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ABSTRACT

One of the fundamental concepts in fuzzy set theory is the one of
membership values. An appealing procedure for deriving information about
membership values, is to use a matrix of pairwise comparisons [18], [19],
[20]. A number of OR approaches that are based on eigenvalue theory and
mathematical programming have been proposed to manipulate the previous
matrices and estimate membership values. The findings of this paper reveal
that although some methods appear to be more effective than others, still
their performance is dramatically poor.

1. INTRODUCTION

The more than 1,800 references in [3], [4], and [42] describe the
importance of fuzzy set theory in cngincering and scientific problems. Fuzzy
sets are particularly critical in many decision making situations (see, for
example, [1], (7}, [8], [9], [10], [15}, [16], [21), [22], [25], [26], [27]). Recently,
an increasingly large number of Al rescarchers have been faced by the
problem that either their data or their background knowledge is fuzzy. This
is a pervasive problem in Al [t is particularly critical to people building
expert systems, for the knowledge they are dealing with is almost always
riddled with vague concepts and judgmental rules {17]. The impact of fuzzy
set theory on AI is best illustrated in [3], 4], and [34] - [43]. The
understanding of fuzzy sets is of crucial importance to the successful
development and operation of many expert systems (e.g. [11], [12], [16],
[41)).

The keystone of any new real life application of fuzzy set theory is the
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198 Determining Membership Values in Fuzzy Sets

successful estimation of the membership values of the elements in a fuzzy
set. Saaty [18], [19], [20] proposed the use of a reciprocal matrix with entries
that reflect the decision maker’s estimates of the relative importances of the
elements of a fuzzy set. In this way, membership values are derived from
judgments of human experts about the dominance relations among the
elements of a fuzzy set.

There are two main approaches in this decision process. The first
approach considers the input data as continuous functions (see for
example [26]). The second one, uses discrete data. Although there is no
evidence as to why the input data have to be continuous or discrete, the
discrete data are much easier to obtain. Saaty [20] claims that decision
makers can derive effectively the required data by making a number of
pairwise comparisons. In this paper we consider the case of dealing with
these pairwise comparisons.

The use of the above reciprocal matrices has captured the interest of
many rescarchers (see, for example, [2], [6], [7] [8], [20], [28], [31]). This is
mainly due to the nice mathematical properties of the reciprocal matrices
and the fact that the input data are rather easy to be obtained. In this paper
we review some of the methods that use the above matrices as input and
derive membership values. These methods use Operations Research
techniques, namely, eigenvalue theory and mathematical programming.
Then, the assumption that in reality membership values take on continuous
values is made. This assumption is made in order to capture the majority of
the real world cases. Using this assumption a forward error analysis reveals
that the tested methods yield dramatically high failure rates.

2. LITERATURE REVIEW
2.1. Reciprocal Matrices with Pairwise Comparisons

Let A;, A,,...,A, be the members of a fuzzy set. We are intcrested
in evaluating the membershlp values of the above members. Saaty [18], [19],
and [20] proposed to use a matrix A of rational numbers taken from the set
{19, 1/8, 1/7, ..., 1, 2,3, ..., 7, 8, 9}. Each entry of the above matrix A
represents a pauwnse ]udgment Specifically, the entry a; denotes the
number that estimates the relative membership of element A when it is
compared with element A;. Obviously, a;; = 1/a; and a; = 1. That is,
the matrix is a reciprocal one.

Let us first examine the case in which it is possible to have perfect
values aj;. In this case it is a;; = W;/W; (W, denotes the actual value of
element s) and the previous remprocal matrix A is consistent. That is:

a; = agay (,j,k = 1,2,3,..n, where n is the
number of elements in the fuzzy sct) (1

It can be proved that A has rank 1 with 1 = n to be its nonzero
eigenvalue. Then we have: :
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Ax = nx  where x is an eigenvector 2
From the fact that a;; = W;/W; the following are obtained:
Za, W.=>W=1W, i=123.n 3)
i=1
or:
AW =nW 4

Equation (4) states that n is an ecigenvalue of A with W a
corresponding eigenvector. The same equation also states that in the
perfectly consistent case (ie., a; = ay a,u) the vector W, with the
membership values of the elements 1,2,3,.. is the prmcxpal right-
eigenvector (after normalization) of the matrix A.

