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Abstract: This chapter reviews a data mining and knowledge discovery approach called 
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extracts its underlying behavior in terms of a compact and rather accurate set of 
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1. INTRODUCTION  
 
 In many scientific and engineering problems one often needs to study 
the operation of some system or phenomenon of interest.  As input data we 
consider observations regarding the performance of this system under different 
situations.  Moreover, we assume that these observations belong to disjoint 
classes.  These observations may describe the different states of nature of the 
system under consideration.  That is, each observation is comprised by a set of 
variables or attributes along with their corresponding values.  Often there are 
only two types of states of nature or classes of observations.  The first class 
may correspond to failures of the system and similarly, the second class may 
correspond to its successes.  Then, a central problem is to utilize the above 
information (i.e., the observations grouped into different classes) and construct 
a set of classification rules (also known as decision rules or just rules) which 
can explain the behavior of the system.   
 Such situations may arise in many settings.  For instance, the system 
of interest may be some kind of a mechanical device.  Then observations are 
descriptions of the operation of this device.  Such descriptions may provide 
information on the noise level, vibration level, temperature of different parts of 
the device, fluid levels, revolution speed of certain parts, etc.  The different 
classes may be the properly functioning and malfunctioning states of this 
device.  Then one may be interested in studying data that describe different 
conditions when the device is functioning properly and also when it is 
malfunctioning and extract any patterns that might be embedded in these data. 
Such patterns may be used later to accurately predict the state of this device 
when one has not determined yet if it is functioning properly or not, but has 
information on some key performance characteristics as described above.   
 As another example, one may wish to consider observations that 
describe certain clinical and non-clinical characteristics associated with studies 
to determine whether a given patient has a certain medical condition such as 
breast cancer.  Observations may now describe family history facts, the 
presence or not of lesions in mammographic images, blood analysis results, 
etc. The two disjoint classes, roughly speaking, may be the benign or 
malignant nature of any lesions present in a patient’s breasts.  Usually, such 
final diagnosis takes place after a specimen from the lesion is analyzed in a lab 
(i.e., by performing a biopsy).  In such cases one may wish to identify any 
patterns in collections of such observations which may lead to an accurate 
diagnosis without having to perform an invasive and costly procedure such as 
a biopsy.   
 Similar situations, like the ones described above, may arise when one 
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studies other medical conditions, the reliability of mechanical and electronic 
systems, weather phenomena, characterization of images into different classes 
(for digital image analysis), prediction of financial events (for example, for 
investing type of decision-making), prediction of buying behaviors of 
consumers, and so on.  
 Until recently such inference problems have been studied by statistical 
models, such as regression and factor analysis.  However, the proliferation of 
effective and efficient computing power, along with the easy availability of 
magnetic storage media and new ways for gathering data fast and efficiently, 
created the need for developing new methods for analyzing large amounts of 
data.  Moreover, data may now be highly heterogeneous and also highly 
unstructured. The later is the case more and more now with the advent and 
proliferation of the World Wide Web (WWW).   
 The above are the main reasons for the emergence of the new 
computational discipline called data mining and knowledge discovery from 
databases (DM&KDD) [Fayyad, et al., 1996].  This new discipline is based on 
the use of many computational methods formally known as artificial 
intelligence (AI) classification methods.  Currently, such classification 
methods include standard back-propagation neural networks, nearest neighbor 
methods, discriminant analysis, cluster analysis, and linear programming based 
methods.  Such techniques attempt to generalize from collections of available 
classified data.  Therefore, they rely on the supposition that the more 
representative the data are, the more accurate the performance of these 
methods is.  
 However, there are some basic weaknesses in using these techniques.  
For example, according to Johnson [1991] the use of Bayesian models may be 
controversial, if not unethical (for instance, in medical diagnosis), because the 
fundamental requirement of strict randomness rarely occurs in reality.  Also, 
standard back-propagation neural networks techniques are problematic 
because they do not provide an explanation of their decision-making process 
[Fu, 1993].  In summary, there are two closely related fundamental weaknesses 
with most of the existing classification methods: 
 
First weakness: 
 The way these classification methods work and produce 

recommendations may not be appealing to domain experts.  For 
instance, the decision-making process inside a standard back-
propagation neural network might be awkward to many users with no 
engineering or computer science background. 

 
Second weakness: 
  The available training data are often insufficient to guaranty 

statistically significant results. This is especially true for data which 
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describe applications in diagnostic systems.  As result these methods 
may be unreliable for some of the real life applications or their 
reliability cannot be scientifically guaranteed. 

 
 The severity of the first weakness is increasingly recognized lately and 
some hybrid systems try to combine rule based systems with neural network 
techniques.  Such hybrid systems produce a set of decision rules which in turn 
can be used for the classification of new instances.  Newly developed 
intelligent hybrid systems, and in particular knowledge based neural networks 
[Fu, 1993, Galant, 1988; Bradshaw, et al, 1989; Hall and Romanyuk, 1990; 
Towell, et al., 1990; and Sun and Alexandre, 1997], appear to be more 
promising.  Unfortunately, these systems have the potential to create an 
exponential number of rules [Shavlik, 1994]. Moreover, they may even 
produce contradictory rules because they are not built in a complete logic-
based framework.   
 The second weakness is usually treated by a brutal force approach.  
That is, by collecting huge amounts of training data.  However, this may be a 
too time and cost consuming remedy.  More importantly, when one considers 
the number of all possible states of nature, then millions, or even billions, of 
observations may represent only a tiny fraction of the entire state space.  This 
may cause severe concerns regarding the reliability of the extracted 
knowledge, especially for medical diagnostic systems (see, for example, 
[Kovalerchuk, et al., 2000]).  For instance, a system described on 50 binary 
attributes corresponds to 250 = 1.12589x1015 different states of nature.  In that 
case, even a few billions of observations may be considered as been 
statistically too few.  
 This chapter presents some developments for inferring a compact 
Boolean function from collections of positive and negative examples and also 
some related subjects.  This chapter is organized as follows.  The next section 
describes the main problems to be examined and some related developments 
from the literature.  Section 3 defines the notation to be used throughout this 
chapter.  Section 4 focuses on the problem of inferring a small number of 
classification rules from two collections of training (positive and negative) 
examples.  These rules are first extracted in the form of a compact Boolean 
function.  Some optimal algorithms and fast heuristics are described.  It also 
describes a data transformation method for converting multi-valued data into 
binary ones.  Section 5 describes a guided learning approach.  Section 6 
presents the notion of a special graph which can be easily built from the 
training examples.  Section 7 describes how that graph can be used to 
decompose a large size data mining problem.  A detailed illustrative example 
is presented in Section 8.  Section 9 is the last one and describes some 
conclusions and possible future research topics.   
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2.  SOME BACKGROUND INFORMATION  
 
