infinite number of objective functions, i.e., Jm(U, V), where 1≤m≤∝.  The new 
objective function subject to the same fuzzy c-partition constraints is 
 

 
   (4) 
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Note that both hard c-means and fuzzy c-means algorithms try to minimize 
the variance of those data within each cluster. 
 To solve the above model, an iterative procedure is required. Please 
refer to the original paper for the solution procedure. The FCM solution 
procedure was implemented in C language for this study. 
 
 
SAMPLING METHODS 
 
The sampling methods studied include simple random sampling, systematic 
sampling, and stratified sampling.  

Simple random sampling selects n samples tuple-by-tuple from a 
population of size N by drawing random numbers between 1 and N.  Denote 
the population of N tuples as the focusing input, Fin, and the selected samples 
as the focusing output, Fout. Algorithm RS shows an implementation of simple 
random sampling. 

---------------------------------------------------------------- 
Algorithm RS(Fin, n) 

---------------------------------------------------------------- 
begin 

Fout := ∅; 
while |Fout| ≤ n do 

i := random(1, |Fin|); 
Fout := Fout ∪ {ti}; 

enddo 
return (Fout); 

end; 
---------------------------------------------------------------- 

Note that in this algorithm the sampling is done with replacement.  That is, 
each tuple has the same chance at each draw regardless whether it has already 
been sampled or not.   
 To draw n samples, systematic sampling first determine the step size, 
next draws the first tuple out of the focusing input at a random position, then 
iteratively adds each tuple with an index which refers to step positions after 
the selection position in the previous step.  Algorithm SS describes an 
implementation of systematic sampling. Note that in this algorithm • 
denotes the largest integer smaller than •. 

Stratified sampling first uses a stratifying strategy to separate the 
focusing input into a set of strata S = {s1, …, sl, …, sL}, and then draws 
samples from each stratum independently by an application of other sampling 
techniques such as simple random sampling. The stratifying strategy involves 
the selection of stratified variables, which must be categorical. For the data set 
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------------------------------------------------------- 
Algorithm SS(Fin, n) 

------------------------------------------------------ 
begin 

Fout := ∅; 
step := |Fin|/n; 
i := start; 
while i ≤ |Fin| do 

Fout := Fout ∪ {ti}; 
i := i + step; 

enddo 
return (Fout); 

end; 
 

studied, the stratified variable is binary. There are four variations of stratified 
sampling: proportional sampling, equal size, Neyman's allocation and optimal 
allocation. Proportional stratified sampling ensures that the proportion of 
tuples in each stratum is the same in the sample as it is in the population.  
Equal size stratified sampling draws the same number of tuples from each 
stratum. Neyman's allocation allocates sampling units to strata proportional to 
the standard deviation in each stratum.  With optimal allocation, both the 
proportion of tuples and the relative standard deviation of a specified variable 
within strata are the same as in the population. Algorithm PSS shows an 
implementation of proportional stratified sampling that is used in this study. 
Stratified sampling preserves the strata proportions of the population within 
the sample. It thus may improve the precision of the fitted models. 

For each sampling method, several sampling sizes were obtained at 
different  levels in order to study their effect.   The population as well as each  

 
 

Algorithm PSS(Fin, n) 
begin 

Fout := ∅; 
S := stratify(Fin); 
l := 1; 
while l ≤ |S| do 

nl := n|sl|/|Fin| + 1; 
Fout := Fout ∪ RS{sl, nl}; 
l :=  l + 1; 

enddo 
return(Fout); 

end; 
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sample data set drawn from it are statistically characterized. The sample 
characteristics are compared with the population characteristics to show the 
representative-ness of drawn samples.  

Three types of statistical characteristics are distinguished.  The first 
type of characteristics describes the mean and variance of attribute values.  
The second type considers the distribution of attribute values for simple 
attributes.  The third type takes into account the joint distribution of attribute 
values for more than one single attribute. The key procedure used to analyze 
characteristics about focusing outputs in relation to focusing input is 
hypothesis testing. The null hypothesis, H0, is that the sample characteristic 
equal to the population characteristic.  The alternative hypothesis, H1, is that 
the sample characteristic is not equal to the population characteristic.  

To test the mean of attribute j in the focusing output with sample size 
of n (>30), we compute the test statistic smj = n1/2(µj(Fout)-µj(Fin))/ σj(Fout).  H0 
is rejected at confidence level 1-α if  smj > z1-α/2.  For testing the variance of 
attribute j in the focusing output with sample size of n (>30), we compute the 
test statistic sVj = (n-1)σj(Fout)

2/)σj(Fin)
2.  H0 is rejected at confidence level 1-α 

if  sVj < χ2
1-α/2(n-1).  

