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OPTIMIZATION IN CLASSIFYING TEXT
DOCUMENTS by, Tejautaehsllou et ad.
From the 1950s onwards, the search for comput-
erized tools and mathematical models that can
speed up the classification of large collections of
documents has been the focus of many research

efforts. These efforts have been centered in devel-
oping tools that can speed up the classification of
documents according to some underlying context.
A current example of this situation is the Internet.
In this worldwide conglomerate of databases, one
can easily see the speed at which documents on the
topic, say, ‘basketball’ are retrieved from among
the millions of documents produced daily on the
Internet. Document classification is also of para-
mount importance in many information retrieval
applications, such as news routing [7], classifica- 4
tion/declassification of official documents [15] e- 4
mail filtering [27], and context derivation of elec- 4
tronic meetings [3].
From the 1950s onwards, various fields of the
human knowledge have produced several solutions
for the document classification problem (see, for E
example, [23], [21], and [2]). Some examples of ‘
these fields are mathematical optimization, com-
putational linguistics, expert systems, neural net-
works, and genetic algorithms. These methodolo-
gies have been severely limited to some degree by
the huge amounts of information, both textual and
graphical, generated by today’s information driven:»
society. On the other hand, this ‘technological’ lim-§
itation has been the boost for the development
of more efficient and effective classification proc
dures [15].
The purpose of this article is to exhibit some€
contributions of discrete optimization during
process of automatic document classification. T“‘
paper illustrates these contributions by presentin®
three cases (application areas) in which optim
tion is used in the classification process. The
case deals with a generic procedure for the ??1
tion of a set of indezing terms (keywords or coft
descriptors). The second case deals with the
tion of an optimal set of indexing terms to
mize the overlapping of keywords used in diffe
documents. The last case deals with the Cl
cation of text documents from mutually ex 13
classes. These three cases are only a tiny 8
of a vast collection of related instances in th ‘
of information retrieval systems; see [11], ” s
[25] for additional literature.
This article is organized as follows. T v
section presents an overview of the documeéiy
sification process. The subsequent section Il
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T s the three application areas in which optimi-
n has contributed in the solution of the clas-
E: on problem. Finally, a summary section is

¥ rview of Automatic Classification of
cuments The automatic classification of text
.uments consists of grouping documents of simi-
: context into meaningful groups in order to facil-
" te their storage and retrieval [22]. Text classifi-
zon can be viewed as a four-step process. In the
first step, a representative sample of documents
,.‘. various classes is presented to a computer-
W 'd system, and a hst of the co-occurring words

9] and [4)).

. " In the second step the frequency of the words is
alyzed, and only the most ‘meaningful’ words
are extracted as indexing terms (keywords or
ébntext descriptors) [14]. The ‘meaningful’ words
for keywords are the words with moderate co-
foccurring frequencies. H.P. Luhn [13], G. Salton
[21 D. Cleveland and A.D. Cleveland [4], and
 Ch. Fox (6] suggest the elimination of the ‘com-
¥ mon’ and ‘rare’ words (i.e., frequent and infre-
] _quent words, respectlvely) as indexing terms be-
cause they convey little lexical meaning. Some ex-

‘an’, ‘and’, and

¢ amples of common words are ‘a’,
F ‘the’ [6]; ‘rare’ words are dependent on the docu-
f ment’s subject [13].

In the third step the context of unclassified doc-
E uments is determined by affixing them with the
keywords that occur in their text. According to
- [4], ‘the assignment of these keywords to a doc-
£ ument is correct because authors usually repeat
f' words that conform with the document’s subject’.
f Finally, the documents which were indexed with
similar keywords are grouped together [22].

