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Abstract

This paper addresses the problem of efficiently reconstructing monotone Boolean functions via membership queries

to a stochastic oracle. An incremental maximum flow algorithm is developed to find a maximum likelihood monotone

Boolean function  after each query answer.  This algorithm reduces the computational complexity to O(V2) per query,

from the general maximum flow algorithms complexity of O(V3), where V is the query domain.  The main goal of

reducing the number of queries needed to make the maximum likelihood ratio converge to 1 is achieved by using

certain evaluative criteria to select queries. Guiding the inference process by selecting queries from the inferred

border vectors takes O(V) time per query and reduces the average query complexity dramatically. The motivation for

guided inference in the presence of errors is further strengthened by the fact that the number of queries also tends

to increase faster than exponentially with the oracle’s error rate.

Keywords: monotone Boolean functions, membership queries, maximum likelihood, incremental maximum flow

algorithm, query selection criterion.

1. Introduction

Monotonicity is a natural property in a wide variety of applications.  For example, the better grades a student has,

the more likely he or she is to be accepted into a particular college, with all other factors constant. If a personal

computer tends to crash when it runs a particular web browser and word processor simultaneously, then it will

probably also crash when it, in addition, boots up an image viewer, and so on.  In applications, the monotonicity

property is usually easy to identify due to its intuitive nature.  This is perhaps its most important feature when human

interaction is involved, since people tend to make very good use of knowledge they understand.  
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This paper focuses on situations where the monotone function and its n variables are Boolean (i.e., take on

two values, say 0 and 1).  This does not necessarily limit the application domain as Kovalerchuk et al. (1995)

establishes that any function can be represented by a sequence of monotonically non-increasing and non-decreasing

Boolean functions. Recent literature contains a plethora of fields where monotone Boolean functions appropriately

capture the phenomenon under study. Such diverse fields include, but are not limited to, social workers decisions,

lecturer evaluation and employee selection (Ben-David (1992)), chemical carcinogenicity, tax auditing and real estate

valuation (Boros et al. (1994)), breast cancer diagnosis and engineering reliability (Kovalerchuk et al. (1996)), signal

processing (Shmulevich (1997)), rheumatology (Bloch and Silverman (1997)), social sciences (Judson (1999)),

finance (Kovalerchuk and Vityaev (2000)), and record linkage in databases (Judson (2001)).

In practice, a great deal of effort is put into the process of inferring a function underlying a phenomenon.

Software is tested to establish its reliability, medical experiments are performed to establish diagnostic criteria for

diseases, etc.  This inference process generally involves gathering and analyzing data.  Gathering the data often

involves some sort of labor that far outweighs the computations used to analyze the data, in terms of cost.  The main

objective in this paper is, therefore, to minimize the cost associated with gathering the data, as long as it is

computationally feasible.

Monotone Boolean functions lay the ground for a simple question-asking strategy where it may be easy to

pinpoint questions whose answers make incomplete knowledge more general or stochastic knowledge more accurate.

Due to the underlying monotonicity, a learning algorithm that actively chooses its observations (i.e., is guided) may

significantly increase the learning rate, as a passive learner might not receive the relevant pieces of information.

Therefore, it is highly desirable not only to be able to pose questions (or queries), but to pose “smart” questions.

The main problem addressed in this paper is how to identify these “smart” questions in order to completely

and efficiently infer a monotone Boolean function defined on at most n variables. The monotone Boolean function

can be thought of as a phenomenon, such as breast cancer or a computer crash, together with a set of n Boolean

predictors or variables. It is assumed that the learning algorithm has access to an oracle that provides a 0-1 function

value in response to each query.  The oracle can be thought of as an entity that knows the underlying monotone

Boolean function. In practice it may take the shape as a human expert or as the outcome of a tasks such as performing

experiments. It is further assumed that the oracle misclassifies each vector (associated with a query) with a fixed

probability q � (0,½).  That is, for a given monotone Boolean function f, the oracle returns 1 for vector v with

probability p(v) = f(v)(1 - q) + (1 - f(v))q, and 0 with probability 1- p(v).  It is assumed that the oracle is not

misleading the inference process and is better at classifying the vectors than completely random guessing, hence the

oracle’s misclassification probability is assumed to be less than ½.

The case when the oracle is deterministic (i.e., its misclassification probability q is equal to 0), has been

studied extensively in the literature.  A comparative study of existing algorithms for this problem can be found in

Torvik and Triantaphyllou (2001a), and an extension to a pair of nested monotone Boolean functions can be found

in Kovalerchuk et al. (1996) and Torvik and Triantaphyllou (2001b).
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The stochastic inference problem involves estimating the misclassification parameter q as well as

reconstructing the underlying function f.  In this paper, these two tasks are based on a maximum likelihood

framework.  The monotone Boolean function that is the most likely to match the underlying function, given the

observed queries, is referred to as the inferred function and is denoted by f*.  Associated with function f* is the

estimated misclassification probability which is denoted by q*.

The inference process consists of two steps that are repeated successively.  First a vector is submitted to the

oracle as a query.  After a vector’s function value is provided by the oracle, both q* and f* may have to be updated.

These two steps are repeated until the likelihood of the inferred function f* matching the underlying function f is high

relative to the likelihood of any of the other monotone Boolean functions matching f.  That is, the underlying function

is considered completely reconstructed when the maximum likelihood ratio for the inferred function �(f*) reaches

a value that is close to 1.

The paper is organized as follows. Before the details of the inference problem and the related methodology

are described in Section 3, some background information on monotone Boolean functions and related inference

problems is provided in Section 2.  The conclusion given in Section 5 is based on the experimental results presented

in Section 4.

 

2. Background Information

This section builds the framework used for the core methodology used in Sections 3 and 4.  Section 2.1 provides some

formal notation and definitions, and also some useful properties related to monotone Boolean functions. The focus

of this paper is the fixed misclassification probability model of the oracle.  This model, in addition to some more

general stochastic models, is presented in Section 2.2.  Some of the related model objectives and optimization

procedures are also briefly described. Some of the literature pertaining to guided inference in the presence of errors

is reviewed in Section 2.3.

 

2.1 Some Properties of Monotone Boolean Functions

Let {0,1}n denote the set of Boolean vectors defined on n Boolean variables.  A deterministic Boolean function

defined on {0,1}n is simply a mapping to {0,1}.  A vector v  � {0,1}n is said to precede another vector w, denoted

by v � w, if and only if (iff) vi � wi for i = 1, 2, ..., n.  Here vi (wi) denotes the i-th element of vector v (w,

respectively).  Similarly, a vector v is said to succeed another vector w, iff vi  � wi for i = 1, 2, ..., n. When v precedes

(or succeeds) w, and the two vectors are distinct (i.e.,  v �w), then the vector v is said to strictly precede (or strictly

succeed, respectively) w, denoted by v �w (or v �w, respectively). A monotone Boolean function f is called non-

decreasing if f(v) � f(w) � (v, w): v � w, and non-increasing if f(v) � f(w) � (v, w): v � w.  This paper focuses on

non-decreasing functions, which are referred to as just monotone, as analogous results hold for non-increasing

functions.
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Figure 1. The poset formed by
{0,1}3 and the � relation.

Figure 1 shows a sample partially ordered set (or poset for short).  In general, posets can be formed by a set

of vectors together with the precedence relation �.  Posets can be viewed as directed graphs where each vertex

corresponds to a vector and a directed edge from vertex v to vertex w, represents the precedence relation v � w.

When drawing a poset, the edge directions are often omitted since the graph is acyclic and so all the directions can

be forced upwards on a page by ordering the vertices by layers.  The poset in Figure 1 is shown with the directions

because they are useful in the maximum flow algorithms described in Section 3. For the purpose of reducing storage

and simplifying the visualization of posets, redundant relations, i.e., ones that are transitively implied by other

relations, are also omitted, as in Figure 1.

