% For reference information, please see the last page.

9

SOME RECENT DEVELOPMENTS OF
USING LOGICAL ANALYSIS FOR
INFERRING A BOOLEAN FUNCTION
WITH FEW CLAUSES

Evangelos Triantaphyllou
Boris Kovalerchuk
and Aniruddha S. Deshpande

ABSTRACT

One of the main areas of great potential in the interface of operations research and
computer science is in inductive inference. Inductive inference refers to the extraction
of a pattern from observations which belong 1o different classes. This is the essence
of building many intelligent systems with learning capabilities. In this paper we
discuss a logical analysis approach 1o this problem. Given are sets of binary vectors.
The main problem is how to extract a Boolean function, in CNF or DNF form, with
as few clauses (conjunctions or disjunctions) as possible. Therefore, this is an
optimization problem. We present a number of theoretical results and also some
possible extensions.

1 INTRODUCTION

A common problem in many scientific and engineering applications is the
identification of the characteristics or combination of characteristics which can explain
the occurrence of some desirable or undesirable effects. Traditionally, such
challenges are examined by statistical and/or artificial intelligence procedures. Among
‘1.16 specific procedures used are: clustering, factor analysis, discriminant analysis,
linear regression, decision trees, and neural networks. All this kind of approaches,
l}OWever, are limited because they rely on some assumptions which are probabilistic
n nature (e.g., regarding the existence of a statistical distribution on the data) or
geometric in nature (e.g., the existence of separating hyperplanes in some related
Euclidean space) [Boros et al., 1994]. These assumptions may severely limit the
applicability of the above methods on some real life data.



218 CHAPTER 9

Moreover, very often the output of these procedures is difficult to be interpreted by
field experts. For instance, medical doctors may feel uncomfortable in accepting
diagnoses made by a neural network. This situation is increasingly recognized lately
and some hybrid systems try to combine rule based systems with neural network
techniques [Fu, 1991]. Such hybrid systems produce a set of logical rules which in
turn can be used for the classification of new observations. However, the results ares
not encouraging because some recent research [Shavlik, 1994] shows that the number
of rules generated in this manner can be exponentially large.

2 THE LOGICAL ANALYSIS APPROACH

Logical analysis can be used to extract a set of logical rules (decision rules) which
describe patterns of classes of observations. The central hypothesis of using logical
analysis [Boros et al., 1994] is that many phenomena are governed by logical decision
rules. Thus, logical analysis aims at discovering these rules. Logical analysis
attempts to capture the cause-effect relationships contained in a data set.

In a typical problem available are collections of examples. Each example is described
in terms of a finite set of attributes (also called atoms, variables, characteristics,
parameters, or factors). These examples are classified into a finite set of mutually
exclusive and exhaustive classes (usually only two classes are considered). Then, the
problem is to extract a set of logical rules which describe the patterns implied by these
data. The main steps required when applying this kind of data analysis are as follows:

. Definition of the relevant characteristics (i.e., parameters or attributes or
factors).
. Extraction of the patterns (i.e., the logical decision rules) which can explain

the observations in the various classes.
The above concepts are best described in the following illustrative example.

Suppose that the functioning behavior of a system depends on the values of the five
Boolean variables: 4,, A, 4, A, and A;. That is, each such parameter takes on 2
value which is either true (denoted by 1) or false (denoted by 0). Suppose that the
following observations in the set E* describe some examples in which the system was
functioning correctly, while the observations in the set E~ describe some examples 1N
which the system was malfunctioning:



Inferring Boolean Functions 219

01000
01111
00101
01001 10011
10100 00011
11100 10110
E'=/11000] E =|00001
10010 11011
01101 11001
00110 | 0000 0|
11110
10101
11101 |

For instance, the first example in E* (i.e., (010001011 1}) implies that when the
values of (4, A ,43 A, and Ag are equal to (FALSE, TRUE, FALSE, FALSE,
FALSE), respectively, (or equivalently, the values of (A, Z; A, A, and ,—4';) are equal
to (TRUE, FALSE, TRUE, TRUE, TRUE), respectively), then the system functions
correctly (because this example belongs to E*). The main problem is to use these two
classes of observations (or examples of behavior) and describe the conditions on the
values of the attributes which cause these examples to belong to either one of these
two classes (sets with observations).

Next, consider the following Boolean function defined on the previous five Boolean
parameters (or their negations) given in CNF form:

(A, Va Va)A(&VaVaVa)A (a, VaVa,.

It can be easily verified that the above expression satisfies the requirements of the
previous examples. That is, each positive example makes each conjunction to have
true value. Furthermore, each negative example is rejected by at least one of the
conjunctions. In other words, the previous Boolean function returns true value for
each one of the positive examples, while it returns false value for each one of the
negative examples.

Given the previous E* and E™ data, then a new and unclassified example is a positive

example (i.e., describes a correct behavior of the system under consideration) if all

the previous three rules are satisfied. Otherwise, the example will be classified as a

negative one. For the above reasons the terms "Boolean function” and "logical
‘ decision rules" will be used in this paper to mean the same concept.



220 CHAPTER 9
3. LITERATURE REVIEW

The extraction of a set of logical decision rules from collections of classified data is
a type of learning from examples. Complexity issues of this type of learning can be
found in [Valiant, 1984 and 1985}, [Kearns er al., 1987], and [Pitt and Valiant, 1988].
A considerable amount of related research is today known as the PAC (Probably
Approximately Correct) learning theory (see, for instance, [Angluin, 1988] and
[Haussler and Warmuth, 1993]). Since the very early days it was recognized that the
problem of inferring a Boolean function with a specified pumber of clauses is NP-
complete (see, for instance, [Brayton et al., 1985] and [Gimpel, 1965]).

A learning algorithm is a computational procedure which takes a random sample of
positive and negative examples of the target concept ¢ and returns a hypothesis 2. In
the literature a learning algorithm A is a PAC algorithm if for all positive numbers €
and & (where: 1 > €,0 > 0), when A runs and accesses unclassified examples, then
it eventually halts and outputs a concept h with probability at least 1 - & and error at
most € [Angluin, 1992). A related issue is the one of properly PAC learnable
concepts. This occurs when the concept ¢ and the hypothesis & are assumed to belong
to the same spaces of concepts [Haussler and Warmuth, 1993].

Conjunctive concepts are properly PAC Jearnable [Valiant, 1984]. However, the class
of concepts in the form of the disjunction of two conjunctions is not properly PAC
learnable [Pitt and Valiant, 1988]. The same is also true for the class of existential
conjunctive concepts on structural instance spaces with two objects [Haussler, 19891.
The classes of k-DNF, k-CNF, and k-decision lists are properly PAC learnable for
each fixed k [Kearns et al., 1987], but it is unknown whether the classes of all DNF,
or CNF functions are PAC learnable [Haussler and Warmuth, 1993] and [Goldman,
1990]. Note that the present paper deals with Boolean functions in CNF or DNF
form. Therefore, the learning algorithms described later in this paper are not known .
whether they are PAC learnable. Also, in [Mansour, 1992] an nOteelee) algorithm is
given for learning DNF formulas (however, not of minimal size) under a uniform
distribution using membership queries.

There are many reasons why one may be interested in inferring a Boolean function
with the minimum (or near minimum) number of terms. In a circuit design
environment, a minimum size Boolean representation is the prerequisite for 2
successful VLSI application. Ina learning from examples environment, one may be
interested in deriving a compact set of decision rules which satisfy the requirements
of the input examples [Hammer and Kogan, 1992]. Too many rules may increase the
chances for errors. When, for instance, one wishes to use the rules to control the
safety of a structure, then a small number of rules will also require a small number of
sensors. In medical diagnosis one may wish to derive a small set of rules, because 100
many rules are difficult to be verified and validated. These are the main reasons wWhy
we take an optimization approach in dealing with the problem of inferring a small



Inferring Boolean Functions 221
pumber of logical decision rules (i.e., a compact Boolean function).