The set of keywords attached to each document
during the third step is often referred to as a doc-
ument surrogate or just a document [4]. A sur-
k. rogate is a convenient way to represent and to
f'{ computationally process the context of real docu-
ments. For instance, the surrogate of seven words

1
‘document indexing’,

{‘document classification’,
‘optimization’, ‘vector space model’, ‘logical anal-
ysis approach’, ‘OCAT algorithm’, and ‘machine
learning’} is a condensed and convenient way to

represent the context of this article which contains
thousands of words, symbols, and numbers.
Often, a surrogate is further simplified by defin-
ing it as a binary vector. (For nonbinary surro-
gates, see [22].) In this case, when a surrogate’s
element w;; = 1 (or 0), it indicates the presence
(or absence) of keyword T; (i = 1,... ,t) in docu-
ment D; (j = 1,...,N). For example, the surro-
gate Dy = [011110] of six binary elements indicates
the presence of keywords T, T3, Ty, and Ts and
the absence of keywords Ty and Tg in Dy. Fig. 1
shows a popular way to summarize a collection of
N documents (surrogates) which are defined on t

[22):

Ty T;
D, w11 wiy
Dy WN1 - WNt

Fig. 1: A collection of N surrogates.

In the last step, documents sharing similar key-
words are grouped together. This classification fol-
lows from the pairwise comparison of the surro-
gates in Fig. 1 [22]. More on this is described in
the following section.

Examples of Optimization in Document
Classification. Optimization techniques have
been used in various areas of text classification
with various levels of success. Their utilization
has been limited mainly because the size of the
document classification problem is so large that
even with the current computerized technologies,
it would take them very long time to produce an
optimal solution. Despite these technological lim-
itations, the contributions of optimization in this
field can be seen, for example, in the selection of
keywords, automatic classification of documents,
automatic retrieval, etc. Some applications of these
techniques are presented next.

The first example illustrates the principle of
least effort [29]. This principle is used for the
derivation of an indexing vocabulary based solely
on the frequency of the co-occurring words in a
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collection of documents. The second example il-
lustrates the application of the vector space model
(23] for the derivation of an optimal indexing vo-
cabulary to minimize the overlapping of keywords
used by different documents. The third example il-
lustrates the utilization of a machine learning and
operations research algorithm called the one clause
at a time (OCAT) algorithm [28] for the classifi-
cation of documents which belong to mutually ex-

clusive classes.

Optimization in the Principle of Least Effort. The
principle of least effort (PLE) can be viewed as
one of the first optimization attempts in the area
of document classification. It was introduced by
H.P. Zipf [29]. Although the PLE does not have
a strict mathematical formulation, the problem it
solves can be stated as follows. Given a collection
of documents, the question is how to derive the
‘best’ set of indexing terms that will be used to
identify the subject of documents in the collection.
The set of the best indexing terms (or keywords)
is often referred to as indezing vocabulary (see, for
example, [4]). Hence, the goal of the PLE is to de-
rive an optimal indexing vocabulary with the most
meaningful words occurring in these documents.

Under the PLE an indexing vocabulary is de-
rived as follows. At first all the co-occurring words
and their frequencies are extracted from the collec-
tion of documents. Then, these words are ranked
in descending order according to their frequen-
cies. Finally, the words with frequencies in be-
tween some preestablished upper and lower fre-
quency limits are selected as the indexing vocab-
ulary. The frequency boundaries of the meaning-
ful words are determined by a trial-and-error ap-
proach [13]. Other words with co-occurring fre-
quencies above or below the preestablished limits
are known as ‘common’ and ‘rare’ words (the fre-
quent and infrequent words, respectively) and usu-
ally are discarded for indexing purposes because
they convey little lexical meaning (see, for exam-
ple, [13] and [6]).

It is interesting to notice here that although the
PLE does minimize the number of keywords, its
unwise utilization may jeopardize the quality of
the indexing vocabulary. This can be illustrated
by considering the word ‘a’. The word ‘a’ is one o

the most common words in the English language -
(other such words are ‘an’, ‘and’, and ‘the’; see, :
for example, [6]). Thus, if the collection of docu-
ments is about nutrition, then ‘a’ may represent :
the name of the vitamin ‘a’ or ‘A’, and its elimi- #
nation clearly would jeopardize the quality of the
indexing vocabulary.