 We assume that some observations are available and they describe the 
behavior of a system of interest.  It is also assumed that the behavior of this 
system is fully described by a number, say n, of attributes (also known as 
atoms, parameters, variables, characteristics, predicates, or just features).  
Thus, each observation is defined by a vector of size n.  The i-th (for i = 1, 2, 
3, ..., n) element of such a vector corresponds to the value of the i-th attribute.  
These attributes may be of any data type.  For instance, they may take 
continuous, discrete, or binary (i.e., 0/1) values.  Each observation belongs to 
one and only one of K distinct classes.  It is assumed that the observations are 
noise free.  Furthermore, it is also assumed that the class membership 
associated with each observation is the correct one.  
 One may assume that some observations, say m, are already available. 
New observations (along with their class membership) may become available 
later but the analyst has no control on their composition.  In addition to the 
previous scenario, the analyst may be able to define the composition of new 
observations (i.e., to set the values of the n attributes) and then perform a test, 
or ask an expert or “oracle”, to determine the class membership of a new 
observation.  The main goal is to use the available classified observations to 
extract the underlying behavior of the target system in terms of a pattern.  
Next, this pattern is used to, hopefully, accurately infer the class membership 
of unclassified observations. 
 The extraction of new knowledge in the form of a set of logical 
decision rules from collections of classified data is a particular type of learning 
from examples.  The related literature is vast and is increasing rapidly and thus 
it will not be exhaustively discussed.  One of the most recent contributions is 
the book by Truemper [2004] which discusses methods for inferring the logic 
of a system of interest from sampled observations and then use it towards 
building intelligent systems.  Complexity issues of this type of learning can be 
found in [Valiant, 1984; and 1985], [Kearns, et al., 1987], and [Pitt and 
Valiant, 1988].   
 A considerable amount of related research is today known as the PAC 
(for Probably Approximately Correct) learning theory (see, for instance, 
[Angluin, 1988] and [Haussler and Warmuth, 1993]).  Conjunctive concepts 
are properly PAC learnable [Valiant, 1984]. However, the class of concepts in 
the form of the disjunction of two conjunctions is not properly PAC learnable 
[Pitt and Valiant, 1988]. The same is also true for the class of existential 
conjunctive concepts on structural instance spaces with two objects [Haussler, 
1989].  The classes of k-DNF, k-CNF, and k-decision lists are properly PAC 
learnable for each fixed k [Valiant, 1985; Rivest, 1987; and Kearns, et al., 
1987], but it is unknown whether the classes of all DNF, or CNF functions are 
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PAC learnable [Haussler and Warmuth, 1993] and [Goldman, 1990].  In 
[Mansour, 1992] an nO(loglogn) algorithm is given for learning DNF formulas 
(however, not of minimal size) under a uniform distribution using membership 
queries.  
    Another issue is the sample complexity of a learning algorithm.  That 
is, the number of examples needed to accurately approximate a target concept. 
The presence of bias in the selection of a hypothesis from the hypothesis space 
can be beneficial in reducing the sample complexity of a learning algorithm.  
Usually the amount of bias in the hypothesis space H is measured in terms of 
the Vapnik-Chernovenkis dimension, denoted as VCdim(H) [Haussler, 1988].  
 There are many reasons why one may be interested in inferring a 
Boolean function with the minimum (or near minimum) number of terms.  In a 
circuit design environment, a minimum size Boolean representation is the 
prerequisite for a successful VLSI application.  In a learning from examples 
environment, one may be interested in deriving a compact set of decision rules 
which satisfy the requirements of the input examples.  This can be motivated 
for achieving the maximum possible simplicity (Occam's razor) and easy 
validation of the derived new knowledge.  
 Since the very early days it was recognized that the problem of 
inferring a Boolean function with a specified number of clauses is NP-
complete (see, for instance, [Brayton, et al., 1985] and [Gimpel, 1965]).  Some 
early related work in this area is due to [Bongard, 1970].  The classical 
approach to deal with this Boolean function inference problem as a 
minimization problem (in the sense of minimizing the number of CNF or DNF 
clauses) was developed in [Quine, 1952 and 1955] and [McCluskey, 1956].  
However, the exact versions of the Quine-McCluskey algorithm cannot handle 
large scale problems.  Thus, some heuristic approaches have been proposed. 
These heuristics include the systems MINI [Hong, et al., 1974], PRESTO 
[Brown, 1981], and ESPRESSO-MV [Brayton, et al., 1985].  Another widely 
known approach in dealing with this problem is the use of Karnaugh maps 
[Karnaugh, 1953].  However, this approach cannot be used to solve large scale 
problems [Pappas, 1994].  Another application of Boolean function 
minimization can be found in the domain of multicast [Chang, et al., 1999] 
where one needs a minimum number of keys.  
 A related method, denoted as SAT (for satisfiability), has been 
proposed in [Kamath, et al., 1992].  In that approach one first pre-assumes an 
upper limit on the number of clauses to be considered, say k.  Then a clause 
satisfiability (SAT) model is formed and is solved by using an interior point 
method developed by Karmakar and his associates [Karmakar, Resende, and 
Ramakrishnan, 1992].  If the clause satisfiability problem is feasible, then the 
conclusion is that it is possible to correctly classify all the examples with  k  or 
fewer clauses.  If this SAT problem is infeasible, then one must increase  k  
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until feasibility is reached.  In this manner, the SAT approach yields a system 
with the minimum number of clauses.  It is important to observe at this point 
that from the computational point of view it is much harder to prove that a 
given SAT problem is infeasible than to prove that it is feasible.  Therefore, 
trying to determine a minimum size Boolean function by using the SAT 
approach may be computationally too difficult. Some computational results 
indicate that the branch-and-bound (B&B) approach proposed in 
[Triantaphyllou, 1994] is significantly more efficient than the previous 
satisfiability based approach (5,500 times faster on the average for those tests). 
 In [Felici and Truemper, 2002] the authors propose a different use of 
the SAT model.  They formulate the problem of finding a clause with 
maximal coverage as a minimum cost satisfiability (MINSAT) problem and 
solve such problem iteratively by using the logic SAT solver Leibniz, which 
was developed by Truemper [Truemper, 1998].  That method is proved to be 
computationally feasible and effective in practice. The same authors also  
propose several variants and extensions to that system, some of which are 
discussed in Chapter 6 of this book. Further extensions on this learning 
approach are also discussed in [Truemper, 2004]. 
   A closely related problem is to study the construction of a partially 
defined Boolean function (or pdBf), not necessarily of minimal size, given 
disjoint sets of positive and negative examples.  That is, now it is required that 
the attributes of the function be grouped according to a given scheme (called a 
decomposition structure) [Boros, et al., 1994].  Typically, a pdBf may have 
exponentially many different extensions. 
 In summary, the most recent advances in distinguishing between 
observations in two or more classes can be classified into six distinct 
categories.  These developments are; the clause satisfiability approach to 
inductive inference by Kamath, et al. [1992; and 1994]; some B&B and 
heuristic approaches of generating a small set of logical decision rules 
developed in [Triantaphyllou, et al., 1994], and [Triantaphyllou, 1994]; some 
improved polynomial time and NP-complete cases of Boolean function 
decomposition by [Boros, et al., 1994]; some MINSAT formulations [Felici 
and Truemper, 2002]; decision tree based approaches [Quinlan, 1979; and 
1986]; linear programming based approaches by [Wolberg and Mangasarian, 
1990], [Mangasarian, et al., 1990] and [Mangasarian, et al., 1995]; some 
approaches which combine symbolic and connectionist machines (neural 
networks) as proposed by [Sun and Alexandre, 1997], Shavlik [1994], Fu 
[1993], Goldman and Sloan [1994] and Cohn, et al. [1994] and finally, some 
nearest neighbor classification approaches by Hattori and Torri [1993], Kurita 
[1991], Kamgar-Parsi and Kanal [1985].   
 The main challenge in inferring a target set of discriminant decision 
rules from positive and negative examples is that the user can never be 
absolutely certain about the correctness of the decision rules, unless he/she has 
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processed the entire set of all possible examples which is of size 2n in the 
binary case.  In the general case this number is far higher.  Apparently, even 
for a small value of n, this task may be practically impossible to realize. 
 Fortunately, many real life applications are governed by the behavior 
of a monotone system or they can be described by a combination of a small 
number of monotone systems.  In data mining and knowledge discovery 
research monotonicity offers some unique computational advantages.  By 
knowing the value of certain examples, one can easily infer the values of more 
examples.  This, in turn, can significantly expedite the learning process.  This 
chapter discusses the case of inferring general Boolean functions from disjoint 
collections of training examples.  The case of inferring a monotone Boolean 
function is discussed in Chapter 4 of  this book as written by Torvik and 
Triantaphyllou [2005]. 
 
 
3.    DEFINITIONS AND TERMINOLOGY 
 
 Let {A1, A2, A3, ..., At} be a set of  t  Boolean attributes. Each 
attribute Ai (i = 1, 2, 3, ..., t) can be either true (denoted by 1) or false 
(denoted by 0).  Let F be a Boolean function  over these attributes.  For 
instance, the expression  (A1 ∨ A2) ∧ (A3 ∨ Ā4) is such a Boolean function, 
where "∨" and  "∧"  stand for the logical "OR" and "AND" operators, 
respectively.  That is, F is a mapping from {0,1}t → {0,1}  which 
determines for each combination of truth values of the attributes A1, A2, A3, 
..., At of F, whether F is true or false (denoted as 1 or 0, respectively).   
 For each Boolean function F, the positive examples  are the vectors 
v∈{0,1,}t such that F(v) = 1.  Similarly, the negative examples are the 
vectors v∈{0,1,}t  such that F(v) = 0.  Therefore, given a function F defined 
on the  t  attributes {A1, A2, A3, ..., At}, then a vector v∈{0,1,}t is either a 
positive or a negative example.  Equivalently, we say that a vector v∈{0,1,}t 
is accepted (or rejected) by a Boolean function F if and only if the vector v 
is a positive (or a negative) example of F.  For instance, let F be the Boolean 
function  (A1 ∨ A2) ∧ (A3 ∨ Ā4).  Consider the two vectors v1 = (1,0,0,0) and 
v2 = (1,0,0,1).  Then, it can be easily verified that F(v1) = 1.  That is, the 
vector  v1 is a positive example of the function F.  However, the vector v2 is 
a negative example of F (since  F(v2) = 0). 
 At this point some additional definitions are also introduced.   Let 
e∈{0,1,}t  be an example (either positive or negative).   Then, ê∈{0,1,}t   is 
defined as the complement of the example e.  For instance, if e = 
(0,1,1,0,0,0), then ê = (1,0,0,1,1,1).  Similarly, let E be a collection of 
examples.  Then, Ê is defined as the complement of the collection E.  A 
Boolean expression is in CNF or DNF if it is in the form (i) or (ii), 
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respectively:  

)a( i
i 

k

j j

∨∧
∈= ρ1

,       (i) 

and )a( i
i 

k

j j

∧∨
∈= ρ1

,       (ii) 

where ai is either Ai or Āi and ρj is the set of indexes. 
 
In other words, a CNF expression is a conjunction of disjunctions, while a 
DNF expression is a disjunction of conjunctions.  
 It is known [Peysakh, 1987] that any Boolean function can be 
transformed into the CNF or DNF form.  The following theorem proved in 
[Triantaphyllou and Soyster, 1995a] states an important property which 
exists when CNF and DNF systems are inferred from collections of positive 
and negative examples.  
 
Theorem 1:  
Let E+ and E— be the sets of positive and negative examples, respectively.  A 
CNF system given as (i) satisfies the constraints of the E+ and E— sets if and 
only if the DNF system given as (ii) satisfies the constraints of Ê— 
(considered as the positive examples) and Ê+ (considered as the negative 
examples). 
 
 This theorem is stated here because the graph theoretic 
developments throughout this chapter assume that a system is derived in 
CNF form.   However, since a clause inference algorithm which derives 
DNF expressions (such as, for instance,  the SAT approach described in  
[Kamath, et al., 1992; and 1994])  can also derive CNF expressions (by 
applying the previous theorem),  the methods in this chapter are applicable 
both to CNF and DNF cases.  
  In summary, a set of positive examples is denoted as E+  and a set of 
negative examples is denoted as E—.  Given these two sets of positive and 
negative examples,  the constraints to be satisfied by a system (i.e., a 
Boolean function) are as follows.   In the CNF case, each positive example 
should be accepted by all the disjunctions in the CNF expression  and each 
negative example should be rejected by at least one of the disjunctions.   In 
the case of DNF systems, any positive example should be accepted by at 
least one of the conjunctions in the DNF expression,  while each negative 
example should be rejected by all the conjunctions.   
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4.  THE ONE CLAUSE AT A TIME (OCAT) 
 APPROACH  

 
 The main ideas are best described via a simple illustrative example. 
Suppose that the data in Table 1 represent some sampled observations of the 
function of a system of interest.  Each observation is described by the value of 
two continuous attributes denoted as A1 and A2.  Furthermore, each observation 
belongs to one of two classes, denoted as Class 1 and Class 2.  A number of 
problems can be considered at this point.  The main problem is how to derive a 
pattern, in the form of a set of rules, that is consistent with these observations.  
As set of rules we consider here logical clauses in the CNF (conjunctive 
normal form) or DNF (disjunctive normal form).  That is, we seek the 
extraction of a Boolean function in CNF or DNF form.   
 Although, in general, many such Boolean functions can be derived, 
the focus of the proposed approach is the derivation of a function of minimum 
size.  By minimal size we mean a Boolean function which consists of the 
minimum number of CNF or DNF clauses.  We leave it up to the analyst to 
decide whether he/she wishes to derive CNF or DNF functions.  The proposed 
methodology can handle both cases when Theorem 1, as described in the 
previous section, is used.  
 