In [Triantaphyllou, Soyster, and Kumara, 1994] the problem of inferring a set of
Jogical clauses is examined. In that work a rather small set of clauses (not necessarily
of minimat size) is determined. That approach is based on a branch-and-bound (B&B)
algorithm. That B&B algorithm was later significantly enhanced and improved in
[Triantaphyllou, 1994].

There is another clause inference approach which can be used to determine a minimal
size set of logical clauses. This method, denoted as SAT (for satisfiability), has been
proposed in [Kamath er al., 1992]. Then a clause satisfiability model is formed as
follows. Let M, and M, be the numbers of examples in the E* and E™ sets,
respectively. In [Kamath er al., 1992] it is shown that given two collections of
positive and negative examples (called the ON-set and OFF-set, respectively) then,
then a DNF system can be inferred to satisfy the requirements of these examples.
This is achieved by formulating a satisfiability problem and then using the interior
point method developed by Karmakar and his associates [1992] to solve it. This
approach pre-assumes the value of k; the number of conjunctions in the DNF system.
The SAT problem uses the following Boolean variables (Kamath et al. [12]):

if A, is in the j-th conjunction

if A, is not in the j-th conjunction

if Xi is in the j-th conjunction

if Xi is not in the j-th conjunction

if A, =1 in the positive example Q€EE"

if A, = 0 in the positive example oeE"

if the positive example o is accepted by the j-th co

otherwise
Then, the clauses of this SAT problem are as follows:

/ (O
Sji\/ Siis for 1 =1, ..., n,

1
and j =1, ..., k, M
(V s’ yVv(V s5,, for j=1, ..., k,
iep, J1 iegr 77 2)
and r = 1, , M



222 CHAPTER 9

V z§, for a=1, ..., M, . G)

ogfi\/z“;.’, for i=1,...,n, j=1,...,k,
and =1, ..., M “)

where P, is the set of indices of A for which A; = 1 in the negative example r € E~.
Similarly, P, is the set of indices of A for which 4; = O in the negative example r e
E-.

Clauses of type (1) ensure that never both A4, and A; will appear in any conjunction.
Clauses of type (2) ensure that each negative example is rejected by all conjunctions.
Clauses of type (3) ensure that each positive example is accepted by at least one
conjunction. Finally, clauses of type (4) ensure that zf = 1 if and only if the positive
example « is accepted by the j-th conjunction. In general, this SAT problem has
k(n(M, + 1) + M,) + M, clauses, and k(2n + M,) Boolean variables. A detailed
example on this formulation can be found in [Kamath ef al., 1992].

If the above clause satisfiability problem is feasible, then the conclusion is that it is
possible to correctly classify all the examples with k or fewer clauses. If this SAT
problem is infeasible, then one must increase k until feasibility is reached. In this
manner, the SAT approach can yield a system with the minimum number of clauses.
It is very important one to observe at this point that computationally it is much harder
to prove that a given SAT problem is infeasible than it is feasible. Therefore, trying
to determine a minimum size Boolean function by using the SAT approach may be
computationally too difficult.

It should also be emphasized here that it is not very critical whether an inference
algorithm determines a CNF or DNF system (i.e., CNF or DNF Boolean function).
By applying theorem 1 (described later in section 4.1), either a CNF or DNF system
can be derived by using any algorithm. Also, some computational results indicate that
the B&B approach proposed by the first author in [Triantaphyliou, 1994] is much
more efficient than the previous satisfiability based approach.

The SAT results were derived by using a VAX 8700 computer running the 10-th
Edition UNIX. The code for the SAT tests was written in FORTRAN and in C. The
SAT results were originally reported in Kamath er al. [1992]. The OCAT results
were derived by using an IBM 3090-600S computer running X4/VM and the code wa$
written in FORTRAN. On the average, in those tests the OCAT/B&B approach was
5,579 times faster [Triantaphyllou, 1994]. However, it should be stated at this point
that the IBM3090-600S machine is, in general, 4-5 times faster than the VAX 8700
computer used in the SAT tests. Thus, due to the different hardware/softwaré
platforms and the limited number of test problems, the current results can convey only



Inferring Boolean Functions 223

a flavor on the relative performance of the two methods, and by no means should be
considered as a direct comparison of the two approaches.

A related problem is to study the construction of a partially defined Boolean function
(or pdBYf), given disjoint sets of positive and negative examples [Boros ef al., 1994].
That is, now it is required that the atoms of the function be grouped according to a
given scheme (called a decomposition structure). The problem then is to determine
whether a given pdBf has an extension when a specific decomposition structure is
considered. Typically, a pdBf may have exponentially many different extensions. In
[Boros et al., 1994] computational and existence issues of this type of problem are
examined for many different cases. Note that very often (i.e., depending on the case)
these problems are NP-complete. In that treatment Boolean functions were not
attempted to be represented by a minimum size CNF or DNF expression (as is the
case in this paper).

Other approaches dealing with this type of learning is to use neural networks.
However, although a neural network approach may yield encouraging results, it fails
to extract the underlying logic in the form of a set of decision rules (i.e., a Boolean
function). Some recent efforts have been successful in combining symbolic
approaches to neural networks and thus generate rules (Fu, 1994]. However, they are
impractical since they may generaie an exponential number of rules [Shavlik, 1994].
As result of this, field experts hesitate to use neural network approaches because they
do not understand the decision-making process and thus feel uncomfortable.

Mangasarian and his associates [1991] did some considerable work in using linear
programming in solving similar classification problems. That approach constructs a
family of pairs of separating hyper-planes. Then, new instances are classified by
examining where they belong in relation to these planes. They applied their approach
in diagnosing breast cancer and also in diagnosing beart disorders. The proposed
logical analysis approach, however, besides the promising computational results, it
also provides a set of decision rules which can be easily understood by medical
doctors. As result, it has the potential to become accepted anywhere other methods
have failed to gain the trust of the end users.

4 CURRENT RESEARCH RESULTS

4.1 Some Definitions and Terminology

Ijet {4, A, A, .... A} beasetof 1 Boolean predicates or atoms. Each atom A,
(i=1,2,3,...,n) can be either true (denoted by 1) or false (denoted by 0). Let Fbea
Boolean function over these atoms. That is, F is a mapping from {0,1}' - {0,1} which
determines for each combination of truth values of the arguments A,, A, Az ..o A, of
F, whether F is true or false (denoted as 1 or 0, respectively). For each Boolean



224 CHAPTER 9

function F, the positive examples are the vectors v € {0,1,}’ such that F(v) = 1 (i.e.,
they are accepted by F). Similarly, the negative examples are the vectors v € {0,1,}'
such that F(v) = 0 (i.e., they are rejected by F).

In the previous paragraph a Boolean function F is assumed to be of any form.
However, in propositional calculus it is convenient to represent Boolean functions
using the conjunctive normal form (CNF) or the disjunctive normal form (DNF). See,
for instance, [Blair er al., 1985], [Cavalier ez al., 1990], [Hooker, 1988a and 1988b],
{Jeroslow, 1988 and 1989], and [Williams, 1986]. Peysakh in [1987] describes an
algorithm for converting any Boolean expression into CNF. In this paper a set of
positive examples will be denoted as E*. Similarly, a set of negative examples will
be denoted as E™.

Next, define the general form of a CNF and DNF system as (I) and (II), respectively.
That is:

k
AV ay, W)

j=1 iepj
k
and V(A ay, a1
j=1 iEpj

where a, is either 4, or 4, and g, is the superset of the indices of the atoms in the j-th
conjunction or disjunction. Furthermore, V is defined as the complement of example
v. For instance, if v = [1,0,0], then ¥ = [0,1,1]. The following definition introduces
the concept of the complement of a set of examples. Let E be a collection of
examples (either positive or negative). Then, E is defined as the complement of the
collection E.

The following theorem (proved in [Triantaphyllou and Soyster, 1995a]) states an
important property which exists when CNF and DNF systems are inferred from
collections of positive and negative examples. It is important to observe here that this
theorem is independent of the algorithm used to infer a Boolean expression from
positive and negative examples.