Optimization in the Vector Space Model. One of "q‘

the most successful models in information retrieval

systems is the vector space model (VSM). It was é
introduced in the mid 1970s in [23]. The VSM 2
solves problems of the following nature: Given are *’é
samples of documents. Then, the question here is z
how to derive an optimal indexing vocabulary such §
that keywords used in one document are minimally
used in other documents. In [23], the VSM was
also extended to determine a vocabulary that min-
i mizes the overlapping of keywords used in diﬁer-éi

ent classes. That is, keywords used in documentsv;_%
belonging to one class are minimally used in other 3

classes. :

The VSM derives this optimal vocabulary as fol-:
lows. At first, a sample of ¢ words is taken from all
the words co-occurring in a collection of N docﬂ-:’
ments. This sample of words is used as a candidatr_ég
indexing vocabulary. Then, all documents in the
collection are indexed (their subject is defined) by.
using words from this candidate vocabulary. Doci}-
ment surrogates are formed in this step. Next, ’th"e-
VSM computes the simalarity of all the sur'rogaf
in the collection according to

)

N
F =) sim(Di,Dj)
i=1
for j=2,...,N and i FJ

[

Dis

Where sim(D;, Dj) measures the similarity
tween documents D; and Dj. Usually, sim(D
is replaced by a function that relates any two
tors, such as the functions illustrated in Table
This procedure is repeated by using various '
date vocabularies. Finally, the candidate V?{
lary that minimizes the expression in (1) iss C S
as the optimal indexing vocabulary [23]- T ‘t"‘
lowing example illustrates an application OLE
VSM with binary surrogates. The cosine coelilg
is used to solve (1).
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| X| = number of terms in | X|.

|X N Y| = number of terms appearing jointly in X and Y.

Table 1: Measures of vector similarity (taken from [22, Chap. 10}.

EavpLs 1 Let the words T,..., Ty be the set
(. “all the words which were found in documents
1 and Ds. (In real practice, this set may con-
am hundreds or even thousands of words.) Next,
et D; and D, be indexed with only four of these
words Hence, the question here is: what is the
‘7 ‘optimal’ indexing vocabulary of four words that
‘make document D; to be indexed with keywords
:that are minimally used by Dy?

L It is not difficult to realize that the number of
andidate vocabularies of four words that can be
k formed out of seven words is equal to (Z) = 35.
¥ Table 2 shows the similarities between D; and Dy
; for only three vocabularies. The first column of
b this table shows these vocabularies. For example,
f words T, Tz, T4, and T correspond to the first vo-
§ cabulary. The second and third column show the
l binary surrogates of documents D, and D,. For
f instance, the surrogate Di = [1 011} indicates
. the absence of word T3 and the presence of words
. T, Ty, and Ty in D;. Similarly, the surrogate for
L Do = [0011] indicates the dbsence of Ty and T3
L and the presence of words Ty and T7 in Ds. Finally,
the fourth column shows the CC similarity values,
or sim(Dy, D)), between D; and D> for the three

vocabularies.
Surrogates
Vocabularies Dy D sim (D1, D2)
Ty, T2, Ts, T [1011] [0011] 0.50"
] T2, Ts,Ts5,Ts [0100] [0110] 0.25
3 Ts,Ts,Ts,Ts [0100] [0011] 0.00
3 *. sim(D1, D2) = 2/(47% x 4/%) = 0.50.

Table 2: Similarity sim(D1, D2) for three candidate
vocabularies of four words.

. The CC similarity values in Table 2 indicate
that when words T3, T4, Ts, T6 are used as in-
dexing terms, the similarity of documents D, and

D, is minimal. Furthermore, the similarity value
sim(D;, D7) = 0.00 indicates that both documents
are completely different because their surrogates
do not contain common words. Therefore, accord-
ing to the VSM the optimal indexing vocabulary
corresponds to terms T3, Ty, T5, and Tg. Thus, the
other words T, 1%, and Ty can be discarded as
indexing terms.