  Table 1.  Continuous Observations for Illustrative Example. 
 

Example 
No. 

A1 A2 Class 
No. 

Example 
No. 

A1 A2 Class 
No. 

1 0.25 1.50 1 12 1.00 0.75 1 

2 0.75 1.50 1 13 1.50 0.75 1 

3 1.00 1.50 1 14 1.75 0.75 2 

4 0.50 1.25 1 15 0.50 0.50 1 

5 1.25 1.25 2 16 1.25 0.50 2 

6 0.75 1.00 1 17 2.25 0.50 2 

7 1.25 1.00 1 18 2.75 0.50 2 

8 1.50 1.00 2 19 1.25 0.25 2 

9 1.75 1.00 1 20 1.75 0.25 2 

10 2.25 1.00 2 21 2.25 0.25 2 

11 0.25 0.75 1     

 
 
4.1 Data Binarization  
 Next it is demonstrated how the continuous data depicted in Table 1 
can be represented by equivalent observations with only binary attributes.  
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This is achieved as follows.  First we start with the first continuous attribute, 
i.e., attribute A1 in this case, and we proceed until we cover all the attributes.  It 
can be observed from Table 1 that the ordered set, denoted as Val(A1), with all 
the values of attribute A1 is defined as the following ordered list:  
 Val(A1) =  {Vi(A1), for i = 1, 2, 3, ..., 9} =  
  =  {0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.25, 2.75}. 
 
Obviously, the cardinality of this set is less than or at most equal to the number 
of all available observations.  In this instance, the cardinality is equal to 9.  
Next, we introduce 9 binary attributes A1,i

/ (for i = 1, 2, 3, ..., 9) as follows: 
 



 =≤= .otherwise    ,

9,1,2,3,...,i   for  ),(AV   A   iff    ,A 1i1/
i, 0

1
1

 
In general, the previous formula becomes for any multi-valued attribute Aj : 



 =≤

= .otherwise,
,

A /
i,j     0

M, ..., 3, 2, 1,ifor     ),(AV   A   iff    1 jij

 
For instance, by using the above introduced binary attributes, from the second 
observation (i.e., vector (0.75, 1.50) we get: 
     {A1,1

/, A1,2
/, A1,3

/, A1,4
/, A1,5

/, A1,6
/, A1,7

/, A1,8
/, A1,9

/}  =  {1, 1, 1, 0, 0, 0, 0, 0, 0}.  
 
Similarly, for the second continuous attribute A2 the set Val(A2) is defined as 
follows: 
 Val(A2) =    {Vi(A2), for i  = 1, 2, 3, ..., 6} =  
  =    {0.25, 0.50, 0.75, 1.00, 1.25, 1.50}. 
 
Working as above, for the second observation we have: 
 {A2,1

/, A2,2
/, A2,3

/, A2,4
/, A2,5

/, A2,6
/}  =  {1, 1, 1, 1, 1, 1}. 

 
The above transformations are repeated for each one of the non-binary 
attributes.  In this way, the transformed observations are defined on at most 
mxn binary attributes (where m is the number of observations and n is the 
original number of attributes).  The precise number of the transformed 
attributes can be easily computed by using the following formula: 

   ,| ) A Val( | i

n

1 = i
∑                                                                        

  where  |s|  denotes the cardinality of set s.     
The binary attributed observations which correspond to the original data (as 
presented in Table 1)  are presented in Table 2 (parts (a) and (b)).  
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Table 2 (a).    The Binary Representation of the Observations in the Illustrative 
            Example  (first set of attributes for each example). 
 

Example First set of attributes:   A1,i
/,   for i = 1, 2, 3, …, 9. 

No. A1,1
/ A1,2

/ A1,3
/ A1,4

/ A1,5
/ A1,6

/ A1,7
/ A1,8

/ A1,9
/ 

1 1 0 0 0 0 0 0 0 0 

2 1 1 1 0 0 0 0 0 0 

3 1 1 1 1 0 0 0 0 0 

4 1 1 0 0 0 0 0 0 0 

5 1 1 1 1 1 0 0 0 0 

6 1 1 1 0 0 0 0 0 0 

7 1 1 1 1 1 0 0 0 0 

8 1 1 1 1 1 1 0 0 0 

9 1 1 1 1 1 1 1 0 0 

10 1 1 1 1 1 1 1 1 0 

11 1 0 0 0 0 0 0 0 0 

12 1 1 1 1 0 0 0 0 0 

13 1 1 1 1 1 1 0 0 0 

14 1 1 1 1 1 1 1 0 0 

15 1 1 0 0 0 0 0 0 0 

16 1 1 1 1 1 0 0 0 0 

17 1 1 1 1 1 1 1 1 0 

18 1 1 1 1 1 1 1 1 1 

19 1 1 1 1 1 0 0 0 0 

20 1 1 1 1 1 1 1 0 0 

21 1 1 1 1 1 1 1 1 0 
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Table 2 (b).    The Binary Representation of the Observations in the Illustrative 
            Example  (second set of attributes for each example). 
 

Example Second set of attributes:   A2,i
/,   for i = 1, 2, 3, …, 

6. 

Class 

No. A2,1
/ A2,2

/ A2,3
/ A2,4

/ A2,5
/ A2,6

/ No. 

1 1 1 1 1 1 1 1 

2 1 1 1 1 1 1 1 

3 1 1 1 1 1 1 1 

4 1 1 1 1 1 0 1 

5 1 1 1 1 1 0 2 

6 1 1 1 1 0 0 1 

7 1 1 1 1 0 0 1 

8 1 1 1 1 0 0 2 

9 1 1 1 1 0 0 1 

10 1 1 1 1 0 0 2 

11 1 1 1 0 0 0 1 

12 1 1 1 0 0 0 1 

13 1 1 1 0 0 0 1 

14 1 1 1 0 0 0 2 

15 1 1 0 0 0 0 1 

16 1 1 0 0 0 0 2 

17 1 1 0 0 0 0 2 

18 1 1 0 0 0 0 2 

19 1 0 0 0 0 0 2 

20 1 0 0 0 0 0 2 

21 1 0 0 0 0 0 2 

 
 
 
 
 
 From the way the binary attributes have been defined, it follows that 
the two sets of observations are equivalent to each other.  However, the 
observations in Table 1 are defined in continuous attributes while the 
observations in Table 2 are defined in binary ones. 
 Given the above considerations, it follows that the original problem 
has been transformed into the binary problem depicted in Table 2 (parts (a) 
and (b)).  This problem has the following two sets of positive and negative 
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examples, denoted as E+ and E, respectively. 
 































000011000000011
000111000111111
000111000001111
000111000000001
001111001111111
001111000011111
001111000000111
011111000000011
111111000001111
111111000000111
111111000000001

  =  E+ , and 

.  =  E





























−

000001011111111
000001001111111
000001000011111
000011111111111
000011011111111
000011000011111
000111001111111
001111011111111
001111000111111
011111000011111

 

Finally, it should be stated here that Chapter 7 of this book [Bartnikowski, et 
al., 2005] presents a detailed study of the binarization problem. 
 
4.2 The One Clause At a Time (OCAT) Concept  
 As it was mentioned in the previous section, the problem of deriving a 
Boolean function from sets of observations has been extensively studied in the 
literature.  In our setting each example was a binary vector of size n (number 
of binary attributes).  The proposed method employs an approach which 
constructs one clause at a time, called the OCAT (for One Clause At a Time) 
approach.  That approach is greedy in nature in the sense that the first clause 
(in the CNF case) accepts all the positive examples while it rejects as many 
negative examples as possible.  The second clause also accepts all positive 
examples, but rejects as many negative examples from the ones not rejected so 
far.  Consecutive clauses are generated in a similar manner until all the derived 
clauses reject the entire set of negative examples.  The operation of the OCAT 
approach is best described in Figure 1.  In this figure E+ represents the set with 
the positive examples while E―  is the set with the negative ones. 
 The core of the OCAT approach is step 2, in Figure 1.  In 
Triantaphyllou, et al. [1994] a branch-and-bound (B&B) based algorithm is 
presented which solves the problem posed in step 2.  A more efficient B&B 
algorithm, along with other enhancements, are described in Triantaphyllou 
[1994].  The OCAT approach returns the set of desired clauses (i.e., the CNF 
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system) as set C. 
     i = 0 ; C = Ø ; {initializations} 
 DO WHILE  (E―  ≠ Ø) 
                   Step 1:  i ←  i + 1 ;  
                   Step 2:  Find a clause  ci  which accepts all members of E+ 

while it rejects as many members of E― as possible ; 
                    Step 3:  Let  E― (ci)  be the set of members of E― which are 

rejected by ci ; 
                    Step 4:  Let  C ← C  ∧  ci ; 
       Step 5:  Let  E―  ←  E―  ―  E― (ci) ; 
 REPEAT; 
 
 
 Figure 1.  The One Clause At a Time (OCAT) Approach (for the CNF case). 
 