A vector v* is called an upper zero of a function f, if  f(v*) = 0 and  f(v) > f(v*) � v: v* � v.  Similarly, a

vector v* is called a lower unit of a function f, if f(v*) = 1 and f(v) < f(v*) � v: v � v*.  Lower units and upper zeros

are also referred to as border vectors.  For any monotone Boolean function f, the set of lower units LU(f), and the set

of upper zeros, UZ(f) are unique and either one of these two sets uniquely identifies f.  Boolean functions are often

written in Disjunctive Normal Form (DNF) or Conjunctive Normal Form (CNF). For any monotone Boolean function

f there is a one-to-one relationship between its lower units LU(f) and its terms in DNF as follows:

Similarly, there is a one-to-one relationship between the upper zeros UZ(f) of a monotone Boolean function f, and

its clauses in CNF as follows:

For example, the monotone Boolean function defined by its lower units {110, 101} can be written in DNF as v1v2 	

v1v3.  The corresponding upper zeros are {011, 100} and CNF is v1(v2 	 v3).  Since the lower units and upper zeros

are unique to a monotone Boolean function, so are its representations in DNF and CNF. The set of monotone
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functions defined on {0,1}n is denoted by Mn. For example, the set of monotone Boolean functions defined on at most

2 variables written in DNF is given by M2 = {F, v1v2, v1, v2 , v1 	 v2, T}. Here, the uniform functions F and T are

defined as f(v) = 0 � v � {0,1}n, and f(v) = 1 � v � {0,1}n, respectively.

The number of monotone Boolean functions defined on {0,1}n is denoted by �(n).  All of the known values

for �(n) are given in Table 1.  Wiedeman (1991) employed a Cray-2 super computer for 200 hours in order to

compute the value for n equal to 8.  This gives a flavor of the complexity of computing the exact number of monotone

Boolean functions.  For larger values of n the best known asymptotic is due to Korshunov (1981):

Many monotone Boolean functions are of similar form. For example, by permuting the variables in the

function v1 	 v2v3, the two functions v2 	 v1v3 and v3 	 v1v2 are obtained. Also, by switching the roles of the operations

	 and 
 in the function v1v2v3 , the function v1 	 v2 	 v3 is obtained. To formally describe this similarity, define the

following two posets: Pz(f) = ({v  �{0,1}n: f(v) = z}, �), for z = 0 and 1.  Two posets, P1 and P2, are said to be

isomorphic if there exists a one-to-one mapping of the vertices in P1 to the vertices in P2, where the precedence

relations are preserved. That is,  if v1 � v2 and w1 � w2, then v1 � w1 iff v2 � w2, � v1, w1 � P1 and v2, w2 � P2.  Two

monotone Boolean functions f and g are called similar either if P0(f) is isomorphic to P0(g) (and P1(f) is isomorphic

to P1(g)), or if P0(f) is isomorphic to P1
d(g) (and P1(f) is isomorphic to P0

d(g)). The first isomorphism is obtained by

permuting the variables, and the second isomorphism is obtained by switching the roles of the operations 	 and 
.

The sets of similar monotone Boolean functions of M3 are: {F, T}, {v1v2v3, v1 	 v2 	 v3}, {v1v2, v1v3, v2v3, v1 	 v2, v1

	 v3, v2 	 v3}, {v1v2 	 v1v3, v1v2 	 v2v3, v1v3 	 v2v3, v1 	 v2v3, v2 	 v1v3, v3 	 v1v2}, {v1, v2, v3}, and {v1v2 	 v1v3 	 v2v3}.

A useful fact about similar functions is that certain properties are preserved within the subset.  For example,

the average case behavior of the inference process is equivalent for similar functions as long as certain randomness

precautions are taken.  The fact that 6 non-similar functions represent the entire class of functions M3, will reduce

the computational burden of the associated experiments performed in Section 4 by a factor of �(3)/6 � 3.33.

4(1) = 3, 4(2) = 6, 4(3) = 20 

4(4) = 168  by Dedekind (1897)

4(5) = 7,581 by Church (1940)

4(6) = 7,828,354 by Ward (1946)

4(7) = 2,414,682,040,998 by Church (1965)

4(8) = 56,130,437,228,687,557,907,788 by Wiedeman (1991)

Table 1.  History of Monotone Boolean Function Enumeration for n = 1,2, ..., 8.
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2.2 Stochastic Models for Monotone Boolean Functions

Suppose a set of observed vectors V = {v1, v2, ...,  vk} is given.  For a given number of queries m, let mz(v) be the

number of times the oracle classified vector v as z (for z = 0 and 1, and v �V).  Associated with a monotone Boolean

function f, the number of errors it performs on the set of observations is given by:

It is assumed that the oracle misclassifies each query with a fixed probability q � (0, ½).  That is, for a given

monotone Boolean function f, the oracle returns 1 for vector v with probability p(v) = q×(1 - f(v)) + (1 - q)×f(v), and

0 with probability 1- p(v). An estimate for the fixed misclassification probability associated with function f is simply

the ratio of the number of errors over the total number of classifications performed, restricted by the maximum

allowable value of ½ (i.e.,  min{e(f)/m, ½}).  Note that the probability q is actually required to be strictly less than

½, but for practical purposes this estimate is sufficient when the observed error ratio is greater than or equal to ½.

If the sampled values are considered fixed, their joint probability distribution function can be thought of as

the likelihood of function f matching the underlying function as follows:

     L( f ) = qe ( f )(1 - q)m  - e ( f ).

The likelihood value of a particular monotone Boolean function decreases exponentially as more observations

are added and therefore this value is generally very small.  However, the likelihood ratio given by:

measures the likelihood of a particular function f* relative to the likelihood of all possible monotone Boolean

functions F(V), defined on the set of vectors V.  Note that when the set of vectors V is equal to {0,1}n, then the set

of all possible monotone Boolean functions F(V) is equal to Mn.

The goal of the maximum likelihood problem is to find a monotone Boolean function f*� F(V), so that L(f*)

�L(f) � f � F(V).  Assuming that the misclassification probability q � (0,½), this problem is equivalent to identifying

a monotone Boolean function f* that minimizes the number of errors e(f*) (Boros et al. (1995)).  Note that if q can

take on values greater than ½, then the maximum likelihood solution may maximize the number of errors, as

demonstrated by Boros et al. (1995).  In this paper, error maximization is avoided by restricting q to be less than ½.

It should be noted that an error minimizing solution with q* � ½ always exists. One of the two uniform

monotone Boolean functions T, or F satisfies this restriction as follows:

Therefore, q(T) + q(F) = 1 and 0 � q(T), q(F) � 1.  As a result,  q* � min{q(T), q(F)} � ½.  Note that this does not
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necessarily imply that one of the two functions T or F are error minimizing, but rather establishes the fact that an error

minimizing function will indeed satisfy q* � ½. 

The error minimization problem can be converted into an integer maximization problem as follows:

        min e( f ) = 

Since the term is constant, it can be removed from the optimization objective.  Furthermore, maximizing

a particular objective function is equivalent to minimizing the negative of that objective function, resulting in the

following simplified integer optimization problem: 

        subject to f(vi) � f(vj) � vi, vj � V: vi � vj, and

           f(vi)  =  0 or 1.

This problem is known as a maximum closure problem, which can be converted into a maximum flow

problem as described in Section 3.1 (see also Picard (1976)).  The most efficient algorithms developed for the

maximum flow problem use the idea of preflows developed by Karzanov (1974).  For example, the lift-to-front

algorithm (e.g., Cormen et al. (1997)) takes O(V3) time.  The fact that this problem can be solved in polynomial time

is a nice property of the single q parameter model.  

For two dimensional problems (i.e., V 
 �2), the minimum number of errors can also be guaranteed via a

dynamic programming approach (Bloch and Silverman (1997)).  This approach is also applicable when (V,�) forms

a planar poset (i.e., a poset that can be drawn in a plane without crossing lines).  The posets considered in this paper

are of the form ({0,1}n, �), and for n greater than 2 they are unfortunately not planar.

