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ESTIMATING DATA FOR MULTICRITERIA
DECISION MAKING PROBLEMS: OPTIMI-
ZATION TECHNIQUES
One of the most crucial steps in many multicrite-
ria decision making methods (MCDM) is the ac-
curate estimation of the pertinent data (18]. Very
often these data cannot be known in terms of ab-
solute values. For instance, what is the worth of
the ith alternative in terms of a political impact
criterion? Although information about questions
like the previous one is vital in making the cor-
rect decision, it is very difficult, if not impossible,
to quantify it correctly. Therefore, many decision
making methods attempt to determine the rela-
tive importance, or weight, of the alternatives in
terms of each criterion involved in a given decision
making problem.

Consider the case of having a single decision
criterion and a set of n alternatives, denoted as
A; (for i =1,...,n). The decision maker wants
to determine the relative performance of these al-
ternatives in terms of a single criterion. An ap-
proach based on pairwise COMparisons which was
proposed by T.L. Saaty [11], and [12] has long at-
tracted the interest of many researchers, because
both of its easy applicability and interesting math-
ematical properties. Pairwise comparisons are used
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to determine the relative importance of each alter-
native in terms of each criterion.

In that approach the decision maker has to ex-
press his/her opinion about the value of one single
pairwise comparison at a time. Usually, the deci-
sion maker has to choose his/her answer among
10-17 discrete choices. Each choice is a linguistic
phrase. Some examples of such linguistic phrases
when two concepts, A and B are considered might
be: ‘A is more important than B’, or ‘A is of the
same importance as B’, or ‘A is a little more im-
portant than B’, and so on. When one focuses di-
rectly on the data elicitation issue one may use lin-
guistic statements such as ‘How much more does
alternative A belong to the set S than alternative
B’?

The main problem with the pairwise compar-
isons is how to quantify the linguistic choices se-
lected by the decision maker during the evalua-
tion of the pairwise comparisons. All the meth-
ods which use the pairwise comparisons approach
eventually express the qualitative answers of a de-
cision maker into some numbers.

Pairwise comparisons are quantified by using
a scale. Such a scale is nothing but an one-to-
one mapping between the set of discrete linguis-
tic choices available to the decision maker and
a discrete set of numbers which represent the
importance, or weight, of the previous linguistic
choices. There are two major approaches in de-
veloping such scales. The first approach is based
on the linear scale proposed by Saaty [12] as part
of the analytic hierarchy process (AHP). The sec-
ond approach was proposed by F. Lootsma 8], [9],
[10] and determines ezponential scales. Both ap-
proaches depart from some psychological theories
and develop the numbers to be used based on these
psychological theories. For an extensive study of
the scale issue, see [18] and [19].

In this article we examine three problems re-
lated to the use of pairwise comparisons for data
elicitation in MCDM. The first problem is how to
combine the n(n — 1)/2 comparisons needed to
compare 1 entities (alternatives or criteria) un-
der a given goal and extract their relative prefer-
ences. This subject was extensively studied in [21]
and it is briefly discussed in the second section.
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The second problem in this article is how to esti-
mate missing comparisons. The third problem is
how to select the order for eliciting the compar-
isons and determine whether all comparisons are
needed. These problems are examined in detail in

the following sections.

Extraction of Relative Priorities from Com-
plete Pairwise Matrices. Let A1,...,An ben
alternatives (or criteria or, in general, concepts)
to be compared. We are interested in evaluat-
ing the relative preference values of the above
concepts. Saaty (11], [12], [14] proposed to use
a matrix A of rational numbers taken from the
set {1/9,1/8,1/7,...,1,... ,9}. Each entry of the
above matrix A represents a pairwise judgment.
Specifically, the entry aij denotes the number that
estimates the relative preference of element A;
when it is compared with element A;. Obviously,
ai; = 1/aj and @i = 1. That is, the matrix is

reciprocal.