Theorem 1: Let E* and E- be the sets of positive and negative examples,
respectively. A CNF system given as (I) satisfies the constraints of the E* and E~ selS

if and only if the DNF system given as (II) satisfies the constraints of E- (consideré‘d
as the positive examples) and E* (considered as the negative examples).

4.2 The One Clause At a Time Approach

In [Triantaphyllou, Soyster, and Kumara, 1994] an algorithm which infers CNF



Inferring Boolean Functions 225

systems from positive and negative examples is developed. In that approach, CNF
clauses are generated in a way which attempts to minimize the number of CNF clauses
that constitute the recommended CNF system. In this way, a compact CNF system
can be derived. The strategy followed there is called the One Clause At a Time
approach.

The One Clause At a Time (or OCAT) approach is greedy in nature. It uses as input
data two collections of positive and negative examples. It determines a set of CNF
clauses that, when taken together, rejects all the negative examples and accepts all the
positive examples. The OCAT approach is sequential. In the first iteration it
determines a single clause (conjunction) which accepts all the positive examples in the
E* set while it rejects as many negative examples in E™ as possible. This is the greedy
aspect of the approach. In the second iteration it performs the same task using the
original E* set but the revised E™ set has only those negative examples which have not
been rejected by any clause (i.e., the first clause) so far. The iterations continue until
a set of clauses is constructed which reject all the negative examples in the original E~
set. More on this approach can be found in [Triantaphyllou, Soyster, and Kumara,
1994] and [Triantaphyllou, 1994]. Figure 1 summarizes the iterative nature of the
OCAT approach. It is interesting to observe here that the LP approach proposed by
Mangasarian and his associates [1991] also uses a greedy approach in the way the
hyper-planes are determined.

The core of the OCAT approach is step 2, in figure 1. In [Triantaphyllou, Soyster,
and Kumara, 1994] a branch-and-bound based algorithm is presented which solves the
problem posed in step 2. That algorithm was later significantly enhanced and
improved in [Triantaphyllou, 1994]. The OCAT approach returns the set of desired
clauses (i.e., the CNF or DNF system) as set C.

A related problem was examined in [Turksen and Zhao, 1993]. In that development
it is shown that Quinlan's ID3 algorithm [Quinlan, 1979] is equivalent with the result
of applying a Boolean simplification treatment on the rules generated by ID3. Thus,
the authors propose a scheme which first derives a set of rules by using the 1D3
algorithm, and then this set is simplified (fewer logical clauses are derived) by
applying a Boolean simplification procedure. Some experiments contacted by the
authors of this paper compared the OCAT approach with the ID3 algorithm in terms
9f the number of CNF clauses derived. It was shown that the OCAT approach, when
it was combined with the heuristic described in [Deshpande and Triantaphyllou, 1996]
Created by far much less clauses. The logic inference procedures developed by
Triantaphyllou and his associates directly aim at deriving a small number of clauses
from collections of positive and negative examples.

The procedure proposed by Turksen and Zhao applies a two step approach: In the first
Step a system is induced by using the ID3 algorithm and in the second step that system
18 reduced to an equivalent system with (hopefully) fewer terms. That is, the result



226 CHAPTER 9

of the Turksen/Zhao approach may be drastically dependent by the outcome of the ID3
algorithm.  However, no experiment results are available to” compare the
Turksen/Zhao approach with the OCAT approach.

4.3 The Rejectability Graph of Two Collections of Examples

This section presents the motivation and definition of a special graph which can be
easily derived from positive and negative examples. The concept of this graph was
originally developed in [Triantaphyllou and Soyster, 1994].

i=0;C=¢;
DO WHILE (E~ # ¢)
Step 1: i - i + 1; /* i stands for the i-th clause */
Step 2: Find a clause ¢; which accepts all members of E*
while it rejects as many members of E~ as possible;
Step 3: Let E~(c;) be the set of members of E~ which are rejected by ¢;;
Step4:let C-Cuc;;
Step S: Let E- < E~ - E™ (¢c);
REPEAT;

Figure 1. The One Clause At a Time (OCAT) Approach.

To see the motivation for introducing this graph consider a situation with # = 5 atoms.
Suppose that the vector v, = [1,0,1,0,1] is a positive example while the two vectors
v, = [1,0,1,1,1] and v, = [1,1,1,0,1] are negative examples. If A, denotes the
negation of the atom 4;, then the positive example v, indicates that 4,, 4, 4,, A4, and
A; are true (or equivalently, A, 4,, A,, A, and A4, are false in this exarnple). Similar
interpretations can easily be derived for the remaining two examples v, and v;.

Let the set T(v) denote the set of the atoms that are true in the example (either positive
or negative) v (where v € {1,0,}, and ¢ is the number of atoms). When this
definition of the T(v) set is applied on the previous three examples v,, v,, and v;, then
the following sets are derived: _ —
T(v)) = T([1,0,1,0,11) = {4,, 4, A, 4, 45}
I(v) = T([1,0,1,1,1]) = {4, 4, A, A, A}
T(v) = T([1,1,1,0,1]) = {4,, 4, A4, &, As}.
Consider a single CNF clause (conjunction), denoted as C, of the form

N

(where a is either A, or 4, for some N < #): \/ a;. Then, the clause C accepts
i=1

an example v (i.e., v is a positive example of C) if and only if any of the atoms in the



Inferring Boolean Functions 227

N

set T(v) is one of the atoms involved in the expression V a,;. Otherwise, the
i=1

example v is not accepted (i.e., v is a negative example of C). For instance, if the

clause C is defined as: C = (4,V 4,), then the examples v, and v, are accepted by

C, while the example v, is not accepted.

Using the previous three sets 7(v,), T(v,), and 7(v;) and the notion of acceptance it can
be easily verified that there is no single CNF clause which can simultaneously reject
both the two negative examples v, and v;, while at the same time, it accepts the
positive example v,. This is true because any clause which simultaneously rejects the
two examples v, and v,, should not involve any of the atoms present in the union of
the two sets T(v,) and T(v;). But if none of the atoms of the set {4, A4,, A, A, A,
A, A} (= T(vy) u T(vy) is present in the clause, then it is impossible to accept the
positive example v, = [1,0,1,0,1].

Therefore, given the positive example v,, then the previous two negative examples
v, and v, cannot be rejected by any single CNF clause (conjunction) which also
accepts the positive example v,. In general, given a set of positive examples E”, then
two negative examples v, and v, are rejectable by a single CNF clause if and only if
the condition in the following theorem [Triantaphyllou and Soyster, 1996a] is
satisfied:

Theorem 2: Let E* be a set of positive examples and v, , v, are two negative
examples. Let T(v) be the set of the atoms that are true in the (either positive or
negative) example v. Then, the two examples v, and v, are rejectable by a single
clause which accepts all the positive examples in E* if and only if the following
condition is true:

T(v,) ¢ T(v,) v T(v,) for any positive example v, € E*.

Given two collections of positive and negative examples, denoted as E* and E7,
respectively, the above theorem motivates the construction of a graph G = (V, E) as
follows:

Vv={V,V, V..., VM2 }, where M, is the size of the E™ set, and

E = { (V, V) if and only if the i-th and the j-th examples in E~ are

rejectable by a single clause (subject to the examples in E7)}.

We call this graph the rejectability graph (or R-graph) of E* and E™. Since the’
previous theorem indicates that it is computationally very easy to examine whether
there is an edge between any two vertices of G, the rejectability graph G can be

constructed by performing M ,(M,-1) /2 simple rejectability examinations (where



228 CHAPTER 9

M, is the size of the E™ set).

4.4 Properties of the Rejectability Graph

The rejectability graph G of a set of positive and a set of negative examples has a
number of interesting properties. To illustrate these properties it is first necessary
to consider the following theorem [Triantaphyllou and Soyster, 1996a]:

Theorem 3: Suppose that the two sets E* and E~ are given and F is a family of K
negative examples from E~ (K < size of set E~) which are rejected by a single clause
subject to the positive examples in E*. Then, the vertices which correspond to the K
negative examples in the rejectability graph G, form a clique in G of size K.