A more complex error model can potentially maintain as many parameters as the size of the domain V.  That

is, each vector v may have an associated unique parameter p(v).  In this case, minimizing the weighted least squares:

      subject to p(vi) � p(vj) � vi, vj � V: vi� vj,

where

yields a maximum likelihood solution (Robertson et al. (1988)). This is a hard optimization problem, and several

algorithms have been developed to solve it optimally and near optimally. The Pooled Adjacent Violators Algorithm

(PAVA) by Ayer et al. (1955) only guarantees optimality when (V,�) forms a chain poset (also referred to as a simple

order).  The Min-Max algorithm developed by Lee (1983) and the Isotonic Block Class with Stratification (IBCS)



8

algorithm by Block et al. (1994) guarantee optimality for the general poset but both algorithms can potentially

consume exponential time.  For other posets such as the simple tree order, the matrix order (Bloch and Silverman,

1997) and aligned orders (Boros et al. 1994), polynomial algorithms do exist.  Unfortunately, no polynomial

algorithm for the general poset was found in the literature.

In addition to the full parametric model, there are models of intermediate parametric complexity.  One

example is the logistic regression model with non-negativity constraints on its parameters, as used for record linkage

in databases by Judson (2001). A monotone decision tree approach can be found in Makino et al. (1999), and a

sequential monotone rule induction approach can be found in Ben-David (1992 and 1995).

It should be noted that the single parameter error model considered in this paper is somewhat restrictive.

However, the goal is to efficiently uncover the underlying monotone Boolean function and not necessarily come up

with accurate estimates for the errors. The fact remains that the error minimizing monotone Boolean function  is also

a maximum likelihood solution, as long as the errors occur according to a distribution that belongs to the exponential

family (Robertson et al. (1988)). In other words, for a given set of observations the inferred function is the same for

a very large class of error models. The error estimates are only used to measure the confidence (in terms of the

maximum likelihood ratio) in having inferring the correct function. A more accurate estimate of the maximum

likelihood ratio may require a substantial increase in computational complexity, as for the full parametric model

described above.

2.3. Existing Approaches to Guided Inference

The problem of guided inference in the presence of stochastic errors is referred to as sequential design of experiments

in the statistics community.  The field of optimal experiment design (Federov (1972)) contains various optimality

criteria that are applicable in a sequential setting.  The most common vector selection criterion is based on

instantaneous variance reduction.  Other selection criteria, such as the maximum information gain used in MacKay

(1992) and Tatsuoka (1999), have been studied.  However, no guided inference studies using a maximum likelihood

framework were found in the literature.

The theory of optimal experiment design is the most extensive for simple regression models (Federov

(1972)).  Fortunately, efficient guided inference for more complex models have been studied. Cohn et al. (1996)

considered guided inference of feed forward neural networks. However, a sound theory has not been established.

In fact, the same article reported a convergence problem for which a partial remedy was introduced in Cohn (1995).

3. The Methodology Involved in the Stochastic Guided Inference Problem

This section develops the details of the core methodologies that will be used for the stochastic guided inference

problem. Section 3.1 presents a detailed overview of the a maximum flow algorithm for the general error

minimization problem.  This algorithm is used as a basis for the incremental version developed in Section 3.2. A

sample dataset is used to illustrate the different aspects of these two algorithms, as well as the various likelihood
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computations provided in Section 3.3.  The goal of the paper is to define a vector selection criterion to guide the

inference of stochastic monotone Boolean functions.  Various criteria are further discussed in Section 3.3.

3.1 Error Minimization via Maximum Flow Computations

As mentioned earlier, the error minimizing (and consequently the maximum likelihood) problem can be solved as

a maximum flow problem.  General purpose maximum flow algorithms often maintain a flow graph in addition to

a so-called residual graph.  The residual graph signifies how much additional flow is allowed along the edges, and

is the focus of the algorithm’s computations, while the flow graph is simply the solution to the problem.  For the error

minimizing problem considered in this paper, the flow graph is not needed since the optimal monotone Boolean

function and the associated estimated misclassification probability can be found directly from the residual graph.

Therefore, the flow graph is omitted in the following algorithms, while the concept of a flow is used to describe

algorithmic features.

The initial residual graph for the error minimizing problem can be constructed using the algorithm

CONSTRUCT-RESIDUAL-GRAPH shown in Figure 2 (see also Picard (1976)).  The original vectors V together with

the so-called source and sink vertices, labeled s and t, respectively, make up the set of vertices in the residual graph.

The set of capacitated directed edges is constructed in three steps as follows. 

In lines 1-3, edges are added for each pair of vectors v � w � V. Here redundant precedence relations (i.e.,

relations where another vector u exists for which v � u � w) are omitted.  The capacities along these edges can be

thought of as infinite since they are used to allow free flow along preceding vertices. For practical purposes these

capacities only have to be sufficiently large to be able to handle the maximum flow warranted.  The fact that the

maximum flow will never exceed M, given by:

is evident from the construction of the rest of the capacitated directed edges.  Therefore, capacities of any quantity

greater than or equal to M, is sufficient for finding the maximum flow.  However, for the purpose of finding the

optimal monotone Boolean function f* during the last execution of the algorithm FLOW-INCREASE shown in Figure

6, and during the execution of the algorithm MAX-FLOW-INCREMENT1 shown in Figure 8, M + 1 is used.

In lines 4-6, edges are added from the source vertex s to each vector v with a majority of 1-valued

observations (i.e., m1(v) > m0(v)) with a capacity of m1(v) - m0(v).  Similarly, in lines 7-8, an edge is added to the sink

vertex t with a capacity of m0(v) - m1(v), from each vector v with a majority of 0-valued observations (i.e., m1(v) <

m0(v)).  Please note that the vectors with the same number of 0 and 1 valued observations (i.e., m1(v) = m0(v)) are the

only vertices not directly connected to either the sink or the source.
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CONSTRUCT-RESIDUAL-GRAPH(V, m1, m0)

1 for each v in V
2   for each u y v in V
3     c(v,u) � M+1
4 for each v in V
5   if m1(v) > m0(v)
6     c(s,v) � m1(v) - m0(v)
7   elseif m1(v) < m0(v)
8     c(v,t) � m0(v) - m1(v)
9 V � V + {s,t}

Figure 2. The algorithm used to construct the initial residual
graph from the observed data.

For the purpose of illustrating the graph construction process consider the sample of observations for the set of

vectors {0,1}3 given in Table 2.  Each row in the table gives the observed values of a particular vector.  For example,

vector 100 was observed a total of 9 times of which 4 times it was 1-valued and 5 times it was 0-valued, making the

value of m1(100) - m0(100) equal to -1.

The vectors and their associated m1(v) - m0(v) values together with their irredundant precedence relations are

shown as a graph in Figure 3.  This graph is used as a basis for constructing the residual graph for the maximum flow

problem.  The directed edges of the graph can be thought of as infinitely capacitated, while a capacity of M + 1 =

min {1+2+1, 3+2+2+1} + 1 = 5 is sufficient for practical purposes. 

Table 2. Sample data.

v m1(v) m0(v) m1(v) - m0(v)

111 0 1 -1

110 3 5 -2

101 4 1 3

011 3 1 2

100 4 5 -1

010 2 0 2

001 3 3 0

000 1 0 1

For the residual graph shown in Figure 4, these capacities are assigned to 6.  This value is deliberately

assigned a unit greater than the current set of observations dictate, since the illustrations in Section 3.2 include

Figure 3. The graph used to construct
the residual graph.
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Figure 4. The residual graph constructed
from the sample data.

different scenarios where a single observation is added. When working with an incremental problem where the m0

and m1 quantities are uncertain, a safe value for the capacities is simply the total number of observations when

inference is terminated, which is 36 for the sample data. 

The vertices {000, 010, 101, 011} all have a majority of 1-valued observations and their respective m1(v) -

m0(v) values are given in Table 2 as 1, 2, 3 and 2, respectively. Edges are, therefore, added from the source vertex

s to each of these vertices, with respective capacities of 1, 2, 3 and 2, to the graph in Figure 4.  The vertices {100,

110, 111} all have a majority of 0-valued observations and their respective m1(v) - m0(v) values are given in Table

2 as  -1, -2, and -1. Edges are, therefore, added from each of these vertices to the sink vertex t, with respective

capacities of 1, 2, and 1, to the graph in Figure 4.