Numeric attributes must be discretized before hypothesis testing for 
distribution can be performed. Consider attribute j with values in domain domj 
and a set of intervals I = {I1,…, Il, …, IL} with Il = [bl, el[, bl < el, 1 ≤ l ≤ L-1, 
and IL = [bL, eL].  I is discretization of domj if domj ⊆ I, b1 = min domj, eL = 
max domj, and bl+1 = el.  This study employs equal-width discretization, as 
shown in Algorithm EWD.   

 
Algorithm EWD 

begin 
I := ∅; 
b1 := min domj; 
eL := max domj; 
width := (eL - b1)/L; 
l := 1; 
while l ≤ L –1 do 

el := bl + width; 
bl+1 := el.; 
I := I ∪ [bl, el[; 
l := l +1; 

enddo 
I := I ∪ [bL, eL]; 
return(I); 

end; 
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To test the distribution of attribute j in the focusing output with 
sample size of n after being discretized, we compute the test statistic sDj = 
∑k=1,L{[njk(Fout)-n ⋅njk(Fin)/N]2/ n ⋅njk(Fin)/N}.  H0 is rejected at confidence level 
1-α if  sDj < χ2

1-α/2(L-1).  This test is valid only if n ⋅njk(Fin) ≥ 5 for all k.  A 
similar test can be performed for joint distribution, but the number of 
combinations could be high as the number of attributes and the number of 
discretized intervals increase. 
 
 
DATA AND KNOWLEDGE 
 
Radiographic testing (RT) is one of several commonly used non-destructive 
techniques to evaluate welded structures such as off shore oil-drilling plate 
forms and space shuttle external tanks.  With the assistance of a view box, a 
certified inspector interprets radiographs to determine whether a particular 
weld is sound or not.  Although this is the mode of operation in industries 
today, human interpretation of weld quality is often subjective, inconsistent, 
labor intensive, and sometimes biased. Attempts have been made to develop a 
computer-aided system as an assistant to human inspectors. The key in this 
effort is to come up with a comprehensive set of interpretation knowledge 
used by human inspectors. It is our belief that this comprehensive set of 
interpretation knowledge can be extracted from the huge volumes of 
radiographic images archived. Because the huge amount of raw data involved, 
a data reduction operation called feature extraction is usually performed. This 
operation is critical because good knowledge cannot be obtained without 
discriminate features. Modeling of interpretation knowledge based on these 
features is yet another critical task, which is the focus of this work.  

This study uses some data extracted from radiographic images of 
industrial welds that are available to us. Two populations of data organized in 
the form of tables are used. The first population of data has 2,275 tuples with 
each tuple having 3 numeric attributes, which were originally extracted for 
weld identification. Refer to Liao et al. (2000) for more detailed information 
about feature extraction.  The second population of data has 10,500 tuples 
with each tuple having 25 numeric attributes, which were originally extracted 
for welding flaw detection (Liao et al., 1999). For both data sets, the 
categorical value of each record is known, which indicates whether a 
particular tuple is a weld (for the first data set) or a welding flaw (for the 
second data set) or not. 

The performance measures of interest here are the accuracy of weld 
identification or welding flaw detection, the false positive rate, the false 
negative rate, and the accuracy-falsehood ratio that is defined as the ratio 
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between the accuracy and the summation of the false positive rate and the 
false negative rate.  
 
 
RESULTS AND DISCUSSIONS 
 
For each data set, we first applied each one of the three sampling methods to 
generate focusing outputs of different sizes.  For each sample size, ten 
focusing outputs were produced.  Each focusing output was then statistically 
characterized and tested in relation to the population characteristic.  
Subsequently, we applied fuzzy clustering algorithms to each focusing output.  
The statistical test results are presented first, followed by the clustering 
results. In each category, the results are organized by data set. 
 
Statistical Test Results 
 
Weld Identification Data Set 
 
Tables 1-3 summarize the statistical test results of the weld identification data 
by attribute.  For each size of focusing output, the percentage of its passing 
the test of its representative-ness of the population (or accepting H0) is shown 
for some statistical characteristics. Note that each entry corresponding to each 
statistical characteristic has two numbers with the first number derived from 
the first five focusing outputs and the second number the second five.  The 
significance of α = 0.05 is consistently used throughout all tests. 
For each statistical characteristic of each feature, analysis of variance was 
performed to determine the significance of sampling method, sampling size, 
and their interaction. The results indicate that: 

 
Table 1. Results of statistical test for feature 1 of the weld identification data set. 