The Eigenvalue Approach. Let us first examine the §
case in which it is possible to have perfect values §
a;;j. In this case it is aij = Wi /W; (W denotes 3
the actual value of element s) and the previous 3
reciprocal matrix A is consistent. That is: 3

aij = ik X Qkj fori,j,k=1,...,m, (1) §

where n is the number of elements in the compari- §
son set. It can be proved [12] that the matrix A has’
rank 1 with n to be its nonzero eigenvalue. Thus,§

we have:
Az = nz,

where z is an eigenvector. From the fact th
a;j = Wi/Wj, the following are obtained: 1

AW = nW.

Equation (4) states that n is an eigenvalue O
with W being a corresponding eigenvector: ".'”‘
same equation also states that in the perfectly (gl
sistent case (i.e., when aij = Gik X Gkj for all DO
ble triplets), the vector W, with the relativ



non) the pairwise comparisons are not perfect,
‘ "is, the entry a;; might deviate from the real
Wi/W;j (i-e., from the ratio of the real rela-
reference values W; and W;). In this case, the

£}

ent case. When the entries a;; change slightly,
‘ﬁ"the eigenvalues change in a similar fashion
). Moreover, the maximum eigenvalue is close
(actually greater than n) while the remain-
‘elgenvalues are close to zero. Thus, in order to
ﬁnd the relative preferences in the nonconsistent
' ases, one should find an eigenvector that corre-
bhds to the maximum eigenvalue Apax. That is
to say, to find the principal right eigenvector W
that satisfies:

AW = ApaxW  where Apax = n.

Saaty estimates the principal right eigenvector W
* by multiplying the entries in each row of A to-
* gether and taking the nth root (n being the num-
ber of the elements in the comparison set). Since
we desire to have values that add up to 1, we nor-
malize the previously found vector by the sum of
the above values. If we want to have the element
with the highest value to have a relative preference
value equal to 1, we divide the previously found
vector by the highest value.

Under the assumption of total consistency, if
the judgments are gamma distributed (something
that Saaty claims to be the case), the principal
right eigenvector of the resultant reciprocal ma-
trix A is Dirichlet distributed. If the assumption
! of total consistency is relaxed, then L.G. Vargas
- [23] proved that the hypothesis that the principal
right eigenvector follows a Dirichlet distribution is
accepted if the consistency ratio is 10% or less.

The consistency ratio (CR) is obtained by first
estimating Apax. Saaty estimates Apax by adding
the columns of matrix A and then multiplying the
resulting vector with the vector W. Then, he uses
what he calls the consistency indez (CI) of the
matrix A. He defined CI as follows:

CI = )\max —n

n—1

Then, the consistency ratio CR is obtained
by dividing the CI by the random consistency
index (RCI) as given in table 1. Each RCI is
an average random consistency index derived
from a sample of size 500 of randomly gener-
ated reciprocal matrices with entries from the
set {1/9,1/8,1/7,...,1,...,9} to see if its CI is
10% or less. If the previous approach yields a CR
greater than 10%, then a reexamination of the
pairwise judgments is recommended until a CR
less than or equal to 10% is achieved.

Optimization Approaches. A T.W. Chuy, R.E. Kal-
aba and K. Spingarn [2] claimed that given the
data a;j, the values W; to be estimated are desired
to have the property:
Wi
7 (5)
This is reasonable since a;; is meant to be the
estimation of the ratio W;/W;. Then, in order to
get the estimates for the W; given the data a;j,
they proposed the following constrained optimiza-
tion problem:

{ n n
min S = g E (ai;wj — w;)?,
i=j j=i

s.t. iWi =1, (6)

az; =

W; >0 fori=1,...,n

\
They also provide an alternative expression S;
that is more difficult to solve numerically. That
is,

n n
Su= > (ai; = W;/Wi)*. (7)

i=j j=i
In [3] a variation of the above least squares for-
mulation is proposed. For the case of only one de-
cision maker it recommends the following models:

log a;j = log W; — log Wj + 7,/)2(Wi, Wj)Ei]’, (8)

. W
aij = 37 + YW, Wj)ei, (9)

j
where W; and W; are the true (and hence
unknown) relative preferences; ¥;(X,Z) and
1¥2(X,Z) are given positive functions (where
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(m |t 2 3 4 O

RCI|0 0 058 0.90 112 124 132 141 1.45

Table 1: RCI values for sets of different order n [12].