 
 
4.3 A Branch-and-Bound Approach for Inferring Clauses 
 This B&B algorithm is best described in [Triantaphyllou, 1994].  The 
basic steps are described next in terms of an illustrative example.  Consider the 
following two sets of positive and negative examples: 

  















































0111

0001

0000

1111

1000

0101

and

1001

1100

0011

0010

_  = E     = E+  

 
 These examples are defined on four attributes (and their negations). 
Recall that for the CNF case, the requirement is that the clause to accept all the 
positive examples, while rejecting as many negative examples as possible.  
Next, define as POS(Ai) the set of the positive examples which are accepted by 
a CNF clause when the attribute Ai is included in that clause.  For instance, for 
the previous examples, one has (please note that for simplicity only the indexes 
of these examples are used):  POS(A2) = {1,2}, POS(Ā3) = {1,2,4}, etc.  That 
B&B algorithm also uses the concept of the NEG(Ai) set which is defined in a 
similar manner. 
 The search states are described in terms of two sets.  The first set 
refers to the positive examples which are accepted by the attributes which 
correspond to the arcs which connect that state (node) with the root node.  
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Similarly, the second set refers to the negative examples which are accepted by 
the attributes which correspond to the arcs which connect that state with the 
root node.  Suppose that we are at state  Si = [Pi, Ni]  (where Pi, Ni correspond 
to the previous two sets of positive and negative examples, respectively).  Now 
assume that the search considers the state (node) which is derived by following 
the arch which corresponds to attribute Ak.  Then, the new state is:  Sj = [Pj, Nj], 
 where the new sets Pj and Nj are defined as follows: 
 
  Pj  =  Pi U POS(Ak),  and 
  Nj  =  Ni U NEG(Ak). 
 
 Therefore, the search continues until terminal states are reached.  A 
state  Si = [Pi, Ni]  is a terminal state if and only if: Pi = E+ (i.e., it refers to all 
positive examples).  Apparently, a terminal state with a minimum cardinality of 
the set Ni is optimal (in the OCAT sense).  In the light of the previous 
considerations,  the problem (for the CNF case) to be solved by the B&B 
search can be summarized as follows (where ai is either Ai or Āi): 
  
Find a set of attributes  S  such that the following two conditions are true: 
  | )aNEG( 

 S a
 | i

i

U
∈

= minimum, 

and  | )aPOS( 
 S a

 | i

i

U
∈

 = E+. 

   The attributes in the S set are the ones that correspond to the attributes 
of the CNF clause to be constructed.  Given the above definitions some useful 
derivations are possible.  We say that a state Si  absorbs another state Sj if by 
expanding the state Sj, we cannot reach any better terminal state than the ones 
derived by expanding the state Si.  In such a case we call that the state Sj is an 
absorbed state.  From the previous considerations it becomes obvious that 
once a state can be identified to be an absorbed state, then it can be dropped 
from further consideration.  Then the following two theorems [Triantaphyllou, 
1994] are applicable (only) when a CNF clause is to be generated and they 
provide some conditions for identifying absorbed states.   
 
Theorem 2: 
The state  Si = [Pi, Ni] absorbs the state  Sj = [Pj, Nj] if the following condition 
is true:  Pj  ⊆  Pi  and  Ni ⊆  Nj. 
 
Theorem 3: 
Suppose that Si = [Pi, Ni] is a terminal state.  Then, any state  Sj = [Pj, Nj], 
such that |Nj| >  |Ni|,  is absorbed by the state Si. 
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 From the previous considerations it follows that there is a great 
advantage to reach terminal nodes early in the search process.  In this way, the 
minimum size of their Ni sets can be used to effectively fathom search states.  
For these reasons that B&B search can be applied in two phases.  During the 
first phase only a very small number (say, 10) of active states is maintained.  If 
there are more than 10 active states, then they are ranked according to their Pi 
and Ni sizes.  In this way, the states with the highest potential of being optimal 
are kept into memory.  This is the principle of beam search in artificial 
intelligence (see, for instance, [Dietterich and Michalski, 1983]).  At the end of 
phase one, a terminal state of small cardinality becomes available.  Next, phase 
two is initiated.  During the second phase a larger number (say, 50) of active 
states is allowed.  However, states now can be fathomed more frequently 
because the size of a small Ni set of a terminal state is known.  
 An important issue with the previous two phases is to be able to 
decide when a terminal state is optimal (in the OCAT sense).  As it was 
mentioned above, memory limitations may force the search to drop states 
which are not absorbed by any other state.  Therefore, there is a possibility to 
drop a state which could had lead to an optimal state (and thus to determine 
an optimal clause).  
 Suppose that  L  non-absorbed states had to be dropped because of 
memory limitations.  Let K1, K2, K3, ..., KL represent the cardinalities of their 
corresponding Ni sets.  Next, define the quantity KMIN as the minimum of the 
previous  L  numbers.  Similarly, suppose that the B&B process has identified 
N terminal states.  Let Y1, Y2, Y3, ..., YN represent the cardinalities of their 
corresponding Ni sets.  Define as YMIN the minimum of the previous N 
cardinalities.  Then, the previous considerations lead to the proof of the 
following theorem [Triantaphyllou, 1994] which states a condition for 
establishing  optimality. 
 
Theorem 4: 
A terminal state Si = [Pi, Ni] is also an optimal state if the following two 
conditions are true: 
  |Ni|  =  YMIN ,   and   KMIN  >  YMIN. 
 
Note that this theorem can be applied after each one of the two phases.  
Obviously, if it is applicable after the first phase,  then the second phase does 
not need to be initiated.  The following lemma states a condition when 
optimality is not provable. 
 
Lemma 1: 
If   KMIN  <  YMIN ,  then  an optimal clause accepts no less than KMIN  negative 
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examples.  
 
This lemma indicates that if optimality cannot be proven,  then it is still 
possible to establish a lower limit on the number of negative examples which 
can be accepted by an optimal clause (or, equivalently, an upper limit on the 
number of negative examples which can be rejected by an optimal clause).  
 
4.4  Inference of the Clauses for the Illustrative Example 
 When the OCAT algorithm, with the B&B approach described in 
[Triantaphyllou, 1994] is used in step 2, two Boolean functions can be derived. 
 The first function is derived when the examples in set E+ are used as the 
positive examples while the examples in E― are used as the negative examples. 
 We call the set of these clauses the positive rules (because the positive 
examples evaluate these clauses as true).   
 The Boolean function derived from the previous E+ and E― examples 
has the following form (note that the attribute names have been slightly altered 
to reflect the adjusted notation): 
  (Ā1,8

/ ∧ A2,2
/  ∧  Ā1,5

/ )   ∨  (A2,3
/ ∧ Ā 1,8

/ ∧  Ā 2,5
/ ∧ Ā 1,6

/ )   ∨   
  (A2,3

/ ∧ A1,6
/  ∧  Ā 1,8

/ ∧ A1,7
/ ∧ A2,4

/ )   ∨  (Ā 1,7
/ ∧ A1,6

/  ∧  Ā 2,4
/ ). 

  
 Similarly, the second function is derived when the examples in set E― 

are used as the positive examples while the examples in E+ are used as the 
negative examples.  Thus, we call these clauses the negative rules.  The 
Boolean function derived from the previous E― and E+ examples is:  
  (A1,5

/ ∧  Ā 2,3
/)   ∨  (A1,5

/ ∧ A1,6
/ ∧ A1,7

/ ∧ A1,8
/)   ∨   

  (A1,5
/ ∧ A2,5

/)   ∨  (A1,6
/ ∧ A1,7

/ ∧ Ā2,4
/)   ∨  (A1,6

/ ∧ Ā1,7
/ ∧ A2,4

/). 
 
 When the definitions of the Boolean attributes A1,i

/ (for i = 1, 2, 3, ..., 
9) and  A2,j

/ (for j = 1, 2, 3, ..., 6) are used, then it is easy to verify that the 
previous two functions yield the following two sets of rules defined on the two 
original continuous attributes  A1 and A2:   
 
(i)    Positive Classification Rules:   

  (A1  ≤  1.00  and               A2  ≥ 0.5)  (Rule R+
1)        

       (A1  ≤  1.25  and  1.00  ≥  A2 ≥ 0.75)   (Rule R+
2)  

    (A1  =  1.75 and                A2  ≥ 1.00)   (Rule R+
3)     

    (A1  =  1.50 and    0.75 ≥  A2                    ) (Rule R+
4)  

(ii)   Negative Classification Rules: 
     (A1  ≥  1.25 and     0.50  ≥  A2                   )    (Rule R ―

1) 
 (A1 ≥ 2.25 )         (Rule R ―2) 
 (A1 ≥ 1.25   and     A2 ≥ 1.25)     (Rule R ―3) 
       (A1 ≥ 1.75   and     0.75  ≥ A2                   ) (Rule R ―4) 
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       (A1 = 1.50    and                 A2 ≥ 1.00) (Rule R ―5) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.    Continuous Data for Illustrative Example and Extracted Sets of                  
                    Classification Rules. 

 
 When dealing with DNF clauses (as is the previous case), decision 
rules can be derived by observing that for an example to be positive, it must 
satisfy at least one clause.  Thus, for the first of the previous clauses (i.e., for 
clause (Ā1,8

/ ∧ A2,2
/  ∧  Ā1,5

/ )  and by noting that:  Ā8
/  ←  Ā1,8

/ ,  A11 ←  A2,2
/ , 

and  Ā5
/  ←  Ā1,5

/  ) the corresponding decision rule is: 
  IF   (Ā8 and A11 and Ā5 are all true),  
  THEN  (this example is a positive one). 
 
For the CNF case, a conjunction can be transformed into an equivalent logical 
decision rule by observing that the following two expressions are equivalent: 
  (A1 ∨ A2) is equivalent to:   (Ā1 → A2).  
 