 
Sampling Method Sample Size Mean Variance Distribution 
Random Sampling 50 

100 
200 
300 

100, 100 
60, 100 
100, 100 
100, 80 

60, 60 
80, 60 
20, 80 
40, 60 

60, 20 
0, 20 
0, 20 
0, 0 

Systematic Sampling 50 
100 
200 
300 

100, 80 
80, 100 
80, 100 
100, 100 

60, 80 
20, 80 
60, 80 
40, 60 

40, 20 
0, 0 
0, 0 
0, 0 

Stratified Sampling 50 
100 
200 
300 

80, 100 
100, 100 
100, 100 
80, 100 

80, 60 
80, 60 
40, 40 
80, 40 

0, 20 
20, 20 
0, 0 

20, 20 
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Table 2. Results of statistical test for feature 2 of the weld identification data set. 
 

Sampling Method Sample Size Mean Variance Distribution 
Random Sampling 50 

100 
200 
300 

60, 100 
80, 80 

60, 100 
100, 100 

40, 40 
60, 20 
60, 40 
40, 60 

40, 20 
20, 0 
20, 0 
0, 0 

Systematic Sampling 50 
100 
200 
300 

60, 60 
80, 100 
40, 60 
80, 80 

40, 40 
20, 40 
20, 20 
40, 40 

20, 40 
0, 0 
0, 0 
0, 0 

Stratified Sampling 50 
100 
200 
300 

60, 100 
80, 100 
80, 80 
80, 60 

40, 40 
0, 20 
20, 0 
0, 40 

20, 0 
0, 0 
0, 0 
0, 0 

 
 

Table 3. Results of statistical test for feature 3 of the weld identification data set. 
 

Sampling Method Sample Size Mean Variance Distribution 
Random Sampling 50 

100 
200 
300 

100, 100 
100, 100 
100, 100 
100, 80 

80, 40 
60, 60 
80, 60 

100, 60 

0, 0 
0, 0 
0, 0 
0, 0 

Systematic Sampling 50 
100 
200 
300 

80, 100 
100, 100 
100, 100 
100, 80 

20, 100 
80, 100 
40, 80 
80, 80 

20, 20 
0, 0 
0, 0 
0, 0 

Stratified Sampling 50 
100 
200 
300 

100, 100 
80, 100 
100, 100 
80, 100 

40, 80 
60, 80 

60, 100 
40, 60 

0, 0 
0, 0 
0, 20 
0, 0 

 
1) The means are statistically indifferent regardless the sampling method and 

sample size used. 
2) For the variance characteristic, the sampling method factor is significant 

for feature 2 with p-value = 0.018. 
3) For the distribution characteristic, sample size is always significant with 

p-values of 0.02, 0.003, and 0.044 for features 1, 2, and 3, respectively. 
4) The interaction between sampling method and sample size is statistically 

significant with p-value = 0.005 for the distribution characteristic. 
 
 
Welding Flaw Detection 
 
Because this data set has 25 attributes, it will take up a lot of space to show all 
of the results.  Tables 4-6 summarize the statistical test results of the welding 
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flaw detection data set for three selected attributes.  For each size of focusing 
output, the percentage of its passing the test of its representative-ness of the 
population (or accepting H0) is shown for some statistical characteristics. Note 
that as in Tables 1-3 the first number is derived from the first five focusing 
outputs and the second number the second five.  The significance of α = 0.05 
is consistently used throughout all tests. 

 
 

Table 4. Results of statistical test for feature 5 of the welding flaw detection data set. 
 

Sampling Method Sample Size Mean Variance Distribution 
Random Sampling 100 

200 
300 
800 

1000 

100, 80 
100, 100 
100, 40 
100, 100 
100, 80 

100, 60 
100, 80 
100, 60 
80, 60 
80, 60 

40, 20 
20, 20 
20, 0 
0, 0 
0, 0 

Systematic Sampling 100 
200 
300 
800 

1000 

100, 100 
100, 100 
100, 100 
100, 100 
100, 100 

100, 100 
100, 100 
100, 100 
100, 100 
100, 100 

100, 100 
100, 100 
100, 80 

0, 0 
0, 0 

Stratified Sampling 100 
200 
300 
800 

1000 

100, 100 
100, 100 
100, 100 
100, 100 
100, 100 

80, 100 
80, 100 
100, 100 
80, 100 
80, 100 

40, 40 
40, 40 
20, 20 
0, 0 
0, 0 

 
 

Table 5. Results of statistical test for feature 15 of the welding flaw detection data set. 
 