The vertex labeled 001 has the same number of 0-valued as 1-valued observations and is therefore not directly

connected to either the sink or the source vertex.  In fact, to find the maximum flow for the graph given in Figure 4,

this vertex can be omitted.  However, since the value of  m1(001) - m0(001) may change as more observations are

added, it will be kept.  For the general incremental problem the m1(v) - m0(v) values may change from zero to a non-

zero value (and vice-versa) several times.  This is more likely to occur in the beginning of the inference process, and

for a greater misclassification probability q.  Regardless of what the value of q is, successively adding the

corresponding vertex to (and removing it from) the residual graph is unnecessary and inefficient.

The Ford-Fulkerson (1962) maximum flow algorithm iteratively finds paths from the source vertex s to the

sink vertex t.  As an example of a path from s to t, consider the one going via 010 and 110 in Figure 4. For the general

case, identifying such a path is not trivial, and an O(V2) method called a Breadth-First-Search (e.g., Cormen et al.

(1997)) is often used.  The algorithm BREADTH-FIRST-SEARCH(G,s,t) shown in Figure 5, performs Breadth-First-
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BREADTH-FIRST-SEARCH(G,s,t)

1  e � 0
2  Q � s
3  r(s) � infinite %larger than max c
4  for each v in V
5    f(v) � 0
6    r(v) � c(s,v)
7    e � e + m1(v)
8  while Q g{}
9    v � Q[1]
10   f(v) � 1
11   Q � Q - v
12   e � e - m1(v) + m0(v)
13   for each u in adj(v)
14     if f(u) = 0
15       %(u) � v
16       if u = t
17         terminate
18       Q � {Q,u}
19       f(u) � ½
20       r(v) � min{c(u,v),r(u)}

Figure 5. The algorithm used to traverse the residual graph.

Search modified to accommodate the maximum flow problem. The algorithm traverses a graph G starting at the

source vertex s. It  does so by iteratively (lines 9-20) taking the first vertex v out of a queue of vertices, denoted by

Q (that initially only consists of s), and visits all its adjacent vertices, denoted by adj[v].  Once a vertex has been

visited it is added to the end of the queue, unless it has already been in the queue (i.e., assigned f(v)�1 on line 10).

For the purpose of finding a path from s to t in the Ford-Fulkerson algorithm, the Breadth-First-Search is

modified to additionally store the search tree (i.e., for each vertex v store its parent, denoted by �(v)) and its

associated minimum capacity edge value, denoted by r(v), along the path from s to any vertex v in the search tree.

As the pseduo code in Figure 5 indicates, the modified algorithm also terminates whenever t has been visited.

When a path is found, the search tree will easily provide a path from s to t, by recursively tracing parents

starting with �(t), and the associated minimum capacity edge value, r(t).  When a path is not found the search tree

contains each vertex v that is reachable from s, and is labeled f(v) = 1. 

The residual graph’s edge capacities corresponding to the precedence relations are always positive since they

are initially set to a value greater than the maximum flow value.  As a result, if a vertex v is reachable from s, each

vertex w succeeding v is also reachable from s, and hence labeled f(w) = 1.  Therefore, the variable f used in

BREADTH-FIRST-SEARCH, defines a monotone Boolean function, and the variable e holds the associated number

errors e(f).

The algorithm FLOW-INCREASE shown in Figure 6 performs a single iteration of the Ford-Fulkerson

(1962) algorithm. FLOW-INCREASE works on the residual graph which starts out as the graph created by algorithm

CONSTRUCT-RESIDUAL-GRAPH.  For the sample data in Table 2 the initial residual graph is shown in Figure
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FLOW-INCREASE(G,s,t)

1 BREADTH-FIRST-SEARCH(G,s,t)
2 if %(t) g {}
3   v(1) � t
4   r � r(t)
5   i � 2
6   while v(i) � %(v(i-1)) g {}
7     c(v(i),v(i-1)) � c(v(i),v(i-1)) - r
8     c(v(i-1),v(i)) � c(v(i-1),v(i)) + r
9     i � i + 1 

Figure 6. An algorithm used to update the capacities along an augmenting path.

4. During each execution of FLOW-INCREASE, a path from the source vertex s to the sink vertex t, with a positive

capacity (i.e., a path that can be augmented with increased flow) is found using the algorithm BREADTH-FIRST-

SEARCH.  An augmenting path (vk, vk-1, ..., v1), where vk = s and v1 = t, for which the minimum capacity edge value

is min{c(vk, vk-1),  c(vk-1, vk-2), ...,  c(v2, v1)} = r > 0, is found in line 1 of FLOW-INCREASE.  The notation is reversed

by k, k-1, ..., 1 in order to be consistent with the implementation given in Figure 6. 

If a path is found in line 1 of FLOW-INCREASE, the flow along the augmenting path is increased as much

as possible in lines 3-9.  That is, the capacities along the path are reduced as much as possible without making any

of the capacities negative:  c(vk-1, vk-2) � c(vk-1, vk-2) - r, c(vk-1, vk-2) � c(vk-1, vk-2) - r, ..., c(v2, v1) � c(v2, v1) - r.

Furthermore, the capacities along the same path in the opposite direction are increased by the same amount.  That

is, c(v1, v2) � c(v1, v2) +  r,   c(v2, v3) � c(v2, v3) +  r, ..., c(vk-1, vk) +  r.  If a path from the source s to the sink vertex

t is not found on line 1 of FLOW-INCREASE, the BREADTH-FIRST-SEARCH algorithm terminates with a

monotone Boolean function defined by the variable f, and e contains the corresponding number of errors.

Figure 7 shows the graphs resulting from three executions of the FLOW-INCREASE algorithm, starting out

with the residual graph created in Figure 4.  The left most graph is the result of the first execution, and successive

graphs are shown to the right of it. The bold edges give the layouts of the paths that were augmented and indicate how

much the capacities changed.  For example, the path (s, 010, 110, t) in the initial residual graph was augmented with

2 units.  That is, the capacities along (s, 010, 110, t) were reduced by 2 units, while the capacities along the path (t,

110, 010, s) were increased by 2 units, creating the leftmost graph in Figure 7.

The residual graph after the third iteration (i.e., the rightmost graph in Figure 7) does not contain a path from

the source vertex s to the sink vertex t.  The three vertices labeled 101, 011 and 111 are  reachable from s. That is,

the optimal monotone Boolean function found by the maximum flow algorithm is defined by f*(111) = f*(101) =

f*(011) = 1, and f*(000) = f*(100) = f*(010) = f*(001) = f*(110) = 0.  This function can also be defined by its lower

units LU(f*) = {101, 011}, and consequently as  f* = v1v3 	 v2v3, and yields a total of e(f*) = m0(111) +  m0(101) +

m0(011) + m1(000) + m1(100) + m1(010) + m1(001) + m1(110) = 1 + 1 + 1 + 1 + 3 + 2 + 4 + 3 = 16 errors. Therefore,

q* = e(f*)/m = 16/36 � 0.444.
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Figure 7. The iterations of the algorithm FLOW-INCREASE on the sample data.

3.2 An Incremental Maximum Flow Algorithm for Error Minimization 

Suppose the error minimizing function fold* and its misclassification parameter qold*, associated with a set of vectors

V = {v1, v2, ...,  vk} and their m0(v) and  m1(v) values, are given. When a new vector is classified by the oracle (i.e.,

mz(v) � mz(v) + 1), the function  fold* and its misclassification parameter qold* may have to be updated.   Since the new

error minimizing function is likely to be close to the old function it may be inefficient to solve the entire problem over

again.