 From the above discussion it follows that any CNF or DNF expression 
with k clauses (conjunctions or disjunctions) can be described in terms of the 
same number k of decision rules.  In the CNF case the attribute(s) which 
compose the "IF" parts of these rules are not uniquely determined.  Therefore, 
it is the task of the field expert to decide which attributes are allowed to be 
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present in the "IF" part of a rule (or antecedent part) or in the  "THEN" part of 
a rule (or consequent part).  It can be easily shown that given two classes of 
observations, then one can derive as many CNF conjunctions as the number of 
negative examples [Triantaphyllou, Soyster, and Kumara, 1994; or 
Triantaphyllou, 1994] (similar results hold for the DNF case). Therefore, for 
cases in which the negative examples are numerous one may be interested in 
determining a minimal (or at least very small) number of such logical decision 
rules.  This is an issue of significant practical importance, since compact sets 
of decision rules are easier to validate and use. 
 The previous two sets of rules, along with the positive and negative 
examples (as defined in terms of the two continuous attributes A1 and A2) are 
depicted in Figure 2.  The same figure also indicates some of the reasons why 
the proposed approach, at least for the binary case, delivered more accurate 
results when it was compared in [Deshpande and Triantaphyllou, 1998] with 
some other approaches (neural networks and separating planes via the LP 
approach developed by Mangasarian and his associates [Mangasarian, et al., 
1991]). When both sets of decision rules are used, then for a new observation 
to be classified as positive, it must be both accepted by the positive rules and 
also rejected by the negative rules (analogously for an observation to be 
classified as negative).   
 However, many existing classification techniques consider only one 
set of rules.  Therefore, in the proposed approach there are three different 
classification decisions: "Positive," "Negative," and "Undecided."  Many 
traditional approaches do not consider the third type (i.e., "Undecided").  By 
forcing the derived sets of decision rules to be as compact as possible, the 
proposed approach has a tendency to isolate and "close-in" observations into 
compact groups defined in the same class.  Many methods simply try to 
determine separating planes (borders) of some sort which are in the middle of 
some type of distance.  Usually, such a distance reflects how apart the two 
classes of observations are.  In this chapter the population space is actually 
partitioned into four types of areas:  "positive areas," "negative areas," "areas 
of conflict" between the two sets of rules, and "areas not covered" by any 
rules.  In Figure 2 the case "areas of conflict" between the two sets of rules 
does not occur (by coincidence).   
 To offset the drawback of the exponential time complexity of the 
B&B algorithm in step 2 of the OCAT approach, in [Deshpande and 
Triantaphyllou, 1998] a heuristic of polynomial time complexity is proposed.  
Under that heuristic the clause which is formed during a single iteration rejects 
many (as opposed to as many as possible) negative examples.  This heuristic 
seems to offer an alternative approach when the problem size is very large.  It 
can also be combined with the previous B&B approach and is also randomized 
as a GRASP (Greedy Random Adaptive Search Procedure [Feo and Resende, 
1995]) approach.   
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4.5  A Polynomial Time Heuristic for Inferring Clauses 
 To offset the drawback of the exponential time complexity of the 
B&B algorithm in step 2 of the OCAT approach, in this heuristic clauses are 
formed in a manner such that each clause accepts all the examples in the E+ 
set while it attempts to reject many (as opposed to as many as possible in the 
B&B approach) examples in the  E— set.  Note that this is the main 
procedural difference between the B&B algorithm and the proposed 
heuristics.  In the proposed heuristic this is achieved by choosing the 
attributes to form a clause based on an evaluative function (to be described 
later).  Only attributes with high values in terms of the evaluative function 
are included in the current clause.  A single clause is completely derived 
when all the examples in the E+ set are accepted.  The clause forming 
procedure is repeated until all the examples in the E— set are rejected by the 
proposed set of clauses.  As some computational results in [Deshpande and 
Triantaphyllou, 1998] indicate, this strategy may often result in Boolean 
functions with a small number of clauses. 
 Observe that if always the attribute with the highest value of the 
evaluative function is included in the clause, then there is an inherent danger 
of being trapped in a local optimal point.  To prevent this undesirable 
behavior, a randomized approach is used.  In this randomized approach, 
instead of a single attribute being included in a clause due to its highest 
value of the evaluative function, a candidate list is formed of attributes 
whose values in terms of  the evaluative function are close to the highest 
value as derived from the evaluative function. Next, an attribute is randomly 
chosen out of the candidate list and is included in the CNF clause being 
derived. 
 Please note that it is possible for a CNF clause to reject as many 
negative examples as possible (and, of course, to accept all positive 
examples) but the entire system not to have a small (ideally minimum) 
number of clauses.  Recall that the proposed heuristics follow the OCAT 
approach (see also Figure 1).  That is, sometimes it may be more beneficial 
to have a less "effective" clause which does not reject a large number of 
negative examples, and still derive a system with very few clauses.  Such 
systems are possible to derive with the use of randomized algorithms.  A 
randomized algorithm, with a sufficiently large number of random 
replications, is more difficult to be trapped by a local optimal point. 
 A heuristic approach, termed RA1 (for Randomized Algorithm 1), 
was proposed in [Deshpande and Triantaphyllou, 1998] to solve the first 
research problem considered in this chapter.  Before the RA1 heuristic is 
formally presented, some new definitions and terminology are summarized 
next. 
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Definitions: 
 C =   The set of attributes in the current clause 

(disjunction). 
 Ak =   An attribute such that Ak∈A, where A is the set of all 

attributes A1, ..., An. 
 POS(Ak) =  The number of all positive examples in E+ which 

would be accepted if attribute Ak is included in the 
current clause.   

 NEG(Ak) =  The number of all negative examples in E— which 
would be accepted if attribute Ak is included in the 
current clause.  Please note that the last two 
definitions are slightly different from the previous 
definitions of POS and NEG as sets of examples. 
Now we are interested in the sizes of these sets only. 

 l =  The size of the candidate list. 
 ITRS =  The number of times the clause forming procedure 

is repeated. 
 
As an illustrative example of the above definitions, consider the following 
sets of positive and negative examples (which were also given in Section 
3.3). 
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1001

1100

0011

0010

_  = E     = E+  

 
The set A of all attributes for the above set of examples is:  
 
 A = {A1, A2, A3, A4, Ā1, Ā2 , Ā3, Ā4}. 
 
Therefore, the POS(Ak) and the NEG(Ak) values are: 
 
 POS(A1)  = 2 NEG(A1)  = 4 POS(Ā1) = 2 NEG(Ā1) = 2  
 POS(A2)  = 2 NEG(A2)  = 2 POS(Ā2) = 2 NEG(Ā2) = 4  
 POS(A3)  = 1 NEG(A3)  = 3 POS(Ā3) = 3 NEG(Ā3) = 3  
 POS(A4)  = 2 NEG(A4)  = 2 POS(Ā4) = 2 NEG(Ā4) = 4 
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 DO for ITRS number of iterations 
 BEGIN; 
  DO WHILE (E— ≠ ∅) 
     C =  ∅;  {initialization} 
   DO WHILE (E+  ≠ ∅) 
             Step 1: Rank in descending order all 

attributes ai∈ a (where ai is either 
Ai or Āi) according to their 
POS(ai)/NEG(ai) value.  If  NEG(ai) 
= 0, then POS(ai)/NEG(ai) = 1,000 
(i.e., an arbitrarily high value); 

            Step 2: Form a candidate list of the 
attributes which have the l top 
highest POS(ai)/NEG(ai) values; 

            Step 3: Randomly choose an attribute ak 
from the candidate list; 

            Step 4: Let the set of attributes in the 
current clause be  C ← C  ∨  ak ; 

            Step 5: Let E+(ak) be the set of members of 
E+ accepted when ak is included in 
the current CNF clause; 

            Step 6: Let  E+ ← E+ —  E+(ak); 
            Step 7: Let  a  ←  a — ak; 
            Step 8: Calculate the new POS(ai ) values 

for all ai ∈ a; 
   REPEAT 
      
     Step 9: Let E—(C) be the set of members of E— 

which are rejected by C; 
     Step 10: Let E—  ←   E— — E—(C); 
     Step 11: Reset E+ ; 
  REPEAT 
 END; 
 
CHOOSE the final Boolean system among the previous ITRS systems 
which has the smallest number of clauses. 
 
 
 
 Figure 3.   The RA1 Heuristic [Deshpande and Triantaphyllou, 1998]. 
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 The problem now is to derive a small set of logical clauses which 
would correctly classify all the above examples.  Suppose that there exists a 
"hidden" system given by the following Boolean function: 
 
  (A2 ∨ A4 ) ∧ (Ā2 ∨ Ā3 ) ∧ (A1 ∨ A3 ∨ Ā4 ).    
 
 It can be easily seen that the above Boolean function correctly 
classifies all the previous examples. Therefore, the first problem is to 
accurately estimate the above "hidden" system.  This is accomplished by 
using heuristic RA1, as described in Figure 3. 
 The following theorem [Deshpande and Triantaphyllou, 1998] states 
an upper bound on the number of clauses which can be inferred by RA1 
(where m2 is the number of negative examples).  
 
Theorem 5: 
The RA1 approach terminates within at most m2 iterations. 
 
 Next, let n be the number of attributes in the data set, m1 be the 
number of examples in the E+ set and m2 be the number of examples in the 
E— set. Then Theorem 6 [Deshpande and Triantaphyllou, 1998] states the 
time complexity of the RA1 algorithm. 
  
Theorem 6:  
The RA1 algorithm has a polynomial time complexity of order 
O(n(m1+m2)m1 m2 ITRS). 
 