Although the previous theorem states that any set of negative examples which is
rejected by a single clause corresponds to a clique in the rejectability graph, the
inverse is not always true. That is, not any clique in the rejectability graph
corresponds to a set of negative examples which are rejected by the same clause. In
[Triantaphyllou and Soyster, 1996a] the previous statement is demonstrated via a
counter-example.

4.4.1 On The Connected Components of The Rejectability Graph.

Another useful application of the rejectability graph G is based on the connected
components of the graph G. First, observe that any subset of negative examples in the
E~ set which is rejected by a single clause, subject to the examples in E*, corresponds
to a subset of vertices of the rejectability graph G which belong to the same connected
component of the graph G.

The previous property may become critical when the sets of positive and negative
examples are very large. In this case it is useful to first form the rejectability graph
G (which is computationally a simple task). Next, determine all the connected
components of the rejectability graph by applying an algorithm for finding the
connected components. Then, one may solve the smaller clause inference problems
which are formed by considering all the positive examples and the negative examples
which correspond to the vertices of the connected components in G.

In {Pardalos and Rentala, 1990] there is an excellent survey of algorithms which
determine the connected components of a graph. Once the connected components of
the rejectability graph G have been found, clauses which reject negative examples,
while they also accept all the positive examples, can be determined by considering
only one connected component at a time. This approach clearly takes advantage of
the connectivity structure of the G graph and provides the means for solving very large
clause inference problems.



Inferring Boolean Functions 229
4.4.2 On The Minimum Clique Cover of The Rejectability Graph.

Consider two sets of negative and positive examples, denoted as E* and E-,
respectively. Suppose that C is a family of clauses which satisfy the constraints of the
set of positive examples E* and the set of negative examples E~. The following two
theorems were proved in [Triantaphyllou and Soyster, 1996a] and are very critical in
the sense that they establish lower bounds on the minimum number of clauses which
reject all the members in E~, while they accept all the members in E*. It is important
to observe that these theorems are independent of the inference algorithm used to
process the positive and negative examples.

Theorem 4: Suppose that E* and E~ are the sets of the positive and negative
examples, respectively. Then, C,,,, the minimum number of clauses which reject all
the examples in E~, while they accept all the examples in E”, * _has as a lower bound
w(G), the size of the maximum clique of the graph G. Where Gis the complement of
the rejectability graph G of E* and E~. Moreover, the following relation is always
true: C,;,, 2 w(G) = a(G), where a(G) is the stability number of the rejectability

graph G.

In Carraghan and Pardalos [1990] a survey of algorithms which find the maximum
clique in any graph is presented. They also present a very efficient algorithm which
uses a partial enumeration and outperforms any other known algorithm. In that
treatment random problems with 3,000 vertices and over one million edges were
solved in rather short times (less than one hour on an IBM ES/3090-900E computer).
In any graph G the chromatic number %(G) is always equal to the clique cover number
of G . e k(G)) Furthermore the followmg is always true:

Coin 2 K(B) = %(G) 2 w(©) = (G).
Therefore, the following theorem [Triantaphyllou and Soyster, 1996a] is true:

Theorem 5: Suppose that E* and E- are the sets of the positive and negative
examples, respectively. Then, C,,,, the minimum number of clauses which reject all
the examples in E~, while they accept all the examples in E*, has as a low bound
,r(G) the chromatic number of the graph G. Where G is the complement of the
rejectability graph G of E* and E—. Furthermore, this new bound is tighter than the
bound gzven in the previous theorem. That is, the following relation is always true:

w2 ,y(G) = k(G) > w(G) = a(G).

The previous theoretical results can be utilized to decompose large scale problems as
follows. First, the connected components of the rejectability graph are determined and
the Boolean function construction problem is solved within each connected component.
The second approach is also motivated by partitioning the vertices of the rejectability
graph into mutually disjoint sets. However, in this second approach, vertices are
subdivided via a sequential construction of cliques.



230 CHAPTER 9

First, the maximum clique of the rejectability graph is determined. The negative
examples which correspond to the vertices of the maximum clique, along with all the
positive examples, form the first sub-problem of this decomposition. Next, the
maximum clique of the remaining graph is derived. The second sub-problem is
formed by the negative examples which correspond to the vertices of the second clique
and all the positive examples. This process continues until all the negative examples
(or, equivalently, all the vertices in the rejectability graph) are considered.

We note that this sequence of cliques does not necessarily correspond to a minimum
clique cover of the rejectability graph. This procedure is simply a greedy approach
which approximates a minimum clique cover. Furthermore, it is possible that a single
sub-problem (in which all the vertices in the rejectability graph form a clique) may
yield more than one clause.

It should be noted at this point that the clique cover derived by using the above greedy
approach may not always correspond to a minimum clique cover. Therefore, the
number of cliques derived in that way, cannot be used as a lower bound on the number
of clauses derivable from positive and negative examples. Obviously, if the number
of cliques is equal to w(G), then the previous clique cover is minimal. However, even
if the previous cligue cover is not of minimum size, it can still be very useful as it can
lead to a decomposition of the original problem into a sequence of smaller problems.
Some computational results described in [Triantaphyllou and Soyster, 1996a] provide
some insight into the effectiveness of such a decomposition approach.

The two problem decomposition approaches described in this section can be combined
into one approach. One first decomposes the original problem in terms of its
connected components. Next, a clique cover, as described above, is derived for the
individual problems which correspond to the connected components of the rejectability
graph.

4.5 Clause Inference with Guided Input

The problem of inferring general CNF/DNF clauses with guided input was examined
in [Triantaphyllou and Soyster, 1996b]. Suppose that the user can supply the expert
with additional examples for correct classification. Then, the problem of inference with
guided input is how to generate the next example. One obvious approach is to generate
the next example randomly. However, this may result in generating many examples
and still not achieving a good approximation of the unknown system. It is obviously
desirable to consider a sequence of new examples which can lead to a good
approximation of the unknown system as quickly as possible.

When a new example is considered, it is given to the expert for the correct
classification. Two situations can occur. First, the current system (which 15
attempting to represent the unknown "hidden logic") classifies the new example 10 8



Inferring Boolean Functions 231

manner identical with the expert (who always correctly classifies each example). In
the second case, the new example is classified in the opposite way by the expert and
the current system. If the current system is not yet a good apprdoximation of the
"hidden logic"”, then the last case is the most desirable scenario. This is true, because
in this case one can re-execute a clause inference algorithm (for instance, the OCAT
approach) again and, hopefully, derive a closer approximation of the unknown system.

If the current version of the Boolean function is an inaccurate approximation of the
"hidden logic" and one generates new examples which fail to reveal any
contradictions, then additional costs are incurred in classifying new examples, but
no improvement is gained. Clearly, it is desirable to use a strategy for determining
the next example, such that any possible contradiction between the current version of
the Boolean function and the "hidden logic" will surface early in the interviewing
process.

Next, consider two sets of positive and negative examples, E* and E~, defined on ¢
atoms. Let Sg,yp . denote a logic system (Boolean function) that correctly classifies
the sample data, i.e. the examples in E™ are classified as positive and the examples in
E~ are classified as negative (one such function can be obtained via the methods
described in [Kamath er al., 1992], [Triantaphyllou er al., 1994], and
[Triantaphyllou, 1994]). Also, define Sy;ppen as the "hidden logic" Boolean function
and Syppey as the complement of Syppey. The strategy proposed in [Triantaphyllou
and Soyster, 1996b] is based on the following theorem:

Theorem 5: Suppose that there exists an example ve{0,1} such that:
Ssampre(V) + Spsuupe(v) = 0 or: (5.q)
Ssampie) + Sksaupe(v) = 2. (5.b)
Furthermore, suppose that the example v is classified by the expert as either positive
or negative. Then, one and only one of the following situations is true:
a) If (5.a) holds and v is a positive example, then system Sp, IS not valid.
b) If (5.a) holds and v is a negative example, then system Sg suyp.r is N0t valid.
) If (5.b) holds and v is a positive example, then system Sg sz is not valid.
d) If (5.b) holds and v is a negative example, then system Sgup ; is not valid.