The solution presented in this table seems to
be a trivial one. However, it can be easily shown
that for realistic indexing problems such a solution
can be quite an elaborate one. Suppose, for ex-
ample, that the number of words extracted from
D, and D is not seven, but fifty (which still is
a small number for realistic situations). Further-
more, if this time one is interested in finding can-
didate vocabularies of ten words, rather than com-
binations of four words, then the number of vo-
cabularies that can be constructed is (“;’g) = 10.27
billions. That is, in addition to finding the mini-
mization of (2), the VSM must also use an efficient
search strategy to quickly eliminate many non op-
timal vocabularies. By the same token, it can be
easily shown that if vocabularies of all sizes are
considered, then the number of such vocabularies
is determined by 2¢ — 1 (where t is the number of
extracted words), which even for moderate values
of t this expression is a too large number.

As a result of these humongous searching spaces,
researchers have been compelled to design fast
heuristic search strategies at the expense of opti-
mality. Furthermore, because the size of the index-
ing problem can be very large, suboptimal heuris-
tic solutions have been preferred over optimal but
slow ones [2]. O

Optimization in the Classification of Text Docu-
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ments. The process of document classification con-
sists of grouping documents according to their un-
derlying subject. Some examples of familiar doc-
ument subjects are history, geography, music, en-
gineering, etc. Usually, this underlying subject is
determined by the set of indexing terms which was
attached to each document. That is, documents
about History share indexing terms whose con-
tent describes past events. Similarly, the indexing
terms of documents about geography share con-
tent which describes different geographic places
on earth. Hence, the problem that this process
of document classification attempts to solve is de-
scribed as follows: Given samples of preclassified
documents (i.e., their surrogates), the question is
how to use the information contained in their sur-
rogates such that new unclassified documents can
be grouped into the appropriate classes.

Input: EY and E™.

Output: Logical rules in CNF (or DNF) form.
i=1,C=0

DO WHILE (E~ #0)

1: i ¢ i+ 1; /* i indicates the ith iteration/
find a clause ¢; which accepts all members
of Et while it rejects as many members
of E~ as possible;

3: let E~(c:) be the set of members of E~
which are rejected by ci;

4: let C « C + ci;

5: let E- « E~ — E™(ci);

END;

Fig. 2: The one clause at a time (OCAT) algorithm.

There are many methodologies for solving this
document classification problem. Some examples
of such methodologies are: the vector space model
for document classification [22]; fuzzy set theories
[12] and [17}; semantic analysis methodologies [10]
and [19]; and some others which use artificial intel-
ligence approaches, (3], and [2]. To some extent all
these methodologies use optimization in order to
maximize (or minimize) some performance mea-
sure, which usually is the similarity between in-
dexing terms. In what follows, we present only
one methodology which is based on artificial intel-
ligence and operations research approaches. This
methodology is the one clause at a time (OCAT)
algorithm [28] for the classification of examples
(e.g., documents) in mutually exclusive classes.
The OCAT algorithm uses optimization method-

ologies for constructing classification clauses (e.g.,
word patterns) of minimal (or near minimal) size.
Fig. 2 shows this algorithm.

The OCAT algorithm is also a machine learn-
ing algorithm. It uses logical analysis and branch
and bound approaches to extract knowledge (sets
of rules) from sets of preclassified examples. It ]
takes as input data samples of examples from (usu- §
ally two) mutually exclusive classes and extracts ;
knowledge that is represented in a compact form A
of key data patterns which can be used to classify 3
new unclassified examples into these two classes. :

The two mutually exclusive classes are referred 3
to as the sets of positive and negative examples
(denoted by E* and E7, respectively). Further- §
more, the collections of examples in both classes §
are defined over the same set of parameters (also 3
called atoms, characteristics, or factors) which are
assumed binary valued. Fig. 3 illustrates a set of ;
four positive examples: e, €2, €3, €4 and a set of six
negative examples: es, €s, €7, €8, €9, €10 All ten 7
examples are defined on the four atoms Ar, Ao,
Az, and A4. For instance, example e; = [01 0 0] '
indicates the presence of atom A and the absence L
of atoms A;, Az, and A4 in e;. On the other hand,
example e = [1010] indicates that atoms Ay and {
Aj are present and that atoms As and Ay are ab-3

sent.

e1[0 1 00
. el 100
E _63 00 11
eatl1 0 01
and
es [1 0 1 0]
€6 0 00 1
_ er 1111
E T eg |0 0 0O
€9 1 00 0
€10 Ll 11 0_

Fig. 3: Two illustrative sets of positive and negat‘
examples. ’

When the OCAT algorithm is used to sO
document classification problem, E* and E7
the sets with the positive and negative exarm]
respectively) correspond to the sets of documely

l\{e
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“f belong to two mutually exclusive classes.