X,Z > 0). The random errors g;; are assumed in-
dependent with zero mean and unit variance. Us-
ing these two assumptions one is able to calculate
the variance of each individual estimated relative
preference. However, is fails to give a way of se-
lecting the appropriate positive functions. In the
second example, presented later, a sample problem
which originates in [11] and later in [3] is solved for
different functions 91, %2 using this method.

Considering the Human Rationality Factor. Ac-
cording to the human rationality assumpiion [21]
the decision maker is a rational person. Rational
persons are defined here as individuals who try to
minimize their regret [15], to minimize losses, or
to maximize profit [24]. In the relative preference
evaluation problem, minimization of regret, losses,
or maximization of profit could be interpreted as
the effort of the decision maker to minimize the
errors involved in the pairwise comparisons.

As it is stated in previous paragraphs, in the in-
consistent case the entry ai; of the matrix A is an
estimation of the real ratio Wi JW;. Since it is an
estimation, the following is true:

a;; = (%) dij, i,j=1,...,m (10)

In the above relation d;; denotes the deviation of
a;; from being an accurate judgment. Obviously,
if dj; = 1, then the a;; was perfectly estimated.
From the previous formulation we conclude that
the errors involved in these pairwise comparisons
are given by:

Eij = dij - 1.00,

or after using (10), above:

€45 = Q45 (%> — 1.00. (11)

When a comparison set contains n elements, then

Saaty’s method requires the estimation of the fol-

lowing n{n — 1)/2 pairwise comparisons:
W, Wa

R s T 12
Wi W, (12)

6 7 8 9

Wn—-l
Wn

The corresponding n(n — 1)/2 errors are (after us-
ing relations (11) and (12)):

Eij = aij (-I%//l) - 1.00, (13)

)

,j=1...,m and j > 1.

Since the W; are relative preferences that add up
to 1, the following relation (14) should also be sat-
isfied:

n
S wi =100 (14)
i=1

Apparently, since the W; represent relative prefer-
ences we also have:

W,>0, i=1,...,n (15)

Relations (13) and (14), when the data are consis-
tent (i.e., all the errors are equal to zero), can be 1}
written as follows:

BW =b. (16)

The vector b has zero entries everywhere except |
the last one that is equal to 1, and the matrix B }
has the following form (blank entries represent z€- §

ros):

(1 2 3 n ]
-1 al2 1
-1 ais 2
-1 ain T 1
B = -1 a23 1
-1 az2n n-— 2
an—-1,n 1
1 1 1 1 )




The error minimization issue is interpreted
many cases (regression analysis, linear least
Bquares problem) as the minimization of the sum
Fof squares of the residual vector: 7 = b— BW [16].
o orms of formulation (15) this means that in a
éal life situation (i.e., when errors are not zero
a‘:hy more) the real intention of the decision maker

j 35 to minimize the expression:

@) =lIb-BWI, (17)

|- which, apparently, expresses a typical linear least
b Squares problem.

B © 1f we use the notation described previously, then
| the quantity (6) whichis minimized in {2] becomes:

S = Zz(aijwj SAEDY Z(é'ijWi)z

i=1 j=1 i=1 j=1

and the alternative expression (7) becomes:

n n W 2 n n W 2
5= <a,-j_ﬂ) B (eijﬂl) |
i=1 j=1 Wi i=1 j=1 W;
Clearly, both expressions are to0 complicated to
reflect, in a reasonable way, the intentions of the

decision maker.