Sampling Method Sample Size Mean Variance Distribution 
Random Sampling 100 

200 
300 
800 

1000 

80, 100 
100, 100 
100, 80 
100, 100 
100, 100 

40, 40 
60, 20 
20, 40 
20, 20 
20, 20 

20, 20 
0, 0 
0, 0 
0, 0 
20, 0 

Systematic Sampling 100 
200 
300 
800 

1000 

60, 80 
60, 100 
100, 100 
100, 100 
100, 100 

0, 20 
20, 60 
40, 0 
40, 20 

100, 100 

60, 20 
20, 0 
0, 0 
20, 0 
0, 0 

Stratified Sampling 100 
200 
300 
800 

1000 

60, 60 
80, 100 
100, 80 
100, 100 
100, 100 

0, 0 
40, 20 
0, 40 
40, 40 
0, 40 

40, 60 
0, 20 
0, 0 
0, 0 
0, 0 
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Table 6. Results of statistical test for feature 25 of the welding flaw detection data set. 
 

Sampling Method Sample Size Mean Variance Distribution 
Random Sampling 100 

200 
300 
800 

1000 

100, 100 
60, 100 
100, 100 
100, 100 
100, 80 

100, 100 
100, 100 
100, 100 
100, 100 
100, 100 

0, 0 
0, 0 
20, 0 
20, 0 
0, 0 

Systematic Sampling 100 
200 
300 
800 

1000 

100, 100 
100, 100 
100, 100 
100, 100 
100, 100 

100, 100 
100, 100 
100, 100 
100, 100 
100, 100 

0, 0 
0, 20 

20, 20 
40, 0 
0, 0 

Stratified Sampling 100 
200 
300 
800 

1000 

100, 100 
100, 100 
100, 100 
80, 100 
80, 100 

100, 100 
100, 100 
100, 100 
100, 100 
100, 100 

0, 20 
0, 0 
0, 0 
0, 0 
0, 0 

 
For each statistical characteristic of each one of the above features, an 

analysis of variance was performed to determine the significance of sampling 
method, sampling size, and their interaction. The results indicate that: 
1) All three statistical characteristics of feature 25 are indifferent regardless 

the sampling method and sample size used.  
2) The sampling method factor is significant for the variance characteristic 

of feature 5 with p-values = 0.011.  In addition, all factors are significant 
for the distribution characteristic of the same feature with p-values < 10-4. 

3) The sample size factor is significant for the mean and distribution 
characteristics of feature 15 with p-values = 0.004 and 0.0002, 
respectively. In addition, the interaction between sampling method and 
sample size is significant for the variance characteristic with p-value = 
0.015. 

 
 
Clustering Results 
 
Weld Identification Data Set 
 
Table 7 summarizes the clustering results of the weld identification data set 
obtained by the FCM algorithm. For each size of focusing output clustered, 
the mean accurate rate (A), mean false negative rate (FN), mean false positive 
rate (FP), and mean accuracy-falsehood ratio defined as A/(FN+FP) are 
shown in each table. Each mean value was computed from ten values 
corresponding to ten focus output data.  A weld not identified is a false 
negative whereas a non-weld identified as a weld is a false positive. 
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Table 7. Results of FCM clustering of the weld identification data set. 

 
Sampling 
Method 

Sample 
Size 

Mean 
Accurate 
Rate (%) 

Mean False 
Negative 
Rate (%) 

Mean False 
Positive Rate 

(%) 

Mean 
Accuracy- 
Falsehood 

Ratio 
Random 
Sampling 

50 
100 
200 
300 

65.8 
62.4 
59.5 
56.4 

13.2 
14.2 

1 
5.3 

56.3 
65.3 
80.0 
80.7 

0.95 
0.79 
0.74 
0.66 

Systematic 
Sampling 

50 
100 
200 
300 

64.0 
58.1 
60.0 
57.4 

20.0 
10.4 
0.7 
0.9 

55.1 
73.3 
79.9 
81.0 

0.85 
0.69 
0.74 
0.70 

Stratified 
Sampling 

50 
100 
200 
300 

67.6 
61.4 
58.8 
60.0 

5.9 
0.2 
0.5 
0.5 

71.5 
77.0 
81.9 
79.8 

0.87 
0.80 
0.71 
0.75 

Focusing 
Input 

2275 59.2 0.6 80.5 0.73 

 
 

For each performance measure, an analysis of variance was 
performed to determine the significance of sampling method, sampling size, 
and their interaction. The results indicate that sample size is statistically 
significant for all performance measures and other factors are all insignificant.  
Overall, the accuracy, false negative rate, and accuracy-falsehood ratio 
decrease whereas false positive rate increases as sample size increases.  It was 
surprised to find that for all performance measures except false negative rate, 
sample sizes of 50 and 100 generally fare better than the population.  The 
performance of sampled data sets with size larger than 200 are more 
comparable with that of the population for this particular data. 
 