[

Cha s, documents in the positive class are the

4 that belong in only one of the two classes,
‘ ;; le the documents in the other class are the neg-
e examples. Hence, Fig. 3 may represent a set
ften documents (surrogates) which were indexed
,;Z using four keywords.

t The OCAT algorithm is a greedy algorithm
\~.- determines a set of compact clauses either in
t Le conjunctive normal form or disjunctive normal
Morm (CNF or DNF, respectively, as defined be-
w). For example, CNF clauses are determined as

ollows. In the first iteration it determines a clause

‘hat accepts all the examples in ET while it re-

jects as many examples in E~ as possible. In the

econd iteration it performs the same operation

Pusing the original E* set but this time the cur-
F'ent £~ set contains only the negative examples

f that have not been rejected by any of the previ-
'“ous clauses. The iterations continue until the set
1" of constructed clauses reject all the negative exam-
¥ ples. Hence, when these CNF or DNF clauses are

f taken together, they accept all the positive exam-
ples while they reject all the negative examples.

The conjunctive normal form and disjunctive

¥ ormal form (see, for example, [24]) are defined

.

e TR S -
N s

as in expressions (2) and (3), respectively.

k
A V). g

=1 \z1€p;

k

VIAal) (3)
j=1 \i€pj

Where a; can be either A; or A;. Thus, a CNF
expression (also called a logical clause) over a vec-
tor v € {0,1}! is a conjunction of disjunctions de-
fined on the terms 4; (i = 1,...,t). Similarly, a
DNF expression is a disjunction of conjunctions
on the same terms A;.

Let n be the number of atoms and My the num-
ber of positive examples. It can be easily shown
that the maximum number of clauses that can be
formed using n atoms and M, examples is equal
to M; [28]. To form these clauses consider the first
example e; = [0100]. It can be observed that in
order to accept this positive example at least one
of the four atoms A;, A2, A3, A4 must be speci-

fied as follows: (A; = FALSE; 1e., A; = TRUE),
(A, = TRUE), (A3 = FALSE; ie, A; = TRUE),
and (A4 = FALSE; ie, A, = FALSE). Hence,
any valid CNF clause must include Ay, or Ay, or
A,, or Ay. Similarly, the second positive exam-
ple ey = [1100] indicates that any valid CNF
clause must include AA;, or AZA,, or Az, or Ag. In
this manner, all valid CNF clauses must include at
least one atom as specified from each of the follow-
ing sets: {Zl,AZ2,Z3,X4}, {Azl,AZQ,Zg,Z[;},
{21,22, Ajg, AZ4}, and {A1,ZQ,—A_3, A4} Relation
(4) shows a CNF system which was derived by us-
ing the OCAT algorithm on the examples in Fig. 3:

(A2 V Ag) A (A2 VA3) A (ALY A3V Ay, (9)

EXAMPLE 2 An application of the OCAT algo-
rithm can be illustrated by using a new example,
say, e;1 = (00 10]. When e is ‘tested’ by the
above CNF expression, then it can be seen that e11
is classified as a negative example. This is as fol-
lows. The clause A2V A4 evaluates to 0 because e11
does not contain neither the second nor the fourth
atoms. On the other hand, both clauses A1 V A3
and 41 V A3 A A, evaluate to 1. However, when
the three clauses are taken together, expression (4)
evaluates to 0, thus indicating that e1 is a nega-
tive example. (i

Conclusions and Future Research. This arti-
cle illustrated some contributions of optimization
for solving the document classification problem.
These contributions were illustrated by presenting
three cases (application areas) in which optimiza-
tion has been used. The first case dealt with the
principle of least effort (PLE) which 1s used for the
selection of an indexing vocabulary based solely in
the frequency of the co-occurring words. The sec-
ond case dealt with the vector space model (VSM)
for the selection of an indexing vocabulary that
minimizes the overlapping of words used in vari-
ous documents (or in various document classes).
The third case illustrated the one clause at a time
(OCAT) algorithm for the classification of docu-
ments into mutually exclusive classes.