Simply stated the incremental problem consists of finding fnew* and consequently qnew* when mz(v) � mz(v)

+ 1.  If the new classification is consistent with the old function (i.e.,  fold*(v) = z), then the old function remains error

minimizing (i.e.,  fold* = fnew*).  Therefore, the number of errors remains the same and the misclassification estimate

is reduced to qnew* = e(fold*)/(mold + 1). Note that this case is the most likely one since it occurs with an estimated

probability of 1- qold* � ½.

On the other hand, if the new classification is inconsistent with the old function (i.e.,  fold*(v) = 1- z), the old

function may or may not remain error minimizing.  The only case in which the old function does not remain error

minimizing is when there is an alternate error minimizing function fa* on the old data for which fa*(v) = z. In this case

fa* is error minimizing for the new data. However, the number of possible error minimizing functions may be

exponential in V, and therefore storing all them may not be an efficient solution to this problem. To avoid this

computational burden an incremental maximum flow algorithm is developed.

The algorithm MAX-FLOW-INCREMENT1 described in Figure 8 shows the details of the update mz(v) �

mz(v) + 1 when z = 1. An analogous algorithm can be created for the case when z = 0. Therefore, only the case when

z = 1 is considered here.  The updates performed in algorithm MAX-FLOW-INCREMENT1 are very different

depending on the value of m1(v) - m0(v), because of the manner in which the original residual graph was constructed.
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MAX-FLOW-INCREMENT1(G,f,e,m1,m0,v)

1  if m1(v) � m0(v)
2    c(s, v) � c(s, v) + 1
3    if c(s, v) = 1
4      if path from v to t exists
5        increase flow by 1 along (s, v, ..., t)
6        e � e + 1 - f(v) 
7      else
8        if f(v) = 0
9          f(w) � 1 for w in {v and x reachable from v}
10 else
11   if c(v, t) > 0 
12     c(v, t) � c(v, t) - 1
13     e � e + 1
14   else (c(v, t) = 0)   % flow on (v,t) > 0 was max
15     c(t, v) � c(t, v) - 1
16     increase flow by 1 on path from v to s
17     if path from s to t exists 
18       increase flow by 1 on path from s to t
19     update f and e if necessary

Figure 8. The algorithm used to update the residual graph when f(v) =  1 is observed.

The first case is determined by m1(v) � m0(v).  Here the vertex v will be (and may have been) directly

connected to s by c(s, v) being positive in the initial residual graph.   When m1(v) � m1(v) + 1, this fact remains true.

That is, m1(v) � m0(v) still holds, and the position of the edge does not change, while its capacity is merely increased

by one unit as follows: c(s, v) � c(s, v) + 1.  This step (line 2 in of MAX-FLOW-INCREMENT1) takes a total of O(1)

time.

If c(s, v) = 1 after this update takes place, then this edge was operating at its maximum capacity (i.e., c(s, v)

= 0) before this update.  Adding another unit of capacity along the edge (s, v) may allow another unit of flow along

a path from the source vertex s to the sink vertex t via the vertex v. If such a path exists, none of the vertices along

this path were reachable from s before the update (if so additional flow could go from s to t before update, which

contradicts the maximum flow assumption).  Hence, none will be reachable after the flow has been increased along

this path.  That is, f * remains the same, while the number of errors remains the same if f*(v) = 1, and is increased

by 1 unit if f*(v) = 0 (i.e., e(f*) � e(f*) + f*(v), as on line 6). If such a path does not exist and f*(v) = 0, then vertex

v has changed from not being reachable to being reachable from s.  Therefore, any vertex w reachable from v is now

also reachable from s.  If f*(v) = 0, then by the definition of f*, it is updated as follows: f*(w) � 1 for each vertex w

reachable from v (including v).  These steps (lines 4-9) take a total time of O(V2).

The second case is identified by m1(v) < m0(v).  Here the vertex v was directly connected to t by c(v, t) being

positive in the initial residual graph.  If the current value of c(v, t) is positive, then the capacity on  the edge (v, t) was

not fully utilized in the maximum flow.  Consequently, reducing its capacity by 1 unit does not change the maximum

flow or the residual graph other than as follows: c(v, t) � c(v, t) - 1.  That is, the optimal monotone Boolean function

f* remains the same.  Since vertex v is not reachable from the source vertex s (otherwise additional flow from s to
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t would be allowed, which is a contradiction of the maximum flow assumption), we can further deduce that f*(v) =

0.  That is, the number of errors is increased by one unit. These steps (lines 12-13) take a total of O(1) time.

The most computationally expensive case is when c(v, t) is zero.  Here, the edge (v, t) was operating with a

positive flow (since its initial capacity was assigned to m0(v) - m1(v) > 0) at its maximum capacity.  Therefore, the

flow along a path from vertex s to vertex t that goes via edge (v, t), which is guaranteed to exist, has to be reduced

by 1 unit and the capacity is updated as follows: c(v, t) � c(v, t) - 1.  This update is equivalent to c(t, v) � c(t, v) - 1,

and increasing the flow by 1 unit along a path from vertex v to vertex s, shown in lines 15-16. The single unit of flow

that was retracted along the path (s, ..., v, t), may be pushed through another path from vertex s to vertex t. The

algorithm FLOW-INCREASE can be used to perform this operation and the algorithm BREADTH-FIRST-SEARCH

is needed afterwards to potentially update f* and e*.  These steps (lines 15-19) take a total of O(V2) time.  In

summary, the total computational complexity of algorithm MAX-FLOW-INCREMENT1 is O(V2).

For the purpose of illustrating algorithm MAX-FLOW-INCREMENT1, consider Examples 1, 2, and 3,

describing three different increment scenarios for the data given in Table 2.  The initial residual graph for the MAX-

FLOW-INCREMENT1 algorithm is given as the right most of the graphs in Figure 3.  Please recall that the associated

values are: m = 36,   f* = v1v3 	 v2v3, e* = 16, and q* = 16/36 � 0.444. Now consider the three following examples

when another 1 valued vector (i.e., f(v) = 1) is observed.

Example 1. f(011) = 1 is observed:

m1(011) = 3 � m0(011) = 1 and so c(s, 011)� c(s, 011) + 1 = 1 + 1 = 2. The capacity was not fully utilized, therefore

f* and e* remain the same, while  q* is updated to 16/37 � 0.432. Only lines 1 and 2 were executed for this update.

The total time used is O(1), and the updated graph is shown in Figure 9.

Figure 9. The residual graph for Example 1.
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Figure 10. The residual graph for Example 2.

Example 2. f(010) = 1 is observed:

m1(010) = 2 � m0(010) = 0 and so c(s, 010)� c(s, 010) + 1 = 0 + 1 = 1. The capacity was fully utilized but no new

path is created along (s, 010, ..., t).  Since f*(010) = 0, a new set of vertices that are reachable from s is created as

follows: f(010) � 1, and f(110) � 1.  As a result, the new optimal monotone Boolean function is f* = v2 	 v1v3, e*

remains the same at 16, and finally q* is updated to 16/37 � 0.432. Lines 1-4, 8, and 9 were executed using a total

of O(V2) time. The updated graph is shown in Figure 10.

Example 3. f(100) = 1 is observed:

m1(100) = 4 < m0(100) = 5 and c(100, t) = 0, so the edge is fully utilized and c(t, 100) is reduced by 1 unit: c(t, 100)

� c(t, 100) - 1 = 1 - 1 = 0, and along the path (100, 000, s) the flow is increased by 1 unit as follows: c(100, 000) �

c(100, 000) - 1 = 1 - 1 = 0, c(000, 100) � c(000, 100) + 1 = 5 + 1 = 6, c(000, s) � c(000, s) - 1 = 1 - 1 = 0, c(s, 000)�

c(s, 000) + 1 = 0 + 1 = 1. No path from s to t exists, so f* is updated as follows: f(000) � 1, f(100) � 1, f(010) � 1,

f(001) � 1, f(110) � 1, making the new optimal monotone Boolean function f* = T, for which the number of errors

e* remains the same at 16, and finally q * = 16/37 � 0.432. Lines 1, 11, 15, 16, 17 and 19 were executed using a total

of O(V2) time. The updates are shown in Figure 11.