Therefore, the overall strategy, starting with two Boolean functions, is to attempt to
generate a sequence of new examples Vi), Vi Vissp ---» Yn» Where each example
is appropriately classified, as positive or negative, by the expert. Each additional
€xample should have the property that it invalidates either Sg,vpe OF Spsampres 1-€-
one of the two Boolean functions must be modified. In doing so, it is expected that
Ssampe and SrsampLe Decome more closely aligned with S jppeny 30d S ppen
Tespectively.

How does one find an example that invalidates either SguvpLe OF Sprsampie!
Conceptually it is quite simple. One strategy is to formulate and solve at most two



232 CHAPTER 9

clause satisfiability problems. The clause satisfiability problem has been examined
with considerable success [Hooker, 1988a and 1988b]. A recent development
reported in [Kamath er al., 1992] uses an interior point algorithm developed by
Karmakar and his associates [Karmakar, Resende, and Ramakrishnan, 1991] with
considerable success. Some problem preprocessing techniques can be found in
[Cavalier, Pardalos, and Soyster, 1990]). The interested reader may want to consult
with the recent developments reported in the Second DIAMACS Challenge on Cliques,
Coloring and Satisfiability [Trick and Johnson, 1995].

The two satisfiability problems for this problem are as follows: Determine an

example V  which results in a truth value TRUE for

S () A S—R_SAMPLE('\T), or: (6.3

S ) A 8 ) (6.b)

SAMPLE ( R-SAMPLE (

If (6.a) is TRUE (i.e., satisfied), then ¥ is evaluated as positive by both systems

(Boolean functions), and if (6.b) is TRUE, ¥ is evaluated as negative by both

systems. Observe that relations (6.a) and (6.b) are equivalent to relations (5.a) and
(5.b), respectively. If an example is found which satisfies either (6.a) or (6.b), then
one of the two functions is modified and the same process is repeated. Next, suppose
that no example can be found that satisfies (6.a) or (6.b). Does this mean that
Ssampie = Sumppeny 7 Unfortunately, the answer is no. In this case we revert to a
random search process.

A number of computer experiments was conducted in {Triantaphyllou and Soyster,
1996b] in order to investigate the effectiveness of the proposed strategy compared
with random input learning (that is, when new examples are generated randomly).
Those results are very encouraging because they suggest that a "hidden system” can
be inferred, on the average, with at most 50% of the data required with random input.
This guided learning approach was also applied on the Wisconsin breast cancer data
" base [Murphy and Aha, 1994] with remarkable success.

A recent development on inferring a small set of clauses from positive and negative
examples is reported in [Deshpande and Triantaphyllou, 1996]. In that approach the
main branch-and-bound algorithm of [Triantaphyllou, 1994] is combined with a very
fast and simple heuristic. ‘That heuristic uses a randomization approach for
performing a local search while forming a single clause at time (according to thf
OCAT philosophy). Computational experiments suggest that the new development i$
even more promising. Some random problems with 7,000 and 18,000 examples which
were defined on 15 Boolean attributes were solved in matter of a few hours on an IBM



Inferring Boolean Functions 233

3090-600S computer. Before that work, the largest problem solved was up to 1,000
examples defined on 32 atoms.

The above idea of using randomization in a search algorithm has been explored
recently by other researchers as well. For instance, Feo and Resende in [1995] have
successfully used randomization (the GRASP approach) to solve clause satisfiability
(SAT) problems. Also, in a recent book Motwani and Raghavan [1995] provide a
comprehensive presentation of the theory on randomized algorithms. Randomization
also offers a natural and intuitive way for implementing parallelism in algorithms.

5 INFERENCE OF MONOTONE BOOLEAN
FUNCTIONS

The previous sections dealt with the case of inferring general Boolean functions (either
in CNF or DNF form). However, in many real life applications the behavior of a
system is monotone [Boros, Hammer and Hooker, 1994]. In a continuous
environment the previous statement means that the output of the system is consistent
with the magnitude of the data.

In [Boros, Hammer and Hooker, 1994] the problem of inferring monotone Boolean
functions is presented. In that treatment it is assumed that some observations are
available which describe the behavior of a monotone Boolean function. Each
observation is described by the values of some of the attributes (denoted by the vector
x), while an unknown number of other attributes (denoted as the vector y) has
undetermined values. The Boolean function may return one of a discrete set of values,
often different values for the inputs which correspond to the same x part (but to
different y parts). Next, some penalty coefficients are defined (in a geometric sense)
and the goal then is to determine a function which minimizes the sum of all these
penalties and also to be monotone.

Also note that in the previous treatment the problem of inquiring values of the function
for certain new inputs was not considered. Neither was considered the problem of
inferring a small size Boolean function. These are, however, the focus of the
developments discussed in the following sections. In the next paragraphs we give the
formal definitions for monotonicity and some key concepts.

Let «,BeE,, E, where denotes the set of all binary vectors of length n. Then, we say
that the vector « = (a,,a,,0,,...,0,) precedes the vector B = B,.BBs---.By
(denoted as: o < P) if and only if the following is true: o, <P, foralll< i <n A
Boolean function fx) is monotone if for any vectors «,BeE,, the relation fla) < fiP)
follows from the fact that & < B. Let M, be the set of all monotone Boolean functions
defined on n variables. A binary vector « of length n is said to be the upper zero of



234 CHAPTER 9
a function f(a)eM,, if ) = 0 and, for any vector B < ¢, we have fi) = 0.

A binary vector « of length 7 is said to be the lower uniz of a function Ro)eM,, if fa)
= 1 and, for any vector B from E, such that B < «, we get fip) = 1. We will also call
the above defined monotone Boolean function to be an increasing (isotone) monotone
Boolean function in contrast with a decreasing monotone Boolean function. A Boolean
function is decreasing (antitone) monotone, if for any vectors o,BeE,, the relation
fle) < fiB) follows from the fact that & > B [Rudeanu, 1974].

In terms of monotone Boolean function terminology note that the set of all upper zeros
represents the border elements of the negative pattern. In an analogous manner we
can also define the border of a positive pattern defined by using the lower units of the
function. In this manner any monotone Boolean function represents two "compact
patterns”. Please note that inferring the border elements of the positive and negative
patterns is equivalent to the problem of inferring the structure of the target monotone
Boolean function f from collections of positive and negative examples.

Some illustrative examples of monotone Boolean functions are: the constants 0 and
1, the identity function f(x) = x, the disjunction x, V x,, the conjunction x, A x,, etc.
Any function obtained by a composition of monotone Boolean functions is also
monotone. In other words, the class of all monotone Boolean functions is closed.
Moreover, the class of all monotone Boolean functions is one of the five maximal
(pre-complete) classes in the set of all Boolean functions. That is, there is no closed
class of Boolean functions, containing all monotone Boolean functions and distinct
from the class of monotone functions and the class of all Boolean functions. The
reduced disjunctive normal form (DNF) of any monotone Boolean function, distinct
of Oand 1, does not contain negations of variables. The set of functions {0, 1, (x,
V X)), (x; A x))} is a complete system (and moreover, a basis) in the class of all
monotone Boolean functions [Alekseev, 1988].

Let Y(n) be the number of monotone Boolean functions defined on r variables. Then,
it 1s known that;

n
¥ (n) = 2( ln/zJ) ot

where 0 < &(n) < c(logn)/n and c is a constant (see, for instance, [Kleitman, 1969],
and [Alekseev, 1988)).

r

Let a monotone Boolean function feM, be defined with the help of a certain operator
A, (also called an oracle). That is, when fis fed with a vector o = (a,,az,a3,...,an)'
the operator 4, returns the value of ). The problem posed here is that of finding all
upper and lower zeros of an arbitrary function feM, with the help of a certain number
of accesses to the operator A



Inferring Boolean Functions 235

In the following paragraphs we state a very important theoretical result regarding the
inference of monotone Boolean functions. Let # = {F} be the set of all algorithms
which can solve the above monotone Boolean function inference problem and @(F, f)
be the number of accesses to the operator 4, required to completely infer a monotone
function feM,.