 From the way the POS(Ak ) and NEG(Ak ) values were defined, some 
critical observations can be made.  When an attribute with a rather high 
value of the POS function is included in the CNF clause being formed, then 
chances are that some additional positive examples will be accepted by that 
clause as result of the inclusion of that attribute.  Similarly, attributes which 
correspond to low NEG values, are likely not to cause many new negative 
examples to be accepted as result of the inclusion of that attribute in the 
current clause.  Therefore, it makes sense to include as attributes in the CNF 
clause under formation, the ones which correspond to high POS values and, 
at the same time, to low NEG values. 
 In this chapter the notations POS(ai)/NEG(ai) and  POS(Ak)/NEG(Ak) 
will be used interchangeably to denote the same concept.  For the current 
illustrative example, the values of the POS(Ak)/NEG(Ak) ratios are: 
  POS(A1)/NEG(A1) = 0.5  POS(Ā1)/NEG(Ā1) = 1.0 
  POS(A2)/NEG(A2) = 1.0  POS(Ā2)/NEG(Ā2) = 0.5 
  POS(A3)/NEG(A3) = 0.33 POS(Ā3)/NEG(Ā3) = 1.0 



Chapter 2:  The OCAT Approach for Inferring Classification Rules 
 

69

  POS(A4)/NEG(A4) = 1.0  POS(Ā4)/NEG(Ā4) = 0.5 
 The above discussion illustrates the motivation for considering as 
possible candidates for the evaluative function, the functions: POS/NEG,  
POS-NEG, or some type of a weighted version of the previous two 
expressions.  Some exploratory computational experiments indicated that the 
evaluative function POS/NEG was the most effective one.  That is, it led to 
the formation of Boolean functions with less clauses than when the other 
evaluative functions were considered. 
 The randomization of the RA1 algorithm is done as follows.  In step 
2, the first l attributes with the highest value of the POS(Ak) / NEG(Ak) ratio 
are chosen as the members of the candidate list and an attribute in the list 
was randomly chosen out of the candidate list in step 3.  This is done in 
order to obtain different solutions at each iteration and prevent the system 
from being trapped by a locally optimal point.  
 In choosing a fixed value for the size  l  of the candidate list, there is 
a possibility that an attribute with a very low value of POS(Ak) / NEG(Ak) 
ratio could be selected if the value of l is large enough (how large depends 
on the current data).  That could occur if there are not l attributes with a 
sufficiently high value of the POS(Ak) / NEG(Ak) ratio.  If an attribute with a 
low value of POS(Ak) / NEG(Ak) is chosen to be included in the clause, then 
the clause would accept less examples from the E+ set or accept more 
examples from the E— set, or both.  All these three situations should be 
avoided as it would lead to an increase in the number of attributes in a clause 
(if it accepts less examples from the E+ set) or, to an increase in the number 
of clauses (if the attribute accepts more examples from the E— set), or both.  
To prevent the above situation from happening, a candidate list is formed of 
attributes, each of whose POS(Ak) / NEG(Ak) value is within a certain 
percentage, say  " %, of the highest value of the POS(Ak) / NEG(Ak) value in 
the current candidate list.  This ensures that the attribute (randomly chosen 
out of the candidate list) to be included in the clause has a value close to the 
highest value of the POS(Ak) / NEG(Ak) ratios.  
 The above idea of using randomization in a search algorithm has 
been explored recently by other researchers as well.  For instance, Feo and 
Resende in [1995] have successfully used randomization to solve clause 
satisfiability (SAT) problems.  Also, in a book Motwani and Raghavan 
[1995] provide a comprehensive presentation of the theory on randomized 
algorithms.  Randomization also offers a natural and intuitive way for 
implementing parallelism in algorithms.   
 To obtain a system with a very small number of clauses, the whole 
procedure is subjected to a certain number of iterations (denoted by the value 
of the ITRS parameter) and the system which has the least number of 
disjunctions is chosen as the final inferred Boolean system. 



 70 
 

                           Data Mining & Knowledge Discovery Based on Rule Induction  

 Referring to the previous illustrative example, if l = 3, then the 
values of the 3 best POS(Ak) / NEG(Ak) ratios are: {1.0, 1.0, 1.0} (note that it 
is a coincidence that the three values are identical) which correspond to the 
attributes  Ā1, A2 and A4, respectively.  Let attribute A2 be the randomly 
selected attribute from the candidate list.  Note that attribute A2 accepts 
examples number 2 and 3 from the current E+ set.  Therefore, at least one 
more attribute is required to complete the formation of the current clause.  
The whole process of finding a new attribute (other than attribute A2 which 
has already been selected) with a very high value of POS/NEG is repeated.  
Now, suppose that the attribute with a high POS/NEG value happened to be 
A4.  It can be observed now that, when attributes A2 and A4 are combined 
together, they accept all the elements in the E+ set.  Therefore, the first 
clause is (A2 ∨ A4).  
 This clause fails to reject examples number 2, 3 and 6 in the E— set. 
Therefore, examples number 2, 3 and 6 in the original E—set constitute the 
reduced (and thus new)  E— set.  The above process is repeated until a set of 
clauses are formed which, when combined together, reject all the examples 
in the original E— set.  Therefore, a final Boolean function for this problem 
could be as follows (recall that the algorithm is a randomized one and thus it 
may not return the same solution): 
  (A2 ∨ A4 ) ∧ (Ā2 ∨ Ā3 ) ∧ (A1 ∨ A3 ∨ Ā4 ).   
 
 
5.      A GUIDED LEARNING APPROACH  
  
 The above partitioning of the population of all possible examples into 
the previous four disjoint regions (also recall Figure 2), suggests a natural way 
to select the next example to classify by the expert (“oracle”) when new 
examples are selected for training.  If the new (and thus unclassified) example 
is selected from the region which represents "areas of conflict," then when it is 
classified by the expert it will indicate that at least one of the positive or 
negative sets of rules needs to be changed (since it has to be either positive or 
negative).  Similarly, when the new example is selected from the region which 
represents "areas not covered," then again when it is classified by the expert it 
will indicate that at least one of the positive or negative sets of rules needs to 
be changed. This realization is in direct agreement with the guided learning 
approach recommended in [Triantaphyllou and Soyster, 1995b].  
 The above observations are better formalized as follows.  Let us 
consider two sets of positive and negative examples, denoted as E+ and E—, 
respectively, defined on t (binary or multi-valued) attributes.  Let SSAMPLE 
denote the set of rules (systems) derived from the sample data, i.e. when the 
examples in E+ are classified as positive and the examples in  E— are classified 
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as negative. Similarly, define as SR-SAMPLE the set of rules (system) derived 
when  E— is used as the positive examples while  E+ as the negative examples. 
That is SSAMPLE is the set with the positive rules while SR-SAMPLE is the set with 
the negative rules.  Also, define SHIDDEN as the "hidden logic" system and 
ŜHIDDEN  (please note the “^” symbol on top of “S”) as the complement of 
SHIDDEN.  The guided learning strategy proposed in [Triantaphyllou and 
Soyster, 1995b] is based on the following theorem (which is valid for the 
binary and also the multi-valued case): 
 
Theorem 7:  
Suppose that there exists an example  v  such that: 
  SSAMPLE(v)  +  SR-SAMPLE(v)  =  0,   or:                     (1) 
  SSAMPLE(v)  +  SR-SAMPLE(v)  =  2.   (2) 
Furthermore, suppose that the example  v  is classified by the expert as either 
positive or negative.  Then, one and only one of the following  is true : 

a) If (1) holds and  v  is a positive example,   
   then system SSAMPLE is not valid. 
b) If (1) holds and  v  is a negative example,   
   then system SR-SAMPLE is not valid. 
c) If (2) holds and  v  is a positive example,  
   then system SR-SAMPLE is not valid. 
d) If (2) holds and  v  is a negative example,    
   then system SSAMPLE is not valid.  

  
 Therefore,  the overall strategy, starting with two sets of rules, is to 
attempt to generate a sequence of new examples vk+1, vk+2, vk+3, ..., vm, where 
each example is appropriately classified.  Each additional example should have 
the property that it invalidates either SSAMPLE  or SR-SAMPLE, i.e. one of the two 
sets of rules must be modified.  In doing so, it is expected that SSAMPLE and SR-

SAMPLE become more closely aligned with SHIDDEN and ŜHIDDEN, respectively. 
Finally, as it was shown in [Triantaphyllou and Soyster, 1995b], the next 
example can be determined by solving a clause satisfiability problem.  
 During this guided learning approach one may observe that the current 
Boolean functions need to be modified only when a new training example 
indicates that a Boolean function is inaccurate (by misclassifying it). In [Nieto 
Sanchez, et al., 2002] some algorithms are proposed which modify a Boolean 
function in a way that the new function correctly classifies the new example 
(and also all the previous training examples) and does so by performing a 
minimal (kind of “surgical”) modification.  That is, these algorithms select a 
clause of the current function and modify it.  The algorithms in [Triantaphyllou 
and Soyster, 1995b] and [Nieto Sanchez, et al., 2002] have the potential to 
expedite the guided learning process both in terms of the number of the new 
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training examples needed to accurately infer a “hidden” logic but also in terms 
of the time required to update the inferred Boolean functions. 
6. THE REJECTABILITY GRAPH OF TWO 
  COLLECTIONS OF EXAMPLES 
  

This section presents the motivation and definition of a special graph 
which can be easily derived from positive and negative examples.   To 
understand the motivation for introducing this graph,  consider a situation 
with t = 5 attributes.   Suppose that the vector v1 = (1,0,1,0,1) is a positive 
example while the two vectors v2 = (1,0,1,1,1) and v3 = (1,1,1,0,1) are 
negative examples.  For the positive example  v1,  note that A1, Ā2, A3, Ā4, 
and A5 are true (or, equivalently, Ā1, A2, Ā3, A4 and Ā5  are false).  Similar 
interpretations exist for the remaining two examples v2 and v3. 
 
6.1  The Definition of the Rejectability Graph 
 Denote by ATTRIBUTES(v) the set of the attributes that are true 
(have value “1”) for a particular (either positive or negative) example v.   
With this definition,  one obtains from the above data: 
 
 ATTRIBUTES(v1)= ATTRIBUTES((1,0,1,0,1)) = {A1, Ā2, A3, Ā4, A5} 
 ATTRIBUTES(v2)= ATTRIBUTES((1,0,1,1,1)) = {A1, Ā2, A3, A4, A5} 
 ATTRIBUTES(v3)= ATTRIBUTES((1,1,1,0,1)) = {A1, A2, A3, Ā4, A5}. 