2.2. The Eigenvalue Approach

In the non-consistent case (which is the most common) the pairwise
comparisons are not perfect, that is, the entry a; might deviate from the real
ratio W;/W; (i.e., from the ratio of the real membership values W; and W;).
In this case, the previous expression (1) does not hold for all the possnble
combinations. Now the new matrix A can be considered as a perturbation
of the previous consistent case. When the entries a;; change slightly, then
the eigenvalues change in a similar fashion {20]. Moreover, the maximum
eigenvalue is close to n (greater than n) while the remaining eigenvalues are
close to zero. Thus, in order to find the membership values in the non-
consistent case, one should find an eigenvector that corresponds to the
maximum eigenvalue A__. That is to say, to find the principal right-

eigenvector W that satisfies:
AW =4 W where: A _=~n

max

Saaty estimates the reciprocal right-eigenvector W by multiplying
the entries in each row of matrix A together and taking the n™ root (n is
the number of the elements in the fuzzy set). Since we desire to have values
that add up to 1.00 we normalize the previously found vector by the sum
of the above values. If we want to have the element with the highest value
to have membership value equal to 1.00, we divide the previously found
vector by the highest value.

Under the assumption of total consistency, if the judgments are
gamma distributed (something that Saaty assumes is the case), the principal
right-eigenvector of the resultant reciprocal matrix A is Dirichlet
distributed. If the assumption of total consistency is relaxed, then
Vargas [31] states that the hypothesis that the principal right-eigenvector
follows a Dirichlet distribution is accepted if the consistency ratio is 0.10 or
less.

The consistency ratio (CR) is obtained by first estimating A__ . Saaty

estimates A_, by adding the columns of matrix A and then multiplying the

resulting vector with the vector W. Then he uses what he calls the
consistency index (CI) of the matrix A. He defines CI as follows:
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Cl=(@_,—n)/(n=1)
Then, the consistency ratio CR is obtained by dividing the CI by the
Random Consistency index (RC) as given in the following table:

Table 1. Random consistency indices.

n 1 2 3 4 5 6 7 8 9

Random
Consistency | 0 0 0.58 090 1.12 1.24 132 141 145
index (RC)

Each RC is an average random consistency index derived from a
sample of size 500 of randomly generated reciprocal matrices with
entries from the set {1/9, 1/8, 1/7, ..., 1,2, 3, ..., 7, 8, 9} to see if its CI is
0.10 or less.

2.3. Some Minimization Approaches

If the previous approach yields a CR greater than 0.10 then a re-
examination of the pairwise judgments is recommended until a CR less
than or equal to 0.10 is achieved.

Chu [2] observed that given the data a; the values W, to be estimated
are desired to have the property:
a;, ~ W/W, (5
This is true since a;; is meant to be the estimation of the ratio W;/W;.
Then, in order to get the estimates for the W; given the data a;;, they
propose the following constrained optimization problem:

n n
minimize S = ZZ(aijwj — W) (6)
i=1j=1
subject to:

n
YW, =1
i=1

W.>0 (= 123..n)

They also give an alternative expression, S;, that is more difficult to
solve numerically. That is,

n n
= 2
Sl - Zz(aij —w]/wl) (7)
i=lj=1
Federov, et al., in [6] proposed a variation of the above least squares
formulation. For the case of only one decision maker they recommend the
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following models:
lna”. =ani-an].+‘I’1(Wi,Wj)t:ij (8)
a,, = (W/W) + ¥ (W, W), )
Here W; and W; are the true (and unknown) membership values;
¥ (X,Z), ¥,(X,Z) are given positive functions (when X, Z > 0). The
random errors ¢,; are assumed independent with zero mean and variance
one. Using these two assumptions they are able to calculate the variance of

each individual estimated membership value. However, they do not propose
any way of selecting the appropriate positive functions.

2.4. The Human Rationality Factor

According to the Human Rationality Assumption (given by
Triantaphyllou, et al., in [28]) the decision maker is a rational person.
Rational persons are defined here as individuals who try to minimize their
regret [23], to minimize losses, or to maximize profit [33]. In the
membership evaluation problem, minimization of regret, losses, or
maximization of profit could be interpreted as the effort of the decision
maker to minimize the errors involved in the pairwise comparisons.