A common characteristic of these three cases
is the huge amounts of information that need
to be processed before optimal solutions can be
found. Therefore, the optimization techniques pre-
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sented in these examples have been used exten-
sively only on document classification problems
of small size. The main reason for this limitation
is that even with the current computerized tech-
nologies, these techniques would take unaccept-
able processing times to find optimal solutions for
larger classification problems. As a consequence,
scientific research efforts have focused their atten-
tion in developing effective and efficient heuristics
for solving problems of more realistic size.

See also: Boolean and fuzzy relations;
Checklist paradigm semantics for fuzzy log-
ics; Alternative set theory; Finite complete
systems of many-valued logic algebras; Op-
timization in Boolean classification prob-
lems; Inference of monotone Boolean func-
tions; Linear programming models for clas-
sification; Statistical classification: Optimi-
zation approaches; Mixed integer classifica-
tion problems.
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OPTIMIZATION IN LEVELED GRAPHS

A k-leveled graph or a k-level hierarchy is defined
as a graph G = (V, E) = (Wi, ..., Vi, E) with ver-
tex sets Vl,...,Vk, V = V1U"'UVk, VzﬂV] :@
for i # j, and an edge set E connecting vertices
in levels V; and V; with i # j (1 < 4,5 < k). Vi is
called the ith level. In a geometric representation
of a k-leveled graph, the vertices in each level V;
are drawn on a horizontal line L; with y-coordinate
k — i, and the edges are drawn strictly monotone,
ie., an edge (v;,v;) € E,v; € V;, v; €V}, 1<, is
drawn with decreasing y-coordinates. Essentially,
a k-leveled graph is a k-partite graph that is drawn
in a special way.

A proper k-leveled graph is a k-leveled graph
G = (W,...,V, E) in which any edge in E con-
nects vertices in two consecutive levels V; and Vj 1
fori € {1,...,k—1}. Fig. 1 shows a proper leveled
graph on k = 4 levels. This graph represents the
face lattice of the cuboctahedron [4].

Fig. 1.

Optimization problems in leveled graphs arise in
applications in computational biology and in auto-
matic graph drawing.

Multiple Sequence Alignment. In computa-
tional biology the vertices in each level V; repre-
sent letters of a sequence S; over a finite alphabet
¥. The optimization problem which arises is the
multiple sequence alignment problem. Here, the k
sequences S, . . ., Sk should be aligned so that the
cost of the alignment is maximized. An alignment
can be interpreted as an array with k rows, one
row for each S;. Two letters of distinct sequences
are said to be aligned if they are placed in the
same column. There are many ways to measure the
quality of an alignment, leading to different prob-
lem formulations. One of them is the mazimum
weight trace formulation introduced in (14]. Here,
the letters of the sequences S; = (8i1, - - -, Sin;) are
viewed as vertices in level i in a k-leveled graph
G=(V,...,Vi,E). Every edge e € E has a non-
negative weight representing the gain of aligning
the endpoints of the edge. We say that an align-
ment S realizes an edge if it places the endpoints
into the same column of the alignment array.

The set of edges realized by an alignment S is
called the trace of S , and the weight of an align-
ment S is the sum of the weights of all edges in the
trace of 5. The goal is to compute an alignment S
of maximum weight.

The maximum weight trace problem is NP-
hard, and can be solved in polynomial time for
fixed k. A dynamic programming approach gives
an algorithm with time complexity O(k?2*N) and
space complexity O(IN), where N = [[; ni, which
is feasible only for very small problem instances.
J. Kececioglu [15] presented a branch and bound

189



Nieto, S.N. and E. Triantaphyllou, (2001), "Optimization in Document
Classification," Encyclopedia of Optimization, (P.M. Pardalos and C. Floudas,
Eds.), Kluwer Academic Publishers, Boston, MA, U.S.A., Vol. 4, pp. 182-1809.