 
Next consider a single CNF clause (i.e., a disjunction), denoted as C, 

of the general form: 

ia
M

i
C

1=
= ∨    (where ai is either Ai or Āi). 

The clause C  accepts an example v  (i.e., v is a positive example of C) if and 
only if at least one of the attributes in the set ATTRIBUTES(v) is also one of 
the attributes in the expression: 

ia
M

i 1=
∨ . 

Otherwise, the example v is not accepted (i.e.,  v  is a negative example of 
C).  For instance, if the clause C is defined as: C = (Ā2 ∨ A4),  then the 
examples v1 and v2 are accepted by C, while the example v3 is not accepted.  
  Now observe that there is no single CNF clause which can 
simultaneously reject the two negative examples v2 and v3, while at the same 
time accept the positive example v1.  This is true because any clause which 
simultaneously rejects the two examples v2 and v3, should not contain any of 
the attributes in the union of the two sets given as ATTRIBUTES(v2) and 
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ATTRIBUTES(v3).   But, if none of the attributes of the set  {A1, A2, Ā2, A3, 
A4, Ā4, A5}   =  ATTRIBUTES(v2) U ATTRIBUTES(v3)  is present in the 
clause, then it is impossible to accept the positive example v1 = (1,0,1,0,1). 
Therefore, given any clause which accepts the positive example v1,  the 
previous two negative examples v2 and v3  cannot also be rejected by such 
clause.  
 From the above considerations it follows that given three examples 
v1, v2, and v3,  then the examples v2 and v3 are rejectable by a single clause 
(disjunction), subject to the example v1, if and only if the following 
condition is true: 
 ATTRIBUTES(v1)  é  ATTRIBUTES(v2)  U  ATTRIBUTES(v3).   
In general, given a set of positive examples E+, then two negative examples 
v1 and v2 are rejectable by a single clause if and only if  the condition in the 
following theorem [Triantaphyllou and Soyster, 1996] is satisfied: 
 
Theorem 8: 
Let E+ be a set of positive examples and v1 , v2 be two negative examples.  
There exists a CNF clause which accepts all the positive examples and 
rejects both negative examples v1 and v2  if and only if: 
 ATTRIBUTES(vi)  é   ATTRIBUTES(v1)  U  ATTRIBUTES(v2),  
for each positive example vi ∈ E+.   
 
 The above theorem follows directly from the previous 
considerations.   Given two collections of positive and negative examples, 
denoted as E+ and  E—, respectively,  Theorem 8 motivates the construction 
of a graph G = (V, E) as follows: 
  V = { V1,  V2,  V3, ..., 2MV },   
where M2 is the cardinality of  E— (i.e., each vertex  corresponds to one 
negative example in E—),  and 
  e∈ E,   where  e = (Vi, Vj ),  
if and only if the i-th and the j-th examples in E— are rejectable by a single 
clause (subject to the examples in E+) . 
 We denote this graph as the  rejectability graph (or the R-graph) of 
E+ and E—.  The previous theorem indicates that it is computationally 
straightforward to construct this graph.   If there are M2 negative examples, 
then the maximum number of edges is M2(M2 — 1)/2.  Therefore, the 
rejectability graph can be constructed by performing M2(M2 — 1)/2 simple 
rejectability examinations. 
 
An Illustrative Example 
 Consider the following E+ and E— sets (given earlier and repeated 
here): 
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Since there are 6 negative examples, there are 6(6 — 1)/2 = 15 

possible pairwise comparisons (i.e., single rejectability tests).  For instance, 
the first (v1) and third (v3) negative examples correspond to the vertices V1 
and V3,  respectively.  Next one can observe that because: 

ATTRIBUTES(v1) U ATTRIBUTES(v3) = {A1, A2, A3, A4, Ā2, Ā4},  
and  ATTRIBUTES(vi)  é  {A1, A2, A3, A4, Ā2, Ā4},  for each  vi ∈ E+, 
 
it follows that there is an edge which connects the vertices V1 and V3 in the 
rejectability graph.  The rejectability graph G, which corresponds to this 
illustrative example, is presented in Figure 4.   
 
 
                                      V6                        V3 
 
 
 
    
                                                   V1 
 
 
 
 
                                      V5                        V4                    V2 
 
 
           Figure 4.  The Rejectability Graph for E+ and E—. 
 
 
6.2    Properties of the Rejectability Graph 

The rejectability graph G  of a set of positive and a set of negative 
examples  possesses a number of  interesting  properties.  Two of these 
properties refer to the cliques of the rejectability graph.  A clique of a graph 
is a subgraph in which all the nodes are connected with each other.  The 
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minimum clique cover number (denoted as k(G)) is the smallest number of 
cliques needed to cover the vertices of G  (see, for instance, [Golumbic, 
1980] and [Bollobás, 1979]).  The following theorem [Triantaphyllou and 
Soyster, 1996] refers to any clique of the rejectability graph. 
 
Theorem 9: 
Suppose that the two sets E+ and  E— are given and  β  is a subset of  k  
negative  examples  from  E— ( k < size of set  E—) with the property that the 
subset can be rejected by a single  CNF clause which also accepts each one 
of the positive examples in E+.  Then, the vertices corresponding to the k 
negative examples in the rejectability graph G  form a clique of size k. 
 
 The previous theorem states that any set of negative examples which 
can be rejected by a single clause corresponds to a clique in the rejectability 
graph.  However, the converse is not true.  That is, not every clique in the  
rejectability  graph  corresponds  to  a set of  negative  examples  which can 
be rejected by a single clause.  To see this consider the following illustrative 
example. 
 
 
                                                              V1       [1, 0, 0] 
 
 
 
 
 
                           [0, 1, 0]      V2                            V3      [0, 0, 1]                  
 
 
        Figure 5.   The Rejectability Graph for the Second Illustrative 
    Example. 
 
 
An Illustrative Example 
 Consider the following sets  E+ and E—: 
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 and   ,111  = E = E+  

 
 It can be easily verified that any pair of the three negative examples 
in E— can be rejected by a single clause which also accepts the positive 
example in E+.   For instance, the first and second negative examples are 
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rejected by the clause   (A3),  which also accepts the positive example in E+. 
Similarly, the first and third negative examples can be rejected by (A2),  
while (A1) rejects the second and third examples.  In all cases, these clauses 
accept the single example in E+. Therefore, the corresponding rejectability 
graph is a triangle  (i.e., a clique with three nodes, see also Figure 5). 
However, a clause which would reject all the three negative examples should 
not include any attributes from the following set: 
 
 ATTRIBUTES(v1) U ATTRIBUTES(v2) U ATTRIBUTES(v3)  =   
     = ATTRIBUTES((1, 0, 0)) U ATTRIBUTES((0, 1, 0)) U  

         U  ATTRIBUTES((0, 0, 1)) =  
     =  {A1, A2, A3, Ā1,  Ā2,  Ā3}. 
  

Obviously, no such clause exists when n = 3.   Therefore, a 
minimum size set of CNF clauses which satisfy the requirements of the 
current examples is:  (A3) ∨  (A2), which is of size 2.   
 
6.3  On the Minimum Clique Cover of the Rejectability Graph 
 Consider two sets of positive and negative examples E+ and E—, 
respectively.   Let  Ĝ  be the complement of the rejectability graph G of the 
two sets of examples.  Recall that the complement of a graph is constructed 
as follows:  The complement graph has exactly the same vertices as the 
original graph.   There is an edge between any two vertices if and only if 
there is no edge between the corresponding vertices of the original graph.   
Next, define ω(Ĝ)  as the size of the maximum clique of the graph  Ĝ  and 
k(G) as the minimum clique cover number of the rejectability graph G.   Let 
r  be the minimum number of CNF clauses required to reject all the 
examples in  E—, while accepting all the examples in E+.   Then, the 
following theorem [Triantaphyllou and Soyster, 1996]] states a lower bound 
(i.e., the minimum clique cover k(G)) on the minimum number of clauses 
required to reject all the negative examples in E—, while accepting all the 
positive examples in E+. 
 
Theorem  10: 
Suppose that E+ and E— are the sets of the positive and negative examples, 
respectively.  Then, the following relation is true:   r ≥  k(G) ≥  ω(Ĝ). 
 
 At this point it should be stated that according to this theorem the 
gap between r and k(G) can be positive.   The same is also true with the gap 
between k(G) and ω(Ĝ).  Therefore, there is a potential for the gap between r 
and  ω(Ĝ)  to be large (since the value of ω(Ĝ)  can be arbitrarily large, see 
for instance [Golumbic, 1980] and [Bollobás, 1979]).  Results from some 
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related computational experiments in [Triantaphyllou and Soyster, 1996] 
seem to indicate that when the value of ω(Ĝ) is large, then the bound is 
rather tight.  
 Although finding  k(G)  is NP-complete,  the determination of  ω(Ĝ) 
 is also NP-complete, but there are more efficient enumerative algorithms.   
In Carraghan and Pardalos [1990] a survey of algorithms which can find the 
maximum clique in any graph is presented. They also present a very efficient 
algorithm which uses a partial enumeration approach which outperforms any 
other known algorithm.  In that treatment random problems  with  3,000 
vertices and over one million  edges  were solved in rather short times (less 
than one hour on an IBM ES/3090-600S computer).  Some other related 
developments regarding the maximum clique of a graph can be found in 
[Pardalos and Xue, 1994], [Babel and Tinhofer, 1990], [Babel, 1995], [Balas 
and Xue, 1993], and [Balas and Niehaus, 1994].  
 
 
7.    PROBLEM DECOMPOSITION 
 
 The rejectability graph provides an interesting framework for 
decomposing the determination of a lower bound for the number of clauses 
into a set of smaller problems.  The decomposition is obtained through a 
partitioning of the rejectability graph.  We consider two processes: 
  ●  Decomposition via Connected Components,   and 
  ●  Decomposition via the Construction of a Clique Cover. 
 