Next, the Shannon function @(#n) is introduced as foliows [Hansel, 1966]:

o(n) = min max ¢o(F, f) . @)
Fe¥  feM,

It was shown in [Hansel, 1966] that when inferring a monotone Boolean function the

following relation is true (also known as Hansel's lemma):

n n
@ (n) :(Ln/zJ) +(ln/2J+1J’ ®

where | n/2 | is the floor value of n/2.

It was shown in [Hansel, 1966] that restoration algorithms for monotone Boolean
functions, and which use Hansel's lemma, are optimal in terms of the Shannon
function. That is, they minimize the maximum input size requirements of any possible
restoration algorithm. Finally, we state another related theorem [Kovalerchuk ez al.,
1995]:

Theorem 6: Each general Boolean function can be described in terms of several
monotone Boolean functions.

6 SOME KEY PROBLEMS AND ALGORITHM
OUTLINES

FOR MONOTONE FUNCTIONS

PROBLEM 1:  The Main Inference Problem

The central problem is how to infer a monotone Boolean function by issuing a
sequence of membership inquires to an operator or "oracle”. The solution of this
Problem is presented in detail in [Kovalerchuk er al., 1996]. That approach uses the
Concept of Hansel chains and tries to identify border points of the previous "positive”
and "negative" patterns. These patterns, in turn, lead to the definition of the target
Mmonotone Boolean function in DNF form. That algorithm is optimal in the sense of
Cf)nditions (7) and (8), as explained in the previous section. There could be two
different scenarios with this problem: one with no initial examples, and another with
Some initial examples.

PROBLEM 2: Inference When Examples Have Different Costs



236 CHAPTER 9

The problem is similar to the fundamental problem presented in the previous
paragraph. However, now it is assumed that different examples may be associated
with different costs when one seeks to classify them by issuing a membership inquiry
to an "oracle”. In a related context, the user may somehow know the probability that
a given example will have true (or, equivalently, false) value.

The basic idea of the proposed algorithm is as follows. Suppose that the example ¢,
which needs to be classified by the "oracle" as part of the function restoration process,
is associated with a known cost of classification, denoted as C,. Moreover, suppose
that the user knows (or can easily determine) the classification values of two other
examples, say . and o, with costs C,., and C,*, respectively which satisfy the
following three conditions:

6 o < o < o (i.e., o is between them),

@ii) C, > (C. + C,*. Thatis, their combined costs are

lower than the cost of the target example «,
and (i) Aoy = fla).

In a case like the above, the value of f{e) can be inferred from the values of two other
examples at a lower cost than directly inquiring about the cost of the original target
example o.

7. CONCLUDING REMARKS

In this paper we presented a survey of some results in inferring a small set of CNF or
DNF clauses from positive and negative examples. A logical analysis approach was
proposed for this purpose. The advantage of using a logical analysis approach is that
the end result can be easily translated into a set of logical rules which can be more
understandable by domain experts.

The paper considered the case of dealing with general Boolean functions and also the
special case of dealing with monotone Boolean functions. For the case of general
Boolean functions, the paper discussed a number of heuristics for inferring a small set
of clauses and also some theoretical results on lower bounds on the number of clauses
and ways for problem decomposition. This was achieved by exploiting the properties
of a special graph which can be easily constructed from the input data.

For the monotone Boolean function case the main issue is that when inference is based
in Hansel chains, then the target function can be inferred with a small number 9f
membership inquires. Moreover, algorithms which use Hansel chains are optimal (i
the sense of the Shannon function).

ACKNOWLEDGEMENTS

The first two authors gratefully recognize the partial support from the Office of Naval
Research (ONR) grant N00014-95-1-0639 and LaSPACE (a NASA program)- we

Ao



Inferring Boolean Functions 237

thank the anonymous referee for his/her many thoughtful comments and suggestions
made on an earlier version of this paper.

REFERENCES

ANGLUIN, D., 1988, "Queries and Concept learning," Machine Learning, Vol. 2.
pp- 319-342.

ANGLUIN, D., 1992, "Computational Learning Theory: Survey and Selected
Bibliography," Proceedings of the 24-th Annual ACM Symposium on the
Theory of Computing, Victoria, BC, Canada, May 4-6, pp. 351-369.

ALEKSEEV, V.B., 1988, "Monotone Boolean Functions". Encyclopedia of
Mathematics, v. 6, Kluwer Academic Publishers, 306-307.

BOROS, E., V. GURVICH, P.L. HAMMER, T. IBARAKI, AND A. KOGAN,
1994, "Structural Analysis and Decomposition of Partially Defined Boolean
Functions," RRR 13-94, 25 pages, RUTCOR, Rutgers University, NJ.

BOROS, E., P.L. HAMMER, AND J.N. HOOKER, 1994, "Predicting Cause-Effect
Relationships From Incomplete Discrete Observations,” SIAM J. on Discrete
Math., Vol. 7, No. 4, pp. 531-543.

BLAIR, C.E., R.G. JEROSLOW, AND J.K. LOWE, 1985, "Some Results and
Experiments in Programming Techniques for Propositional Logic,"
Computers and Operations Research. No. 13, pp.633-645.

CARRAGHAN, R., AND P.M. PARDALOS, 1990, "An Exact Algorithm for the
Maximum Clique Problem," Operations Research Letters, 9, November,
pp. 375-382.

CAVALIER, T.M., P.M. PARDALOS, AND A.L. SOYSTER, 1990, "Modeling
and Integer Programming Techniques Applied to Propositional Calculus,”
J.P. Ignizio (ed.). Computers and Operations Research. 17:6, 561-570.

DESHPANDE, A.S., and E. TRIANTAPHYLLOU, 1996, "A Randomized
Polynomial Heuristic for Inferring A Small Number of Logical Clauses from
Examples,” Mathematical and Computer Modelling, in print.

FEO, T.A. AND M.G.C. RESENDE, 1995, "Greedy Randomized Adaptive Search
Procedures,” Journal of Global Optimization, Vol. 6, pp. 109-133.

FU, LM., 1993, "Knowledge-based connectionism for revising domain theories, "
IEEE Transactions on Systems, Man and Cybernetics, Vol. 23, No. 1, pp.
173-182.

HAMMER, P.L., AND E. BOROS, 1994, "Logical Analysis: An Overview,"
RUTCOR Research Report, Rutgers University, NJ.

H*‘\MMER, P.L., AND A. KOGAN, 1992, "Horn Function Minimization and
Knowledge Compression in Production Rule Bases," RUTCOR Research
Report # 8-92, Rutgers University, NJ.

H“"\NSEL, G., 1966, "Sur le nombre des fonctions Boolenes monotones den
variables". C.R. Acad. Sci. Paris, v. 262, n. 20, 1088-1090.

HAUSSLER, D. 1989, "Learning conjunctive concepts in structural domains,”
Machine Learning, Vol. 4, pp. 7-40.



238 CHAPTER 9

HAUSSLER, D., AND M. WARMUTH, 1993, "The Probably Approximately
Correct (PAC) and Other Learning Models,” Chapter in: Foundations of
Knowledge Acquisition: Machine Learning, A.L. Meyrowitz and S.
Chipman (Eds), Kluwer Academic Publishers, Norwell, MA, pp. 291-312,

HOOKER, J.N., 1988a, "Generalized Resolution and Cutting Planes,” R.G.
Jeroslow (ed.), Annals of Operations Research, Vol. 12, No. 1-4, pp.
217-239.

HOOKER, J.N., 1988b, "A Quantitative Approach to Logical Inference," Decision
Support Systems. North-Holland, No. 4, pp. 45-69.

GIMPEL, J., 1965, "A Method of Producing a Boolean Function Having an
Arbitrarily Prescribed Prime Implicant Table," IEEE Trans. on Computers,
Vol. 14, pp. 485-488.

GOLDMAN, S.A., 1990, "Learning Binary Relations, Total Orders, and Real-Once
Formulas." Ph.D. Thesis, Massachusetts Institute of Technology,
September 1990. Available as Technical Report MIT/LCS/TR-483, MIT
Laboratory for Computer Science.