As mentioned earlier the fastest maximum flow algorithms are of the preflow type (Karzanov (1974)) and

take O(V3) time.  However, the incremental algorithm developed in this section uses the idea of augmenting paths

which was conceived earlier by Ford and Fulkerson (1962).  The fastest known maximum flow algorithms based on

augmenting paths use O(VE2) time (Edmonds and Karp (1972)), where E denotes the set of edges which can be of

size O(V2).  The incremental algorithm developed here uses O(V2) time for each observation, and hence takes a total
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Figure 11. The residual graph for Example 3.

of O(mV2) time. Here m denotes the number of observations which is generally greater than the number of vectors

V.  That is, using the incremental algorithm for a non-incremental problem does not improve upon the existing

algorithm taking O(V3) time.  However, the incremental algorithm reduces the complexity of solving the incremental

problem by a factor of O(V).

3.3 Defining an Evaluative Criterion

The status of the inference process will be considered to be in one of three stages.  Stage 1 starts with the first

question, and lasts until a deterministic monotone Boolean function is obtained.  During Stage 1 only vectors that

may take on both 0 and 1 values are queried.  As a result, no (identifiable) errors are observed in Stage 1, and thus

the monotone Boolean function inferred during Stage 1 is deterministic.  This function, however, may or may not

be the correct function. In fact, the probability that it is the correct function is equal to the probability that no

misclassifications were made: (1- q)m, where m is the number of questions used during Stage 1 and q is the true

misclassification probability.  This probability decreases rapidly with m, regardless of the value of q. Therefore, the

queries performed after Stage 1 will benefit greatly from a reduction in the number of Stage 1 queries. Please note

that since no inconsistencies have been observed, there is no way to estimate q at this point.

After a deterministic monotone Boolean function is obtained in Stage 1, the inference process enters Stage

2.  At this point it is unclear as to how to select queries for Stage 2, so a random selection procedure will be used for

this stage. After the first error occurs in Stage 2, the inference process enters Stage 3, in which it will remain until

termination.  Stage 3 is the focus of this paper, because it is the only stage in which the likelihood ratio can be

properly evaluated and q can be estimated based on the observed vectors.
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Please recall that the likelihood function is given by:

       L( f ) = qe ( f )(1 - q)m - e ( f ),

and the likelihood ratio is given by:

As an example of the likelihood ratio computations consider the example data given in Table 2.  The function f* =

v1v3 	 v2v3 found in Section 3.1 produces 16 errors. Its associated estimated misclassification probability q* is 16/36

= 4/9, since the total number of observations is m = 36.   Therefore, the likelihood value of this function L(f*) is

(4/9)16(1 - 4/9)36-16 = 1.818×10-11.  Notice how small this value is after only 36 observations. The likelihood values

for the other functions are given in Table 3.  Adding up all the likelihood values yields (13×1.455 + 2×1.536 +

5×1.818)×10-11  = 3.107 ×10-10.  Then the maximum likelihood ratio is computed as follows:  �(f*) = 1.818×10-

11/3.107 ×10-10 = 0.0585.

Now let us return to the vector selection (or guided inference) problem. The probability that the correct

function is inferred during Stage 1 decreases rapidly with the number of queries used during that stage.  As

mentioned earlier, Stage 1 has been studied extensively in the past. Torvik and Triantaphyllou (2001a) suggested

selecting the vector v that minimizes the quantity |K0(v) -  K1(v)|, where Kz(v) is the number of unclassified vectors

preceding v if z = 0, or succeeding v if z = 1. The vector selection criterion minmizes the average number of queries

used for Stage 1 for n up to and including 4. According to the empirical results of Torvik and Triantaphyllou (2001a),

this is currently the best known criterion and is probably very close to optimal for n greater than 4.The probability

that the correct function is inferred during Stage 1 decreases rapidly with the number of queries used during that

stage. Therefore, the selection criterion min|K0(v) -  K1(v)| will be used as a standard for Stage 1, when comparing

different approaches for the following Stage 3.  This avoids bias in the sense that all Stage 3 approaches will benefit

from using min|K0(v) -  K1(v)| during Stage 1.

One important property of the evaluative criterion for Stage 3 is that the maximum likelihood ratio converges

to 1.  It is possible to define selection criteria that do not converge. If, for example, the same vector is invariably

selected, the estimated value of q will converge to its true value.  In this case, the likelihood values may remain equal

for several monotone Boolean functions and hence the maximum likelihood ratio will never converge to 1.  

As was demonstrated in Torvik and Triantaphyllou (2001a), intuition may lead to an inefficient selection

criterion for Stage 1.  The same holds true for Stage 3. For example, let Ez(v) be defined by the number of errors

associated with assigning the function value f(v) to z, as follows:

Then, consider defining the vector v which contributes with the most to errors by max(E0(v)+E1(v)). This vector

selection criterion may lead to the same vector being invariable queried and hence it might suffer from convergence
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problems, as will be demonstrated empirically in Section 4.

Table 3. Example likelihood values for all functions in M3.

f e(f) q(f) L(f) �(f)

F 20 ½ 1.455×10-11 0.0468

v1v2v3 21 ½ 1.455×10-11 0.0468

v1v2 23 ½ 1.455×10-11 0.0468

v1v3 18 ½ 1.455×10-11 0.0468

v1v2 	 v1v3 20 ½ 1.455×10-11 0.0468

v1 21 ½ 1.455×10-11 0.0468

v2v3 19 ½ 1.455×10-11 0.0468

v1 	 v2v3 19 ½ 1.455×10-11 0.0468

v1v3 	 v2v3 16 4/9 1.818×10-11 0.0585

v1v2 	 v1v3 	 v2v3 18 ½ 1.455×10-11 0.0468

v1v2 	 v2v3 21 ½ 1.455×10-11 0.0468

v2 19 ½ 1.455×10-11 0.0468

v1 	 v2 17 17/36 1.536×10-11 0.0495

v2 	 v1v3 16 4/9 1.818×10-11 0.0585

v3 16 4/9 1.818×10-11 0.0585

v2 	 v3 16 4/9 1.818×10-11 0.0585

v1 	 v2 	 v3 17 17/36 1.536×10-11 0.0495

v1 	 v3 19 ½ 1.455×10-11 0.0468

v3 	 v1v2 18 ½ 1.455×10-11 0.0468

T 16 4/9 1.818×10-11 0.0585

The likelihood framework seems to form a great basis for defining a Stage 3 vector selection criterion.  Since

the goal is to make the likelihood ratio converge to 1 as fast as possible, a reasonable approach would be to select

the vector that maximizes the expected maximum likelihood ratio at each inference step.  To do this, the expected

maximum likelihood ratio ��(v) = p(v)�1(v) + (1 - p(v))�1(v) has to be estimated for each vector v.  Here �z(v)

denotes the resulting maximum likelihood ratio when f(v) = z is observed. Please recall that p(v) is the probability

of observing f(v) = 1. That is, it can be estimated by p*(v) =  q*(1- f*(v)) + (1 - q*)f*(v).

As an example consider observing the vector (001).  Table 4 gives the updated likelihood ratios for each

monotone Boolean function in M3 when mz(001) = mz(001) + 1, for z = 0 and 1.  For a monotone Boolean function
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f, and a classification z, ez(001, f) and �z(001, f) here denote the updated number of errors and the likelihood ratio,

respectively. The updated maximum likelihood ratios are �1(001, T) = 0.0649 and �0(001, v1v3 	 v2v3) = 0.0657.

Since the optimal function assigns the vector (001) to 0 (i.e.,  f*(001) = 0), the estimated probability of observing

f(001) = 1 is given by p*(001) = q* = 4/9.  Therefore, the expected maximum likelihood ratio when querying vector

001 is given by ��(001) =  p*(001)�1(001, T) + (1 - p*(001))�0(001, v1v3 	 v2v3) = 4/9 ×0.0649 + 5/9 ×0.0657 =

0.0653. Similar computations for the other vectors yield ��(000) = 0.0651, ��(010) = 0.0654,  ��(011) = 0.0592,

��(100) = 0.0652, ��(101) = 0.0592, ��(110) = 0.0654, and finally ��(111) = 0.0592.  The vectors with the

largest expected likelihood ratio value are 010 and 110.  Since no further improvements of the selection criterion is

immediately obvious, ties are broken arbitrarily.