The models proposed in [3] are closer to the one
developed under the human rationality assump-
tion. The only difference is that instead of the re-

lations:
log aij = log w; — log Wj + (Wi, Wj)&iij

and

W, )
aij = ﬁ,—l + o (Wi, Wj)eid,

j
the following simpler expression is used:
Wi

% = 3 (18)

dij,

or
W,
Wé x (€45 + 1.00).

However, as the second example illustrates, the
performance of this method is greatly dependent
on the selection of the ¥1(X, Z) or ¥2(X, Z) func-
tions. Now, however, these functions are further

modified by (17).

ExAMPLE 1 Let us assume that the following is
the matrix with the pairwise comparisons for a set

of four elements:

aij =

1 2/1 1/5 1/9
12 1 1/8 1/9
5/1 8/1 1 1/4
9/1 9/1 4/1 1
Using the methods presented in previous sections

we can see that

A=

Amax = 4.226;
4.226 — 4
Cl= ——=00
1-1 0.053,
CI

CR = 090 ~ 0.0837 < 0.10.

The formulation (15) that corresponds to this ex-
ample is as follows:

-1 2/1 0.0 0'\ '0}
-1 00 1/5 0 v 0
1 00 0 1/9 Vl 0
00 -1 1/8 0| X V2 =10
00 -1 0 1/9 V“ 0
00 00 -1 1/4 4 0
1 1 1 1 1.0

The vector V that solves the above least squares
problem is calculated to be:

V = (0.065841 0.039398 0.186926 0.704808).

Hence, the sum of squares of the residual vec-
tor components is 0.003030. The average squared
residual for this problem is 0.003030/((4(4 —
1)/2) + 1 = 0.000433; that is, the average resid-
ual is v/0.000433 = 0.020806. il

EXAMPLE 2 The second example uses the same
data used originally in [11], and later in [2] and
[3]. These data are presented in Table 2.

o @ 6B @ 6 6 O
M1 4 9 6 6 5 5
2|14 1 7 5 5 3 5
@19 17 1 15 1/5 17 1/5
@lie 15 5 1 1 13 1/3
Gylie 15 5 1 1 1/3 1/3
© |15 1/3 7 3 3 1 2
(|15 14 5 3 3 /2 1

Table 2: Data for the second example.

Table 3 presents a summary of the results (as
found in the corresponding references) when the
methods described in the subsections above are
used. The power method for deriving the eigenvec-
tor was applied as presented in [7]. In the last row
of Table 2 are the results obtained by using the
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least square method under the human rationality
assumption (HR).

As it is shown in the last column of Table 3, the
performance of each method is very different as far
the mean residual is concerned. The results also il-
lustrate how critical is the role of the functions
¥1(X, Z) and ¢2(X, Z) in the method of {3]. The
mean residual obtained by using the least squares
method under the human rationality assumption
is the smallest one by 16%. O

Matrices with Missing Comparisons. For
one to evaluate m concepts, normally all the re-
quired n(n—1)/2 pairwise comparisons are needed.
However, for large numbers of concepts to be
compared, the decision maker may become quite
bored, tired and inattentive with assigning the val-
ues to the comparisons as time is going on, which
may easily lead to erroneous judgments. Moreover,
the time spent to elicit all the comparisons for a
judgment matrix may be unaffordable. Also the
decision maker may not be sure about the values of
some comparisons and thus may not want to make
a direct evaluation of them. In cases like the previ-
ous ones, the decision maker may wish to stop the
process and then try to derive the relative pref-
erences from an incomplete pairwise comparison
(judgment) matrix.

Given an incomplete pairwise comparison ma-
trix, there are two central and closely interrelated
problems. The first problem is how to estimate
the missing comparisons. The second problem is
which comparison to evaluate next. In other words,
if the decision maker wishes to estimate a few
extra comparisons (from the remaining undeter-
mined ones) how should the next comparison be
selected? Should it be selected randomly or ac-
cording to some rule (to be determined)? Next,
we study the first of these two closely related prob-
lems.