GORBUNOV, Y. and B. KOVALERSCHUK, 1982, "An Interactive Algorithm For
Restoring of a Monotone Boolean Function," Izvestia AN USSR (Proceedings
of the Acad. of Sci.), STN, 2, Tashkent, pp. 3-16, in Russian.

JEROSLOW, R.G., 1988, "Computation—Oriented Reductions of Predicate to
Prepositional Logic,” Decision Support Systems. North-Holland, No. 4, pp.
183-197.

JEROSLOW, R.G., 1989, Logic-Based Decision Support, North-Holland.

QUINLAN, J.R., "Discovering rules by induction from large collections of
examples," in Expert Systems in the Micro Electronic Age, D. Michie, Ed.,
Edinburgh, Scotland: Edinburgh University Press, 1979.

KAMATH, A.P., NK. KARMAKAR, K.G. RAMAKRISHNAN, AND M.G.C.
RESENDE, 1990, "Computational Experience with an Interior Point
Algorithm on the Satisfiability Problem," Annals of Operations Research.
P.M. Pardalos and J.B. Rosen (eds.). Special issue on: Computational
Methods in Global Optimization, Vol 25, pp. 43-58.

KAMATH, A.P., N.K. KARMAKAR, K.G. RAMAKRISHNAN, AND M.G.C.
RESENDE, 1992, "A Continuous Approach to Inductive Inference," Math.
Progr., Vol. 57, pp. 215-238.

KAMATH, A.P., N.K. KARMAKAR, K.G. RAMAKRISHNAN, AND M.G.C.
RESENDE, 1994, "An Interior Point Approach to Boolean Vector
Synthesis," Proceedings of the 36th MSCAS, pp. 1-5.

KARMAKAR, N.X., M.G.C. RESENDE, AND K.G. RAMAKRISHNAN, 1991,
"An Interior Point Algorithm to Solve Computationally Difficult Set
Covering Problems," Math. Progr., Vol. 52, pp- 597-618.

KLEITMAN, D., 1969, "On Dedekind's problem: the number of monotone Boolean
functions". Proc. Amer. Math. Soc. 21, 677-682.

KLEITMAN, D., 1969, "On Dedekind's problem: the number of monotone Boolean
functions”. Proc. Amer. Math. Soc. 21, 677-682.



Inferring Boolean Functions 239

KEARNS, M., MING LI, L. PITT, AND L.G. VALIANT, 1987, "On the
Learnability of Boolean Formulae," Journal of the Association for
Computing Machinery, No. 9, pp. 285-295.

KOVALERCHUK, B, E. TRIANTAPHYLLOU, and E. VITYAEV, 1995,
"Monotone Boolean Function Learning Techniques Integrated with User
Interaction,”  Proceedings of the 12-th Inter'l Conference in Machine
Learning, Lake Tahoe, CA, U.S.A., July 9-12, pp. 41-48.

KOVALERCHUK, B., E. TRIANTAPHYLLOU, A.S. DESHPANDE, AND E.
VITYAEV, 1996, "Interactive Learning of Monotone Boolean Functions,"
Information Sciences, 20 pages, (in print}.

McCLUSKEY, E., 1956, "Minimization of Boolean Functions," Bell Syst. Tech. J.,
Vol. 35, pp. 1417-1444, \

MANGASARIAN, O.L., R. SETIONO, AND W.H. WOLBERG, 1991, "Pattern
Recognition Via Linear Programming: Theory and Application to Medical
Diagnosis,"” in: Large-Scale Numerical Optimization, Eds. T.F. Coleman,
and Y. Li, SIAM, pp. 22-30.

MANSOUR, Y., 1992, "Learning of DNF Formulas", Proceedings of the Fifth
Annual Workshop on Computational Learning Theory, pp. 53-59.

MOTWANI, R. AND P. RAGHAVAN, 1995, Randomized Algorithms, Cambridge
University Press, New York, NY, USA.

MURPHY AND D.W. AHA, 1994, UCI Repository of Machine Learning Databases,
Machine readable data repository, Irvine, CA, University of California,
Dept. of Information and Computer Science.

PARDALOS, P.M., AND C.S. RENTALA, 1990, "Computational Aspects of a
Parallel Algorithm to Find the Connected Components of a Graph,"
Technical Report, Dept. of Computer Science, Pennsylvania State
University.

PEYSAKH, J., 1987, "A Fast Algorithm to Convert Boolean Expressions into CNF,"
IBM Computer Science RC 12913 (#57971), Watson, NY.

PITT, L. AND L.G. VALIANT, 1988, "Computational Limitations on Learning from
Examples," Journal of the Association for Computing Machinery. Vol. 35,
No. 4, pp. 965-984.

RUDEANU, S., 1974, Boolean Functions and Equations, North-Holland, NY.

SHAVLIK, J.W., 1994, "Combining Symbolic and Neural Learning," Machine
Learning, Vol. 14, pp. 321-331.

TRIANTAPHYLLOU, E, A.L. SOYSTER, AND S.R.T. KUMARA, 19%,
"Generating Logical Expressions from Positive and Negative Examples via
a Branch-And-Bound Approach," Computers and Operations Research,
Vol. 21, No. 2, pp. 185-197.

TRIANTAPHYLLOU, E., 1994, "Inference of A Minimum Size Boolean Function
From Examples by Using A New Efficient Branch-And-Bound Approach,”
Journal of Global Optimization, Vol. 5, No. 1, pp. 69-94.

TRIANTAPHYLLOU, E. AND A.L. SOYSTER, 1995, "An Important Relationship
Between CNF and DNF Systems Which are Derived from Examples,”



240 CHAPTER 9

ORSA Journal on Computing, Vol. 7, No. 3, pp. 283-285.

TRIANTAPHYLLOU, E. ANDA.L. SOYSTER, 1996a, "On the Minimum Number
of Logical Clauses Which Can be Inferred From Positive and Negative
Examples," Computers and Operations Research, Vol. 23, No. 8. pp. 783-
799.

TRIANTAPHYLLOU, E. AND A.L. SOYSTER, 1996b, "An Approach to Guided
Learning of Boolean Functions," Computers and Mathematical Modelling,
Vol. 23, No. 3, pp. 69-86.

TRICK, M. AND D. JOHNSON, 1995, "Second DIAMACS Challenge on Cliques,
Coloring and Satisfiability,” American Mathematical Society, Rutgers
University, Summer,

TURKSEN, L.B., AND H. ZHAO, "An Equivalence Between Inductive Learning and
Pseudo-Boolean Logic Simplification: A Rule Generation and Reduction
Scheme," IEEE Transactions on Systems, Man and Cybernetics, Vol. 23,
No. 3, pp. 907-917, 1993.

VALIANT, L.G., 1984, "A Theory of the Learnable," Comm. of ACM, Vol. 27, No.
11, pp. 1134-1142.

WILLIAMS, H.P., 1986, "Linear and Integer Programming Applied to Artificial
Intelligence,”  Preprint series, University of Southampton, Faculty of
Mathematical Studies, pp. 1-33.

YABLONSKII, S., 1986, Introduction to Discrete Mathematics, Moscow, Nauka
Publ. (in Russian).