Table 4. Updated likelihood ratios for mz(001) = mz(001) + 1.

f �(f) e1(001, f) �1(001, f) e0(001, f) �0(001, f)

F 0.0468 21 0.0462 20 0.0468

v1v2v3 0.0468 22 0.0462 21 0.0468

v1v2 0.0468 24 0.0462 23 0.0468

v1v3 0.0468 19 0.0462 18 0.0474

v1v2 	 v1v3 0.0468 21 0.0462 20 0.0468

v1 0.0468 22 0.0462 21 0.0468

v2v3 0.0468 20 0.0462 19 0.0468

v1 	 v2v3 0.0468 20 0.0462 19 0.0468

v1v3 	 v2v3 0.0585 17 0.0522 16 0.0657

v1v2 	 v1v3 	 v2v3 0.0468 19 0.0462 18 0.0474

v1v2 	 v2v3 0.0468 22 0.0462 21 0.0468

v2 0.0468 20 0.0462 19 0.0468

v1 	 v2 0.0495 18 0.0469 17 0.0529

v2 	 v1v3 0.0585 17 0.0522 16 0.0657

v3 0.0585 16 0.0649 17 0.0529

v2 	 v3 0.0585 16 0.0649 17 0.0529

v1 	 v2 	 v3 0.0495 17 0.0522 18 0.0474

v1 	 v3 0.0468 19 0.0462 20 0.0468

v3 	 v1v2 0.0468 18 0.0469 19 0.0468

T 0.0585 16 0.0649 17 0.0529
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The simulations in Section 4 reveal the efficiency of the evaluative criterion max ��(v) in terms of the query

complexity. It may take an exponential time (in the size of V) to compute max ��(v). Since the computational time

for incrementally finding the inferred function is of O(V2), it would be nice to find an evaluative criterion that does

not take more time than this and still makes the likelihood converge to 1 at a faster rate than randomly selecting

vectors. One such possibility may be based on the inferred border vectors.

For the sake of argument suppose that the underlying monotone Boolean function f to be inferred is known.

Then randomly selecting vectors from its corresponding border vectors will make the maximum likelihood ratio

converge to 1. As the number of queries m goes to infinity, the ratios m0(v)/(m0(v) + m1(v)) � v � LU(f) and

m1(w)/(m0(w) + m1(w)) � w � UZ(f) all converge to q. The number of errors performed by any other monotone

Boolean function g is at least x =  min{min{m1(v) - m0(v),v � LU(f)},{m0(w) - m1(w), w � UZ(f)} greater than the

number of errors performed by function f. Furthermore, x � qm - (1-q)m = m(2q - 1) for large m. That is, the number

of additional errors increases at least linearly with m. Then, as m goes to infinity, so does the number of additional

errors performed by each of the other monotone Boolean functions. That is, the relative likelihoods L(f)/L(g) > (q/(1-

q))x converge to 0 as m goes to infinity. Since the number other monotone Boolean functions is a finite number that

does not depend on m, the likelihood ratio �(f) =  L(f) / (L(f) + �L(g)) converges to 1 as m goes to infinity. 

Focusing the queries at the border vectors of the underlying function probably allows this convergence to

occur at a faster rate than randomly selecting from all the vectors. In situations where the underlying function is

unknown, it may be that focusing the queries on the border vectors of the inferred function (i.e., v � LU(f*) � UZ(f*))

is better than completely random selection. In the long run, an inferred border vector will not prevail if it is not an

underlying border vector. Since the misclassification rate is less than ½, the rate at which the incorrectly classified

inferred border vectors become correctly classified is greater the rate at which correctly classified inferred border

vectors become incorrectly classified. Therefore, in the long run all the classifications become correct when the

queries are selected from the set of border vectors of the inferred function.

Notice that this convergence holds even if the misclassification probability is different for each vector, as

long as they are all less than ½. Another added benefit is that finding the border vectors is easy, since they are readily

available from the inferred function f*. In fact, a simple modification of the incremental maximum flow algorithm

can store each of these vectors as they are found. For each monotone Boolean function there are at most O(V) border

vectors in a set of vectors V. During the inference process the inferred function may take on any of these monotone

Boolean functions. Therefore, randomly selecting one of the border vectors takes O(V) time.

4. Experimental Results

For the purpose of comparing the efficiency of the different selection criteria for Stage 3 on the same basis, ties

resulting from the selection criteria (min|K0(v) -  K1(v)| for Stage 1, and max(E0(v) + E1(v)), max ��(v), and v �

LU(f*) � UZ(f*) for Stage 3) were broken randomly.  The four different inference processes using max ��(v), v �
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LU(f*) � UZ(f*),  max(E0(v) + E1(v), or random selection for Stage 3 were simulated on the set of vectors {0,1}n.

For all three Stage 3 selections criteria, the criterion min|K0(v) -  K1(v)| was used for Stage 1 and random

selection was used for Stage 2.  The resulting simulations were repeated 100, 50, 25, and 10 times for each of 6

representative functions of Mn, with misclassification probabilities 0.1, 0.2, 0.3, and 0.4, for n = 2, 3, 4 and 5,

respectively.  For n equal to 6, the number of monotone Boolean functions is 7,828,354 and generating all of them

to evaluate their likelihoods became too computationally burdensome for the 600 Mhz Pentium III based personal

computer with 384 Mbytes of RAM used in these experiments. This limitation is also be due to the fact that the

programs were run in interpreting mode for MATLAB 5.3 under the Windows 98 operating system.

The representative functions are given in Table 5.  For n = 4 and 5, the representative functions were

randomly generated from a uniform distribution with individual probabilities of 1/�(n) = 1/168 and 1/7581,

respectively.  For n = 3, the representative functions consist of  non-similar functions (one from each similar subset

of  M3).  These functions represent all the functions in M3, since the average case behavior is the same for a pair of

similar monotone Boolean functions. To compute the overall average for a given q, the individual curves were

weighted by the number of similar functions the representative function has (including itself) in M3. The individual

curves for the monotone Boolean functions F, v1v2v3, v1v2, v1v2 	 v1v3, v1, and v1v2 	 v1v3 	 v2v3, were therefore

weighted by 2, 2, 6, 6, 3 and 1, respectively.  For n = 2, 4, and 5, the overall averages were computed without

weights.  The overall averages for n = 2 and 3 benefit from a reduced variance, since no additional errors are added

due to sampling of functions as done for n = 4 and 5.

Table 5. The representative functions used in the simulations.

n = 2 n = 3 n = 4 n = 5

F F v1v2 	 v2v4 	v1v3v4 v1v4 	 v1v5 	v2v4 	 v2v5

v1v2 v1v2v3 v1v2 	 v1v3 	v2v3 	 v2v4 	v3v4 v1v3 	 v2v3 	v2v4 	 v1v2v5

v1 v1v2 v2v3 	 v2v4  v2 	 v1v3v4 	 v1v4v5

v2 v1v2 	 v1v3 v1v2v3 	v1v3v4 	v2v3v4 v1v3 	 v2v4 	 v3v5 	 v1v4v5

v1 	 v2 v1 v1v2 	 v2v4 	 v3v4 v2v4 	 v2v5 	 v3v5 	v4v5

T v1v2 	 v1v3 	 v2v3 v3 	 v1v2 	 v1v4 v2v5 	 v1v2v3 	 v1v3v4 	 v1v4v5 	 v3v4v5

Figure 12 shows the resulting average maximum likelihood curves for the inference problem defined on n

= 2, 3, 4, and 5, and q = 0.1, 0.2, 0.3, and 0.4. Each curve is the average of 600, 300, 150, and 60 simulated inference

processes observed for n = 2, 3, 4, and 5, respectively. In each plot, the horizontal axis corresponds to the number

of Stage 3 queries, and the vertical axis corresponds to the maximum likelihood ratio.  The curves are shown for the

range of Stage 3 queries where the curves for the evaluative criterion max ��(v) has a maximum likelihood ratio that

is less than 0.99.
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Figure 12. Average case behavior for various selection criteria.