Estimating Missing Comparisons.

Using Connecting Paths. Suppose that X;; is a
missing comparison to be estimated. Next, also as-
sume that there are two known comparisons a;
and ay ; for some index k. In the perfectly consis-
tent case the following relationship should be true:

Xi’j = QK X ag ;-

In the more general inconsistent case, the X ;
value can be approximated by the product a; x
ak,j. In [5], and [6] the pair a; x and ay; is called an
elementary connecting path connecting the missing
comparison Xj; ;. Obviously, given a missing com-
parison, more than one such connecting path may
exist (i.e., if there are more than one k indexes
which satisfy the above relationship). Moreover, it
is also possible to have connecting paths comprised
by more than two known comparisons (i.e., paths
of size larger than 2). The general structure of a
connecting path of size r, denoted as CP,, has the
following form:

CP,: Xij=ajr1 X ak1,k2 X X Qkrjs

for¢,7,kl,...,kr=1,...,n,1<r<n—-2.

According to P.T. Harker [5], [6] the value of
the missing comparison X;; should be equal to
the geometric mean of all connecting paths related
to this missing comparison. That is, the following
should be true:

In the previous expression it is assumed that there
are ¢ such connecting paths. For the above rea-
sons, this method is known as the geometric mean
method for estimating missing comparisons.

A method alternative to the geometric means
method is to express the missing comparisons in
terms of the arithmetic averages of all related con-
necting paths and some error terms. In this way,
one can also introduce error terms on consistency
relations which are defined on pairs of missing
comparisons (for more details, please see [1]). A
natural objective then, could be to minimize the
sum of the absolute terms of all these error terms 4
(which can be of any sign). That is, the above |
consideration leads to the formulation of a linear j
programming (LP) problem. A similar approach is §
presented in [17] (in which the path problem does
not occur). ]

However, there is a serious drawback with any '-
method which attempts to use connecting paths- §
The number of connecting paths may be astronom'h
ically large, rendering any such method computa'.:,‘




developed. The revised geometric means method
(or RGM) method and a least squares formulation
are two such methods and are discussed next.

Revised Geometric Mean Method (RGM). An al-
ternative approach to the use of connecting paths,
iIs to convert the incomplete judgement matrix
mto a transformed matrix and then determine its
principal right eigenvector. This was proposed by
Harker [4] and it is best illustrated by means of an
example.

Suppose that the following is an incomplete
judgement matrix of order 3 (taken from [4]).

1 2 -
A= (1/2 1 2
- 1/2 1

One can replace the missing elements (denoted by
~) by the corresponding ratios of weights. There-
fore, the previous matrix becomes:

1 2 wi/ws
A = 1/2 1 2
’U)3/’LU1 1/2 1

That is, the missing comparison X 1,3 was replaced
by the ratio w; /w3 (similar for the reciprocal en-
try X31). Next observe that the product A;W is
equal to:

elements in set
method used (1) (2) (3) (4) (5) (6) (7)  Ave. residual
Saaty eigenvector method 0.429 0.231 0.021 0.053 0.053 0.119 0.095 0.134
Power method eigenvector 0.427 0.230 0.021 0.052 0.052 0.123 0.094 0.135
Chu’s method 0.487 0.175 0.030 0.059 0.059 0.104 0.085 0.097
Federov model 1 with P11 =1 0.422 0.232 0.021 0.052 0.052 0.127 0.094 0.138
Federov Model 2 with v, = 1 0.386 0.287 0.042 0.061 0.061 0.088 0.075 0.161
Federov. Model 2 with Y2 = 10383 0262 0.032 0.059 0.059 0.122 0.083 0.152
Wi — Wji
Federov Model 2 with vy, = Wi/W; 0.047 0.229 0.021 0.051 0.051 0.120 0.081 0.130
Least squares method under the HR | 0.408 0.147 0.037 0.054 0.054 0.080 0.066 0.082
assumption
Table 3: Comparison of the relative preferences for the data in Table 2.
tionally intractable. For instance, for a comparison 1 2 wp/ws] [wy
matrix of dimension of six, the number of possible AW = | 1/2 1 2 wo
connecting paths to be considered might be equal ws/wy  1/2 1 w3
to 64, while in a case of dimension equal to ten, the
2wy + 2wy
number of paths may become equal to 109, 600. As = |w1/2 + wy + 2w
a result, some alternative approaches have been s 2 3
w2/2 + 2ws