 
Welding Flaw Detection Data Set 
 
Table 8 summarizes the clustering results of the welding flaw detection data 
obtained by the FCM algorithm.  For each size of focusing output clustered, 
the mean accurate rate (A), mean false negative rate (FN), mean false positive 
rate (FP), and mean accuracy-falsehood ratio defined as A/(FN+FP) are 
shown in each table. Each mean value was computed from ten values 
corresponding to ten focus output data. A welding flaw not detected is called 
a false negative. On the other hand, a non-flaw called as a flaw is a false 
positive. 
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Table 8. Results of FCM clustering of the welding flaw detection data set. 
 

Sampling 
Method 

Sample 
Size 

Mean 
Accurate 
Rate (%) 

Mean False 
Negative Rate 

(%) 

Mean False 
Positive Rate 

(%) 

Accuracy-
Falsehood 

Ratio 
Random 
Sampling 

100 
200 
300 
800 
1000 

58.8 
58.3 
55.6 
57.6 
58.5 

33.0 
29.6 
28.3 
37.3 
28.4 

42.8 
43.6 
47.1 
43.3 
43.6 

0.78 
0.80 
0.74 
0.72 
0.81 

Systematic 
Sampling 

100 
200 
300 
800 
1000 

60.5 
58.2 
58.8 
55.0 
55.9 

33.8 
25.1 
24.9 
21.6 
35.4 

40.3 
44.3 
44.0 
49.0 
45.7 

0.82 
0.84 
0.85 
0.80 
0.70 

Stratified 
Sampling 

100 
200 
300 
800 
1000 

60.0 
61.1 
61.0 
60.6 
56.2 

24.0 
31.7 
25.2 
26.7 
25.7 

40.5 
40.2 
41.4 
41.6 
46.9 

0.93 
0.85 
0.92 
0.89 
0.77 

Focusing 
Input 

10,500 64.5 19.0 38.3 1.13 

 
 For each performance measure, an analysis of variance was 
performed to determine the significance of sampling method, sampling size, 
and their interaction. The results indicate that sampling method is statistically 
significant for the accuracy and false positive rate.  It seems that stratified 
sampling produces better results than random sampling and systematic 
sampling in all performance measures.  However, no sampling method gives 
better results than the population for this particular data set. 
 
 
CONCLUSION 
 
This paper evaluated three sampling methods with respect to the 
representative-ness and performance of the sampled data.  The representative-
ness is tested based on three statistical characteristics: mean, variance, and 
distribution.  The performance is measured by using four indices: the 
accuracy rate, false negative rate, false positive rate, and accuracy-falsehood 
ratio based on the clustering results of fuzzy c-means.  Two population data 
sets taken from the domain of radiographic testing of welds were used. 

It is observed that: 
1. Sample means are generally statistically indifferent from the population 

mean regardless the sampling method and sample size used.  
2. The sampling method factor is significant for the variance characteristic 

for two out of six features tested (feature 2 of weld identification data and 
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feature 5 of welding flaw detection data). It is also significant for the 
distribution characteristic for one feature (feature 5 of welding flaw 
detection data). 

3. The sample size factor is significant for the distribution characteristic for 
five out of six features tested (feature 25 of welding flaw detection data is 
the only insignificant one). 

4. The interaction factor is significant for the variance characteristic of one 
feature (?) and for the distribution characteristic of two features (features 
5 and 15 of welding flaw detection data). 

5. For the weld identification data set, sample size is statistically significant 
for all performance measures and other factors are all insignificant. It was 
surprised to find that for all performance measures except false negative 
rate, sample sizes of 50 and 100 generally fare better than the population. 

6. For the welding flaw detection data set, sampling method is statistically 
significant for the accuracy and false positive rate. In addition, stratified 
sampling seems to produce better results than random sampling and 
systematic sampling but worse than the population in all performance 
measures. 

Depending upon the data, one factor might be more important than 
another.  More tests on widely different data are needed to reach any definite 
conclusion.  It is also desirable to determine if there is any correlation 
between the statistical characteristics of drawn samples and the performance 
measures of interest. 
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