7.1    Connected Components  
 In this case, one inspects the rejectability graph for a natural 
decomposition.   A connected component of a graph is a maximal subgraph 
in which there is a path of edges between any pair of vertices.  Hence, the 
vertices of the connected components are mutually exclusive and their union 
is exhaustive.   The following corollary is derived from Theorem 9 and 
illustrates the relation of the connected components of G and the clauses 
which can be inferred from two collections of positive and negative 
examples. 
 
Corollary 1: 
Suppose that E+ and E— are the sets of the positive and negative examples, 
respectively.  Then, any subset of negative examples in  E—  which is rejected 
by a single CNF clause, subject to the examples in E+,  corresponds to a 
subset of vertices of the rejectability graph G which belong to the same 
connected component of the graph G. 
 



 78 
 

                           Data Mining & Knowledge Discovery Based on Rule Induction  

 Pardalos and Rentala in [1990] present an excellent survey of 
algorithms which determine the connected components of a graph.   
Furthermore, they also propose a parallel algorithm which runs on an IBM 
ES/3090-400E computer (with four processors).   That algorithm determines 
the connected components in super linear time.    
 The importance of Corollary 1 emerges when the sets of positive 
and negative examples are very large.   First, one constructs the rejectability 
graph G.   Next, one determines all the connected components of the 
rejectability graph by applying an algorithm (such as the one described in 
Pardalos and Rentala [1990])  for finding the connected components.   Then, 
one solves the smaller clause inference problems which are formed by 
considering all the positive examples and the negative examples which 
correspond to the vertices of the individual and distinct connected 
components in G.  
 In other words,  if a graph has two or more connected components,  
then one can decompose the original problem into separate problems and the 
aggregation of the optimal solutions  (minimum number of CNF clauses)  of 
the separate problems is an optimal solution to the original problem.   
Observe that each such sub-problem (in the CNF case) is comprised of the 
negative examples for that component and all the positive examples, i.e. the 
positive examples are identical for each sub-problem. 
 
7.2    Clique Cover  
 The second approach is also motivated by partitioning the vertices of 
the rejectability graph into mutually disjoint sets.   However, in this second 
approach, vertices are subdivided via a sequential construction of cliques.   
 First, the maximum clique of the rejectability graph is determined.   
The negative examples which correspond to the vertices of the maximum 
clique, along with all the positive examples, form the first sub-problem of 
this decomposition.   Next, the maximum clique of the remaining graph is 
derived.   The second sub-problem is formed by the negative examples 
which correspond to the vertices of the second clique and all the positive 
examples.   This process continues until all the negative examples (or, 
equivalently, all the vertices in the rejectability graph) are considered (i.e., 
they are covered).  
 We note that this sequence of cliques does not necessarily 
correspond to a minimum clique cover of the rejectability graph.   This 
procedure is simply a greedy approach which approximates a minimum 
clique cover.   Furthermore, it is possible that a single sub-problem (in which 
all the vertices in the rejectability graph form a clique) may yield more than 
one clause.  
 It should be noted at this point that the clique cover derived by using 
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the above greedy approach may not always yield a minimum clique cover.  
Therefore, the number of cliques derived in that way, cannot be used as a 
lower bound on the number of clauses derivable from positive and negative 
examples.  Obviously, if the number of cliques is equal to ω(Ĝ), then the 
previous clique cover is minimal. However, even if the previous clique cover 
is not of minimum size, it can still be very useful as it can lead to a 
decomposition of the original problem into a sequence of smaller problems. 
Some computational tests described in Section 8, provide some insight into 
the effectiveness of such decomposition approach. 
 The two problem decomposition approaches described in this 
section can be combined into one approach as follows. One first decomposes 
the original problem in terms of its connected components.   Next, a clique 
cover, as described above, is derived for the individual problems which 
correspond to the connected components of the rejectability graph.   This 
approach is further illustrated in the demonstrative example presented in the 
following section. 
 
 
8.      AN EXAMPLE OF USING THE REJECTABILITY 

 GRAPH 
Next we consider the following sets of positive and negative examples: 
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                                                    graph G 
 
                                              V1                  V2 
 
 
 
 
                                    V7                                      V4             V3 
 
 
 
                                              V6                  V5 
 
 
 
          Figure 6.  The Rejectability Graph for the New Sets E+ and E—. 
 

 
One may use any method for inferring clauses from two disjoint 

classes of examples. An application of the OCAT approach in this 
illustrative example yields the following CNF system of four clauses: 

 
  (A2 ∨ A3 ∨ Ā5) ∧ (Ā1 ∨ A3 ∨ Ā5) ∧ (A1 ∨ A2 ∨ A4 ∨ A5) ∧  

∧  (Ā1 ∨ A2 ∨ Ā3 ∨ Ā4). 
 
Of course the question  addressed in this section is whether it is possible to 
derive another system with fewer clauses.   
 To help answer the previous question, we apply Theorem 8 to this 
illustrative example.  Since there are 13 positive and 7 negative examples, 
the construction of  the  rejectability  graph  requires  21 simple rejectability 
examinations.  When Theorem 8 is applied to these data, the rejectability 
graph shown in Figure 6 is derived.  For instance, there is an edge between 
vertices V1 and V6 because the first and sixth  negative examples can be 
rejected by a single disjunction without violating the constraints imposed by 
the positive examples in E+.  A similar interpretation holds for the remaining 
edges in graph G. 
  The rejectability graph in the current illustrative example has  two 
connected components  (see also Figure 6).  One component is comprised by 
the vertices  V1, V2, V4, V5, V6, V7  and the second component has only the 
vertex  V3.  Therefore, the original problem can be partitioned into  two 
independent clause inference sub-problems.  
 Both sub-problems have the same positive examples.  The first sub-
problem has the same negative examples as in E— except for the third 
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negative example.  The second problem has only the third negative example. 
The lower bound for the minimum number of CNF clauses required to 
appropriately classify the 20 examples is derived from the sum of the lower 
bounds for the two separate components.  Since the rejectability graph of the 
second sub-problem contains only a single vertex, the size of the minimum 
clique cover is one.  A minimum clique cover is also obvious for the first 
sub-problem, namely, the two sets {V1, V5, V6} and {V2, V4, V7}.  Hence, a 
minimum clique cover is two for the second sub-problem.  Thus, an overall 
lower bound for the minimum number of CNF clauses required is three.  
Hence, it may well be possible that only three clauses are needed to 
appropriately classify all 20 examples. 
 As it was also mentioned in Section 2 of this chapter there is another 
clause inference approach which can be used to determine a minimum size 
set of clauses.  This method, denoted as SAT (for satisfiability), has been 
proposed in Kamath, et al. [1992].  In that approach one first specifies an 
upper limit on the number of clauses to be considered, say k.  That is, the 
value of  k  must be pre-assumed.  Next a clause satisfiability (SAT) model 
is formed and solved using an interior point  method  developed  by  
Karmakar and his associates  [1992].   If the clause satisfiability problem is 
satisfied,  it is possible to correctly classify all the examples with  k  or fewer 
clauses.   If this SAT problem is infeasible, then one must increase  k  until 
feasibility is reached.   In this manner, the SAT approach yields a system 
with the minimum number of clauses.  It is very important one to observe at 
this point that computationally it is much harder to prove that a given SAT 
problem is infeasible than it is feasible.  Therefore, trying to determine a 
minimum size Boolean function by using the SAT approach may be 
computationally too difficult.  In this illustrative example, the SAT approach 
with  k = 3, is feasible and returns the Boolean function with the following 3 
clauses:  
 
  (A2 ∨ A2 ∨ A3) ∧ (Ā1 ∨ A2 ∨ Ā3 ∨ Ā4 ) ∧ (Ā1 ∨ A3 ∨ Ā5). 

 
However, when the value  k = 2 is used,  then the corresponding 

SAT formulation is infeasible.  Therefore, this set of clauses is optimal in the 
sense of this chapter.  The last statement also follows from Theorem 10 since 
there exists a clique cover of 3 and a set of clauses has been derived with 
exactly this number of members.  
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9. CONCLUSIONS 
 
 This chapter presented an approach for inferring a Boolean function 
from two classes of disjoint observations.  The observations can be defined 
on multi-valued or binary valued attributes.  A straightforward binarization 
approach is described as well.  A minimization algorithm based on a branch-
and-bound approach and a fast heuristic are also described.   
 A graph based approach for decomposing a large data mining 
problem into a series of smaller problems is described too.  This graph based 
approach can also provide some bounds on the size of the inferred Boolean 
functions (when they are expressed in CNF or DNF format).  A method for 
guided learning is also discussed.  
 Some of the results are specific to the proposed approach, termed 
OCAT (for One Clause At a Time) and other results can be combined with 
any data mining and knowledge discovery method.  The presented methods 
have been tested on simulated and actual data as described in the cited 
papers with highly promising results.   
 Of particular interest are some extensions into text mining as 
described in [Nieto Sanchez, Triantaphyllou and Kraft, 2002].  Another 
interesting extension is the application of the OCAT approach to the mining 
of association rules [Yilmaz, Triantaphyllou, et al., 2003].  In the later paper 
the application of a modified version of the OCAT approach significantly 
alleviates some computational problems that are caused by the huge number 
of the association rules that are usually returned by traditional methods. 
Finally it should be stated that some extensions into cases of having data 
with noise (stochastic data) seem to be possible with the use of monotone 
Boolean functions as discussed in Chapter 4 of this book authored by Torvik 
and Triantaphyllou [2005].  A recent book by the author [Triantaphyllou, 
2005] describes in great detail all the previous issues, and much more, on 
data mining and knowledge discovery by means of a logic-based approach. 
 Future research in this area may be related to new ways for 
decomposing large size problems and also on the development of specialized 
methods for particular applications of data mining and knowledge discovery 
from databases.  Another possible research direction might be the use of 
fuzzy logic and also on how to do all the above with multi-valued data 
directly without having to go through the binarization process first.  
Inferring Boolean functions from examples is a prominent area in data 
mining and knowledge discovery methods and more research in the future is 
almost guaranteed to be a hot area.  
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