CONTENTS

PartI METAHEURISTICS

1

TABU SEARCH AND ADAPTIVE MEMORY
PROGRAMMING — ADVANCES,
APPLICATIONS, AND CHALLENGES

Fred Glover

Part I NEURAL NETWORKS

2

NEURAL NETWORKS IN PRACTICE:
SURVEY RESULTS

Bruce L. Golden, Edward A. Wasil, Steven P. Coy,
Cihan H. Dagli

TRACTABLE THEORIES FOR THE
SYNTHESIS OF NEURAL NETWORKS
V Chandru, M Vidyasagar, V Vinay

NEURAL NETWORK TRAINING VIA
QUADRATIC PROGRAMMING
Theodore B. Trafalis, Nicolas P. Couellan

A NEURAL NETWORK MODEL FOR

PREDICTING ATLANTIC HURRICANE
ACTIVITY

Ohseok Kwon, Bruce Golden, Edward Wasil

77

97

123

141



vi

INTERFACES IN CS & OR

Part III OPTIMIZATION

6

AN EFFICIENT DUAL SIMPLEX
OPTIMIZER FOR GENERALIZED
NETWORKS

Jeffery L. Kennington, Riad A. Mohammed

SOLVING LARGE SCALE CREW
SCHEDULING PROBLEMS
Hai D. Chu, Eric Gelman, Ellis L. Johnson

Part IV CONSTRAINT AND LOGIC

PROGRAMMING

HOURIA III: A SOLVER FOR.
HIERARCHICAL SYSTEMS OF
FUNCTIONAL CONSTRAINTS
M. Bouzoubaa, B. Neveu, G. Hasle

SOME RECENT DEVELOPMENTS

OF USING LOGICAL ANALYSIS FOR
INFERRING A BOOLEAN FUNCTION
WITH FEW CLAUSES

Evangelos Triantaphyllou, Boris Kovalerchuk,
Aniruddha S. Deshpande

Part V. STOCHASTIC PERFORMANCE

10

ANALYSIS

COMPUTATIONAL ANALYSIS OF A
G/G/1 QUEUE WITH VACATIONS AND
EXHAUSTIVE SERVICE

Huan Li, Yizin Zhu

153

183

195

217

241



Contents

11

12

STABILITY AND QUEUING-TIME
ANALYSIS OF A READER-WRITER QUEUE
WITH WRITER PREFERENCE

L. C. Puryear, V. G. Kulkarni

IMPORTANCE SAMPLING IN LATTICE
PRICING MODELS
Soren S. Nielsen

Part VI MODELING AND DECISION

13

14

SUPPORT

DATA AND OPTIMISATION MODELLING:
A TOOL FOR ELICITATION AND
BROWSING (DOME)

Hossein Mousavi, Gautam Mitra, Cormac Lucas

ENHANCING USER UNDERSTANDING
VIA MODEL ANALYSIS IN A DECISION
SUPPORT SYSTEM

David M. Steiger

Part VII APPLICATIONS IN.

15

16

MANUFACTURING, LOGISTICS,
AND FINANCE

BANK FAILURE PREDICTION USING DEA
TO MEASURE MANAGEMENT QUALITY
Richard S. Barr, Thomas F. Siems

A COOPERATIVE MULTI-AGENT
APPROACH TO CONSTRAINED PROJECT
SCHEDULING

Dan Zhu, Rema Padman

vil

259

281

297

325

341

367



viii INTERFACES IN CS & OR

17 SCHEDULING A FLOW SHOP TO
MINIMIZE THE MAXIMAL LATENESS
UNDER ARBITRARY PRECEDENCE
CONSTRAINTS
Joanna Jozefowska, Arkadiysy Zimniak 383

18 A GENETIC PROGRAMMING APPROACH
FOR HEURISTIC SELECTION IN
CONSTRAINED PROJECT SCHEDULING
Rema Padman, Stephen F. Roehrig 405

19 COUPLING A GREEDY ROUTE
CONSTRUCTION HEURISTIC WITH
A GENETIC ALGORITHM FOR THE
VEHICLE ROUTING PROBLEM WITH
TIME WINDOWS

Jean-Yves Potvin, Francois Guertin 423



Ohseock Kwon
University of Maryland

College Park, Maryland, USA

Huan Li
NORTEL
Richardson, Texas, USA

Cormac Lucas

Brunel University
Uxbridge, Middlesex, UK

Gautam Mitra

Brunel University

Uxbridge, Middlesex, UK

Riad A. Mohammad
SABRE Decision Technologies
Dallas-Ft. Worth Airport, Texas, USA

Hossein Mousavi

Brunel University
Uxbridge, Middlesex, UK

B. Neveu
INRIO-CERMICS
Sophia-Antipolis Cedex, FRANCE

Soren S. Nielsen

University of Texas at Austin
Austin, Texas, USA

Rema Padman
Carnegie Mellon University
Pittsburgh, Pennsylvania, USA

Jean-Yves Potvin

Université de Montréal
Montréal, Quebec, CANADA

L. C. Puryear
Software Solutions

Research Triangle Park, North Carolina,

USA

CONTRIBUTORS

Stephen F. Roehrig
Carnegie Mellon University
Pittsburgh, Pennsylvania, USA

Thomas F. Siems
Federal Reserve Bank of Dallas
Dallas, Texas, USA

David M. Steiger

University of North Carolina at Greens-
boro

Greensboro, North Carolina, USA

Theodore B. Trafalis
University of Oklahoma
Norman, Oklahoma, USA

Evangelos Triantaphyllou
Louisana State University
Baton Rouge, Lounisana, USA

M. Vidyasagar
Centre for Al and Robotics
Bangalore, INDIA

V. Vinay
Indian Institute of Science
Bangalore, INDIA

Edward A. Wasil
American University

Washington, DC, USA

Dan Zhu
University of Iowa

Iowa City, Iowa, USA

Yixin Zhu
NORTEL .
Richardson, Texas, USA

Arkadiusz Zimniak
Poznan University of Technology
Poznan, POLAND



Richard S. Barr
Southern Methodist University
Dallas, Texas, USA

M. Bouzoubaa
INRIA-CERMICS

Sophia-Antipolis Cedex, FRANCE

V. Chandru

Indian Instutute of Science
Bangalore, INDIA

Hai D. Chu
SABRE Decision Technologies
Dallas-Ft. Worth, Texas, USA

Nicolas P. Couellan

University of Oklahoma
Norman, Oklahoma, USA

Steven P. Coy
University of Maryland
College Park, Maryland, USA

Cihan H. Dagli

University of Missouri-Rolla
Rolla, Missouri, USA

Aniruddha Deshpande
Louisana State University
Baton Rouge, Louisana, USA

Eric Gelman
SABRE Decision Technologies
Dallas-Ft. Worth, Texas, USA

CONTRIBUTORS

Fred Glover
University of Colorado
Boulder, Colorado, USA

Bruce L. Golden
University of Maryland
College Park, Maryland, USA

Frangois Guertin
Université de Montréal

Montréal, Quebec, CANADA

G. Hasle
SINTEF
Oslo, NORWAY

Ellis L. Johnson
Georgia Institute of Technology
Atlanta, Georgia, USA

Joanna Jézefowska

Poznan University of Technology
Poznan, POLAND

Jeffery L. Kennington
Southern Methodist University
Dallas, Texas, USA

Boris Kovalerchuk
Louisana State University
Baton Rouge, Louisana, USA

V. G. Kulkarni
University of North Carolina
Chapel Hill, North Carolina, USA



Distributors for North America:
Kluwer Academic Publishers

101 Philip Drive

Assinippi Park

Norwell, Massachusetts 02061 USA

Distributors for all other countries:
Kluwer Academic Publishers Group
Distribution Centre

Post Office Box 322

3300 AH Dordrecht, THE NETHERLANDS

Library of Congress Cataloging-in-Publication Data

A C.IP. Catalogue record for this book is available from the Library of Congress.

Copyright © 1997 by Kluwer Academic Publishers

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system or transmitted in any form or by any means, mechanical, photo-
copying, recording, or otherwise, without the prior written permission of the
publisher, Kluwer Academic Publishers, 101 Philip Drive, Assinippi Park, Norwell,
Massachusetts 02061

Printed on acid-free paper.

Printed in the United States of America



INTERFACES IN
COMPUTER SCIENCE
AND OPERATIONS
RESEARCH

Advances in Metaheuristics,
Optimization, and Stochastic
Modeling Technologies

EDITED BY

Richard S. BARR
Southern Methodist University

Dallas, Texas, USA

Richard V. HELGASON
Southern Methodist University

Dallas, Texas, USA

Jeffery L. KENNINGTON
Southern Methodist University

;“ Dallas, Texas, USA

KLUWER ACADEMIC PUBLISHERS
Boston/London/Dordrecht