The same result can also be obtained if one con-
siders the matrix C, given as follows:

2 2 0
c= |12 1 2f,
0 1/2 2

that is, matrix C satisfies the relationship
AW =CW.

Therefore, the desired relative preferences (i.e., the
entries of vector W) can be determined as the prin-
cipal right eigenvector of the new matrix C. This
is true because:

AW =CW = 2W.

In general, the entries of matrix C can be deter-
mined from the entries of an incomplete judgement
matrix Ag as follows (where ¢ij and a; ; are the el-
ements of the matrices C' and Ay, respectively):

cii=1+m;

and for 1 # j:

ai)j
ci)j =
0

where m; is the number of unanswered questions in
the ith row of the incomplete comparison matrix.

ifa; j is a positive number,

otherwise,
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Next, the elements of the W vector can be de-
termined by using one of the methods presented
in the second section.

Least Squares Formulation. This formulation is a
natural extension of the formulation discussed ear-
lier in the section on the HR factor. The only differ-
ence is that in relations (12) one should only con-
sider known comparisons. This, as a result, implies
that the new matrix B (as defined earlier) should
not have rows which would correspond to missing
comparisons. Finally, observe that in order to solve
the least squares problem given as (16), one has to
calculate the vector W as follows:

W = (B"B)"'B'b,

where BT stands for the transpose of B.

In [1] the revised geometric means and the pre-
vious least squares method were tested on ran-
dom problems. First, a complete judgment matrix
was determined. These matrices, in general, were
slightly inconsistent. They were derived according
to the procedures used in (22}, [20], and (19]. Then,
some comparisons were randomly removed and set
as missing. Then, the previous two methods were
applied on the incomplete judgment matrix and
the missing comparisons were estimated. The es-
timated matrix was used to derive a ranking of
the compared entities. This ranking was compared
with the ranking derived when the original com-
plete judgment matrix is used. In these compu-
tational experiments it was found that the two
estimation methods for missing comparisons per-
formed almost in a similar manner. This manner
was different for matrices of different order and
various percentages of missing comparisons. More
details on these issues can be found in [1].

Determining the Comparison to Elicit Next.
Suppose that the decision maker has determined
some of the n(n — 1)/2 comparisons when a set
of n entities is considered for extracting relative
preferences. Next assume that the decision maker
wishes to proceed with only a few additional com-
parisons and not determine the entire judgment
matrix. The question we examine at this point is
which ones the additional comparisons should be.
To be more specific, the question we consider is

best stated as follows: Given an incomplete judg-
ment matrix, and the option to elicit just some
additional comparisons, then which one should be
the comparison to elicit next?

One obvious approach is to select the next com-
parison just randomly among the missing ones.
This problem was examined by Harker in [5] and
[6]. Harker focused his attention on how to deter-
mine which comparison, among the missing ones,
is the most critical one. He determined as the most
critical one, to be the comparison which would
have the largest impact (when the appropriate
derivatives are considered) on the vector w.