As it is stated in previous paragraphs, in the inconsistent case the
entry a; of the matrix A is an estimation of the real ratio W;/W;. Since it is
an estimation, the following is true:

a; = (Wy/W))d;; ij = 1,2,3,..n (10)

In the above relation d;; denotes the deviation of a;; from being an
accurate judgment. Obviously, if d; = 1 then the a; was perfectly
estimated. From the previous formulation we conclude that the errors
involved in these pairwise comparisons are given by:

5 = dij - 1.00
or (using (10), above):
g, = a;;(W/W) - 1.00 (11)

When a fuzzy set contains n elements, then Saaty’s method requires
the estimation of the following n(n-1)/2 pairwise comparisons:

(Wy/W)) (W1/W)) (Wy/W)) (WL/W))
(W3/W3) (Wy/W3) (W,/W5)
(W4/W3) (Wo/W3) (12)
(W,1/W,)

The corresponding n(n-1)/2 errors are (using relations (11) and

(12)):

&5 =2, (Wj/Wi) - 1.00 (13)
where: i,j = 1,2,...n
and j > i1

Since the W;’s are degrees of membership that add up to 1.00 the
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following relation (14) should also be satisfied:

n
Zwi =1.00 (14)
i=]
Apparently, since the W;’s represent degrces of membership we also
have: W; > 0 (i=1,2,3,..., n).
Relations (13) and (14), when the data are consistent (i.e., all the
errors equal to zero), can be written as follows:
BW=b% (15)
Above, the vector b has zero entries everywhere except the last one
that is equal to 1.00, and the matrix B has the following form (blank cntries
represent zeros):

1 2 3 4 S 6 7 .. n-l n
-1 a2 1
-1 a5 2
-1 214 3
2,01
-1 aj,| n-l
-1 a3 1
-1 a4 2
B= -l lv 3
a2n.1
-1 an| n-2
-1 agaf 1
1 1 1 1 1 1 1 1
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The error minimization issue is interpreted in many cases
(Regressmn Analysis, Linear Least Squares problem) as the
minimization of the sum of the squared errors [24].

In terms of the formulation (15) this means that in a real life
situation (i.e., errors are not zero any more) the real intention of the decision
maker is to minimize the expression:

£'(x) = [Ib — B Wi, (16)
which is, a typical Linear Least Squares problem!

If we use the notation described previously then the quantity (6) that is
minimized in Chu [2] becomes:

S = Y0 W= W= D) e W'

i=lj=1 i=lj=1
and the alternative expression (7) becomes:

n n n n

2 2

5= ZZ% — WyW) = ZZ( e;; (WilW)
i=1j=1 i=lj=1

Clearly, both expressions are too complicated to reflect in a reasonable
way the intentions of the decision maker.

The models proposed by Federov [6] are closer to the one developed
under the Human Rationality Assumption. The only difference is that
instead of the relations:

lnaij =IlnW- anl. + ¥ (W, W)e,,
= (Wi/Wj) + W (W, We,.
the following simpler expression is used:
a;, = (Wi/WJ.)dij
or:
= (W/W(e;, + 1.00) (17)
However as it is illustrated in [28], the performance of this method is
greatly dependent on the selection of the ¥ (X,Z) or ¥,(X,Z) functions and

now these functions are further modified by (17).

2.5. The Concept of the Closest Discrete Pairwise Matrix

The following forward error analysis is based on the assumption
that in the real world the membership values in a fuzzy set take on
continuous values. This assumption is a reasonable one since it attempts
to capture the majority of the real world cases.

Let w,, w,, w,, ..., o be the real (and thus unknown) membership

values of a fuzzy set with n members. If the decision maker knew the above
real values then he would be able to have constructed a matrix with
the real pairwise comparisons. In this matrix, say matrix A, the entries are
given by: o, = w /o, This matrix is called the Real Continuous Pairwise
matrix, or the RCP matrix [29]. Since in the real world the w,'s are

unknown so are the entries «; of the previous matnx. Howcver, we
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can assume here that the decision maker instead of the entries «; is able to

determine the closest values taken from the set {1/9, 1/8, 1/7, ..., 1, 2, 3, ...,
7, 8,9}. That is, instead of the real (and unknown) value «, one is able to
determine a;; such that:

a; = min {|a;; - x/yl}

where: x € {1/9, 1/8, 1/7, .. 1,2, 3, .., 7,8, 9)

In other words, one’s judgments about the values of the pairwise
comparisons of the ith element when it is compared with the j™ one, is so
accurate that in real life is the closest (in absolute value terms) to the values
one is supposed to choose from. Apparently, this assumption favors the
values of the failure rates derived in this paper. This fact indicates that
even the failure rates in this paper are smaller than the actual ones.

The matrix with entries the a;’s that we assume the decision maker is
able to construct, has entries from the discrete and finite set {1/9, 1/8, 1/7,
vy 1,2, 3, ..., 7, 8, 9} This matrix is called the Closest Discrete Pairwise
matrix or the CDP matrix.