Not only do the curves corresponding to the guided selection criteria max ��(v) and v � LU(f*) � UZ(f*)

converge to 1 but they do so at a much faster rate than the curves corresponding to unguided random selection.  In

fact, the random selection achieves a maximum likelihood ratio of only about 0.7 after the same number of queries

as the criterion max ��(v) uses to reach 0.99, and the criterion v � LU(f*) � UZ(f*) uses to reach about 0.9, for n

= 4.

The difference between the curves for unguided selection and these two guided selections grows for higher

values of the misclassification probability and for higher dimensions.  That is, the benefits from actively selecting

vectors over passively receiving observations, are greater for larger values of q and n. In other words, the higher the

misclassfication probability and the dimension of the problem are, the greater the benefits of guiding the inference

process become.
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The curves associated with criterion max(E0(v) + E1(v)) seems to converge to a value significantly less than

1.  For example, when n = 3 and q = 0.3, the maximum likelihood ratio converges to about 0.4, and this value

decreases as the values of q and n increase. Therefore, the larger error rate and vector domain is, the more important

it becomes to define an appropriate vector selection criterion.

Table 6 gives the average number of queries needed by the selection criterion max ��(v) to converge to a

maximum likelihood ratio of 0.99 for n = 2, 3, 4, and 5, and for q = 0.1, 0.2, 0.3, and 0.4.  For a given n, these

numbers increase dramatically as q increases. In fact, there seems to be more than a doubling in the numbers for fixed

increments of q. For a given q, these numbers do not increase in such a dramatic fashion when n increases. However,

they do increase faster than linearly with n.

Table 6. The average number of Stage 3 queries used by max ��(v) to reach � > 0.99.

q = 0.1 q = 0.2 q = 0.3 q = 0.4

n = 2 22 54 125 560

n = 3 27 65 170 710

n = 4 33 85 241 951

n = 5 45 111 277 1167

Figure 13 further illustrates how the average number of queries increases with q and n. The vertical axis

corresponds to the number of queries and are shown on a log10 scale. The horizontal axis corresponds to the

dimension n, and each curve corresponds to a particular misclasssification probability q. These curves exhibit three

significant properties. First, they all tend to increase linearly with n, indicating that the number of queries tend to

increase exponentially with n. Second, the curves seem to be parallel, indicating that this exponential increase is fixed

regardless of what the value of q is. Third, the distance between the parallel lines tend to increase with fixed

increments of q, indicating that the number of queries increases faster than exponentially with q. That is, the number

of queries can be approximated by a function of the parameters n and q in the form a2bn + c(q)2dq + e, where a, b,

d, and e are constants and c(q) is an increasing function of q. It should be noted that this approximation may not be

appropriate in greater dimensions (i.e., for n > 5), or outside this range of misclassification probabilities (i.e, for q

< 0.1 or q > 0.4).

This approximation also sheds some light on the total computational complexity of finding the error

minimizing function. Please recall from Section 3.2 that the time used by the incremental maximum flow algorithm

per observation was O(V2). Therefore, the total time spent refitting the model is O(mV2) where m is the total number

of queries needed to make the maximum likelihood ratio reach 0.99. The number of queries divided by |V| decreases

with |V|, according the data in Table 6. Thus, the total time used by the incremental algorithm is less than O(V3). In

contrast, the fastest known general purpose maximum flow algorithm is of O(V3). This is the complexity of the



26

2 3 4 5
10

1

10
2

10
3

Number of Variables , n

A
ve

ra
g

e
 N

u
m

b
e

r 
o

f 
S

ta
g

e
 3

 Q
u

e
ri

e
s

 U
s

e
d

 b
y

 m
a

x 
∆

λ
(v

) 
to

 R
e

a
c

h
 λ

 >
 0

.9
9

q =  0.1

q =  0.2

q =  0.3

q =  0.4

Figure 13. Average query complexity of max ��(v) on the poset {0,1}n with
misclassification probability q.

problem if all the data were gathered before the error minimizing monotone Boolean function was found. Therefore,

the time used fitting the model is not increased by using the incremental approach.

It should be noted that the computational complexity of evaluating the maximum likelihood ratio, and hence

the evaluative criterion, is exponential in the size of the set V. In some applications where the set V is large,

computing the criterion max ��(v) may be an infeasible task. However, randomly selecting a border vector (i.e., v

� LU(f*) � UZ(f*)) takes at most O(V) time. Even though focusing on border vectors does not reduce the query

complexity as much as the criterion  max ��(v), it performs much better than random selection.

Please recall from Section 3.3 that randomly selecting the inferred border vectors (i.e., v � LU(f*) � UZ(f*))

makes the maximum likelihood ratio converge to 1, as long as the misclassification probabilities are all less than ½.

That is, the misclassification probabilities do not necessarily have to be fixed. To see whether this holds for the

selection criterion max ��(v), consider an unrestricted model where the misclassification probability q(v) is a random

variable distributed uniformly on the interval [q(1- �), q(1 + �)], where � � [0,1], for each vector v � {0,1}n.
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Figure 14. The unrestricted and regular maximum likelihood ratios simulated
with expected q = 0.2 and n = 3.

The case when � = 0, corresponds to the fixed misclassification probability model (i.e.,  q(v) = q � v �

{0,1}n). The range of values that q(v) can take on increases with �, but the expected value of q(v) is equal to q.

Therefore, the estimate of the maximum likelihood ratio based on the fixed q model is worse for larger values of �.

To compare this estimate to an unrestricted estimate, the inference process was simulated 200 times for each � = 0,

0.5, and 1, when q = 0.2, n = 3.  Figure 14 shows the average maximum likelihood ratio curves for the unrestricted

model (dotted curves) and the fixed  model (solid curves) when using the selection criterion max ��(v). 

The regular and the unrestricted maximum likelihood ratios both converge to 1, though at slower rates as �

increases. In other words, evaluative criterion max ��(v) is appropriate in situations where the misclassification

probability is not necessarily fixed. In general, the unrestricted maximum likelihood ratio is much smaller than the

regular one. The case when q(v) is fixed at 0.2 (i.e., � = 0), the regular maximum likelihood ratio should be used,

and for � > 0 it is an overestimate of the true maximum likelihood ratio. The case when � = 1, the unrestricted

maximum likelihood ratio should be used, and for � < 1 it may be an underestimate. The true likelihood ratio lies

somewhere in between the two.
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5. Conclusion

The maximum likelihood ratio approach to modeling the inference process of monotone Boolean functions yielded

a number of benefits.  It was demonstrated that an appropriately defined guided learner, such as maximizing the

expected maximum likelihood ratio (max ��(v)) or randomly selecting inferred border vectors (v � LU(f*) �

UZ(f*)), allowed the maximum likelihood ratio to converge to 1, even when the misclassification probability was

not fixed. This avoids the bias problems associated with the variance approach reported in Cohn et al. (1996), and

also observed with the selection criterion based on the number of errors (max(E0(v) + E1(v)).

For large problems (i.e., n > 5), it may not be possible to compute the evaluative criterion max ��(v) since

it takes exponential time (in the size of the query domain V) to do so. For such problems, queries can be selected

randomly from the border vectors (v � LU(f*) � UZ(f*)). This only takes O(V) time, and results in much fewer

queries than completely random selection on the average.

For complete reconstruction of monotone Boolean functions, the guided approach showed a dramatic

reduction in the average number of queries over a passive learner on the average.  The simulations also indicated that

this improvement grows at least exponentially as the number of variables n and the error rate q increase. Thus,

defining an appropriate and efficient evaluative criterion is even more beneficial for large problems and applications

with a high error rate. 
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