He observed that the largest absolute gradi-
ent (i.e., the largest partial derivative) means that
a unit change of the specific missing comparison
brings out the biggest change on the vector W.
Therefore, he asserted, that the missing compari-
son related to the largest absolute gradient should
be the most critical one and therefore, the one to
evaluate next. Then, the following formula calcu-
lating the largest absolute gradient can be used to

choose the most critical comparison index (,7): 1‘
dz(A
(i) = arg max || 22 )” ,
(k,)eQ 8k11 oo

where Q is the set of missing comparisons and
ll'loo is the Tchebyshev norm. The most critical
comparison index (3, ) is determined by the max-
imum norm of the vector of 8z(A)/0k which cor-
responds to all missing comparisons. :

The previous approach is intuitively plausible 4
but computationally non trivial. Moreover, its ef- §
fectiveness had not been addressed until recently. §
In [1] Harker’s derivatives approach was tested 4
versus a method which randomly selects the next 1
comparison to elicit. The test problems were gen- 1
erated similarly to the ones described at the end
of the previous section. The two methods wer?;
also tested in a similar manner as before. To oury
surprise, the two methods performed in a similarg
manner. Therefore, the obvious conclusion is that,
one does not have to implement the more com-
plex derivatives method. It is sufficient to selech
the next comparison just randomly. Of course, t}}
more comparisons are selected, the better is for
the accuracy of the final results. Since the Ol‘,t’i
of comparisons seems not to have an impact, 4 :



F pest strategy is to select as the next comparison
the one which is easier for the decision maker to

 elicit.

E Conclusions. Deriving the data for MCDM prob-
F lems is an approach which requires trade-offs.
g Thus, it should not come as a surprise that op-
' timization can be used at various stages of this
i crucial phase in solving many MCDM problems.
| The previous analysis of some key problems signi-
- fies that optimization becomes more critical as the
f cize of the decision problem increases.

Finally, it should be stated here that an in depth
analysis of many key issues in multicriteria deci-
sion making theory and practice is provided in [18].

See also: Multi-objective optimization:
Pareto optimal solutions, properties; Multi-
objective optimization: Interactive meth-
ods for preference value functions; Multi-
objective optimization: Lagrange dual-
ity; Multi-objective optimization: Interac-
tion of design and control; Outranking
methods; Preference disaggregation; Fuzzy
multi-objective linear programming; Multi-
objective optimization and decision sup-
port systems; Preference disaggregation ap-
proach: Basic features, examples from fi-
nancial decision making; Preference model-
ing; Multiple objective programming sup-
port; Multi-objective integer linear pro-

gramming; Multi-objective combinatorial
optimization; Bi-objective assignment prob-
lem; Multicriteria sorting methods; Finan-
cial applications of multicriteria analysis;
Portfolio selection and multicriteria analy-
sis; Decision support systems with multiple
criteria.
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EVACUATION NETWORKS

Planning and design of evacuation networks is
both a complex and critically important optimi-
zation problem for a number of emergency situa-
tions. One particularly critical class of examples
concerns the emergency evacuation of chemical
plants, high-rise buildings, and naval vessels due
to fire, ezplosion or other emergencies. The prob-
lem is compounded because the solution must take
into account the fact that human occupants may
panic during the evacuation, therefore, there must
be a well-defined set of evacuation routes in order
to minimize the sense of panic and at the same
time create safe, effective routes for evacuation.
The problem is a highly transient, stochastic, non-
linear, combinatorial optimization programming

problem. We focus on evacuation networks where
congestion is a significant problem.

Introduction. Evacuation is one of the most per-
ilous, pernicious, and persistent problems faced by
humanity. Hurricanes, fires, earthquakes, explo-
sions and other natural and man-made disasters
happen on almost a daily basis throughout the
world. How can we safely evacuate a collection of
occupants within an affected region or facility is
the fundamental problem faced in evacuation.

Purpose. The purpose of this article is to both in-
troduce to the reader the problem of evacuation
and its manifest nature, and also suggest some
alternative approaches to optimize this process.
That life-threatening evacuations happen as often
as they do is somewhat surprising. That people of-
ten do not know how to safely evacuate in time of
need is a sad reality. That people must help people
plan for evacuation is one of the most important
activities of a research scientist.
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Fig. 1: Processes for an evacuation.

S

Outline. In this article we first introduce the prob
lem in Section 1 and then describe our funda-

mental modeling 3-step methodology in Section 2'./
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