The following example illustrates a case where we deal with a fuzzy set
with three members. The real membership values are assumed to be known.
Then, the RCP and CDP matrices are derived. When the error minimization
method is applied on this problem the resulted membership values are
significantly different than the real ones. More importantly, the ranking is
altered too, indicating a case where the error minimization method fails.

EXAMPLE

Let us assume that the real (and unknown) membership values, after
normalization, of a fuzzy set with three members are:
o, = 0.73207w, = 0.13366, and w, = 0.13427
Obviously, the corresponding ranking by magnitude of these members is:
py=1p,=3,and p;=2.

Then, the RCP (and unknown) matrix with the pairwise
comparisons is:
1 5.47735 5.45216

RCP = | 0.18257 1 0.99540

| 0.18341 1.00462 1

It can be verified with a simple exhaustive enumeration that the
corresponding CDP matrix is:
1 5/1 5/1
CDP=|1/51 5/5
1 1/5 5/5 1

This is the matrix we assume the decision maker has determined
for this example. Clearly, this is the best comparisons a decision

maker can make for the fuzzy set of this example.
The formulation (5) that corresponds to this example is:
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-1 5/t 0.0 0
-1 0.

0.0 5/5 wal = 0
00 -1 5/5 w3 0
1 1 1 1.0

The vector W that minimizes the above Least Squares is
calculated to be :
W = (0.71429 0.14286 0.14286)
and the corresponding ranking is: R, = I, R; = 2,and R; = 2.
Obviously, these results contradict the real membership values and
ranking of the members of the fuzzy set of this example.
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Figure 1.
Failure rates of the Error Minimization and Eigenvalue Method for
fuzzy sets of different order
(results are based on one thousand observations).
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3. ANALYSIS OF THE FAILURE RATES YIELDED BY THE ERROR
MINIMIZATION METHOD

The error minimization method was tested in a similar fashion to the
eigenvalue method tested in [28]. More specifically, random problems of
different sizes were generated and tested as in the above example. For each
such test problem real membership values were generated randomly from
the continuous interval (0, 1). However, because the Saaty matrices use
values from the set {1/9, 1/8, 1/7, .., 1, 2, 3, ..., 7, 8, 9} only the random
problems that had RCP matrices with entries within the continuous interval
[1/9, 9/1) were considered. The RCP matrix, with the real pairwise
comparisons was constructed, and after that the CDP matrix was
determined.

The error minimization and eigenvalue approaches then were applied.
Any contradiction between the real ranking and the ones derived by the
error minimization and the eigenvalue methods were recorded as failures.
Two kinds of ranking inconsistency were recorded. The first kind is
“ranking reversal”. For example, if the real ranking of a set of three
members is (1, 3, 2) and one method yields (1, 2, 3) then a case of a
ranking reversal occurs. The second kind is “ranking indiscrimination”.
For example, if the real ranking of a set of three members is (1, 3, 2) and
one method yields (1, 2, 2) then a case of ranking indiscrimination occurs.

.024 1
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020 1
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.0184
0 0.016 AVERAGE
3
O
> 012
o MIN

.0101
. 0081
.006 1
.004 1
.0021

0
0
0
0
0
0
0
0
0.014; PO
0
0
0
0
0
0
0

* ooo‘: 5= T T T T T T T T T Y
0 10 20 30 40 SO 60 70 80 90 100
Order of Set

Figure 2. ,
Maximum, Average, and Minimum CI values of random CDP matrices.
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This simulation approach was implemented in FORTRAN with the
appropriate IMSL subroutines. Problems of size 3,4,5,...,21 were considered.
For each case the number of random matrices generated was 1,000. This
number was large enough to ensure that the means converged to within a
small error tolerance. The failure rates for fuzzy sets of order: 3, 4, §,..., 21
are presented in Table 2 and depicted in Figure 1. In Figure 1 curves (a)
and (b) represent the total number of failures (adding ranking reversals
and ranking indiscriminations) yielded by the e:genvalue and error
minimization methods, respectively. Curves (c) and (d) give the number
of ranking reversals yxeldcd by the error minimization and eigenvalue
methods, respectively. It is important to note here that the CI values of the
previously generated CDP matrices are very small [30]. In particular, the
CI’s are less than 0.029 with an average value equal to 0.0145 (see also
Figure 2). These low CI values guarantee that the Dirichlet criterion, as
stated by Vargas [31], is satisfied.

Table 2. Failure rates of the Eigenvalue and Error Minimization Method for
fuzzy sets of different order (results are based on one thousand observations)

Eigenvalue Error
Minimization
Method Method
order | inversion total |inversion total
failure failure
of set rate rate rate rate
3 0.4 523 |04 52.3
4 1.1 583 |5.7 53.2
5 34 68.7 19.5 58.7
6 6.8 74.2 30.7 66.3
7 10.4 78.5 394 69.5
8 14.8 85.0 [47.6 75.1
9 19.4 90.3 |58.1 79.9
10 28.9 90.7 |[64.3 83.2
111 34.0 93.0 |73.1 85.6
12 42.4 949 |76.8 89.1
13 45.6 95.3 |80.1 89.8
14 56.0 96.9 |83.1 91.5
15 61.4 98.1 88.6 95.1
16 68.3 99.0 ]90.7 95.9
17 69.5 98.7 192.8 97.1
18 78.3 99.6 |93.9 97.3
19 81.7 99.4 [96.6 98.6
20 85.5 99.8 97.0 98.0
21 87.3 99.7 97.0 99.0
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Although the performance of the error minimization and eigenvalue
methods may change if a different set of values for pairwise comparisons is
considered, it is interesting to observe that a decision-maker always is
restricted to select from a finite set of choices. In 1846 Weber stated his law
regarding a stimulus of measurable magnitude. According to his law a
change in sensation is noticed if the stimulus is increased by a constant
percentage of the stimulus itself [20]. That is, people are unable to make
choices from an infinite set. For example, people cannot distinguish between
two very close values of importance, say 3.00 and 3.0l1. Psychological
experiments have also shown that individuals cannot simultaneously
compare more than seven objects (plus or minus two) [14]. This is the main
reason why Saaty uses 9 as the upper limit of his scale, 1 as the lower
limit of his scale and a unit difference between successive scale values.

n=3 n=4
n=$
1.21
n=g
1.01
n=7
0.8
Avergge
Residual
0.6
0.44
0.2
o‘o T T L} T
0.00 0.03 0.08 0.09 0.12 0.1%
Cl Value
Figure 3.

Average residual and CI versus order of fuzzy set when the
Eigenvalue Method is used
(results are based on one hundred observations).
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The findings in [29] and the present tests reveal that the failure rate for
the two methods increases with the number of members in the fuzzy set.
Table 2 presents the failure rates of both the eigenvalue and error
minimization methods when the above simulation approach was used. The
results suggest that the eigenvalue method yields, on the average, more
failures than the error minimization approach. However, the number
of ranking reversals is significantly higher with the error minimization
method. In Triantaphyllou, et. al [28], the two methods were evaluated
using a least squared residuals criterion. These results are given in Figures 3
and 4, as they appeared in [28]. Although the error minimization method
does better as far as the least squared residuals and the total number of
failures is concemned, it does poorly in terms of the number of ranking
reversals. Therefore, we cannot conclude that there is a single best method.

0.8
n=s 4
0.7 n=S$
ne3 n=§
) /n-7
0.5
Average "
Residual
0.3
0.2
0.1
0.0 . . . . ’
0.00 0.03 0.06 0.09 0.12 0.15
Cl Value
Figure 4.

Average residual and CI versus order of fuzzy set when the
Error Minimization Method is used
(results are based on one hundred observations).
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4. CONCLUDING REMARKS

In this paper we considered various techniques for estimating
membership values in fuzzy sets for real world problems when only one
decision-maker is involved. The forward error analysis presented here yields
a mechanism for testing the effectiveness of methods that evaluate
membership values in fuzzy sets when pairwise comparison matrices are used
as input data. The same analysis also reveals the magnitude of the problem
of correctly evaluating membership values. The error minimization
approach, with regard to the total number of failures (Figure 2), seems to be
more effective than the eigenvalue approach, though still yielding high failure
rates.

In the present paper the assumption is made that the decision-maker
deals with a CDP matrix. That is, at any moment the decision-maker is
able to determine a value from the set {1/9, 1/8, 1/7, ..., 1,23, ..., 7, 8, 9}
that is closest to the actual value (which in reality is unknown). The high
failure rates derived using the forward error analysis were based on the
above assumption which as described previously is biased in favor of the
methods. However, under real life conditions the decision-maker may not
deal with CDP matrices. This fact suggests that in real life situations the
possibility for ranking reversals or ranking indiscriminations is higher than
the already high values indicated by the findings of this paper. Since the
examined methods use information that comes solely from pairwise
comparisons, additional sources of information, such as order information
[32], may enhance the power of the pairwise comparison methods.
Currently, the high failure rates yielded by either approach in combination
with the importance of accurately evaluating membership values make the
need for developing more powerful approaches an urgent one.
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