Guided Inference of Stochastic

M onotone Boolean Functions

Vetlel. Torvik! and Evangelos Triantaphyllou® *
Dept. of Industrial and Manufacturing Systems Engineering
3128 CEBA Building, Louisiana State University
Baton Rouge, LA 70803-6409

1 Email: vtorvik@Ilsu.edu, Webpage: http://cdad.imse.Isu.edu/torvik/index.html
2 Email: trianta@l su.edu, Webpage: http://imse.lsu.edu/vangelis
* Corresponding Author

Last Revision: October 29, 2001

Abstract
This paper addressesthe problem of efficiently reconstructing monotone Bool ean functions viamembership queries
toastochastic oracle. Anincremental maximum flow algorithmisdevel oped tofind amaximumlikelihood monotone
Boolean function after each query answer. Thisalgorithm reducesthe computational complexity to O(V?) per query,
from the general maximum flow algorithms complexity of O(V®), where V is the query domain. The main goal of
reducing the number of queries needed to make the maximum likelihood ratio converge to 1 is achieved by using
certain evaluative criteria to select queries. Guiding the inference process by selecting queries from the inferred
border vectorstakes O(V) time per query and reducesthe average query complexity dramatically. The motivation for
guided inference in the presence of errorsis further strengthened by the fact that the number of queries also tends

to increase faster than exponentially with the oracle’ s error rate.

K eywords. monotone Boolean functions, membership queries, maximum likelihood, incremental maximum flow

algorithm, query selection criterion.

1. Introduction

Monotonicity is anatural property in awide variety of applications. For example, the better grades a student has,
the more likely he or sheis to be accepted into a particular college, with all other factors constant. If a personal
computer tends to crash when it runs a particular web browser and word processor simultaneously, then it will
probably also crash when it, in addition, boots up an image viewer, and so on. In applications, the monotonicity
property isusually easy toidentify duetoitsintuitive nature. Thisisperhapsits most important feature when human

interaction isinvolved, since people tend to make very good use of knowledge they understand.

1

This paper focuses on situations where the monotone function and its n variables are Boolean (i.e., take on
two values, say 0 and 1). This does not necessarily limit the application domain as Kovalerchuk et al. (1995)
establishesthat any function can be represented by a sequence of monotonically non-increasing and non-decreasing
Boolean functions. Recent literature contains a plethora of fields where monotone Bool ean functions appropriately
capture the phenomenon under study. Such diverse fields include, but are not limited to, social workers decisions,
lecturer eval uation and empl oyee sel ection (Ben-David (1992)), chemical carcinogenicity, tax auditingandreal estate
valuation (Boroset al. (1994)), breast cancer diagnosisand engineering reliability (Kovalerchuk et al. (1996)), signal
processing (Shmulevich (1997)), rheumatology (Bloch and Silverman (1997)), social sciences (Judson (1999)),
finance (Kovalerchuk and Vityaev (2000)), and record linkage in databases (Judson (2001)).

In practice, agreat deal of effort is put into the process of inferring a function underlying a phenomenon.
Softwareis tested to establish its reliability, medical experiments are performed to establish diagnostic criteriafor
diseases, etc. This inference process generally involves gathering and analyzing data. Gathering the data often
involves some sort of |abor that far outwei ghs the computati ons used to analyze the data, in terms of cost. Themain
objective in this paper is, therefore, to minimize the cost associated with gathering the data, as long as it is
computationally feasible.

Monotone Boolean functions lay the ground for a simple question-asking strategy where it may be easy to
pinpoint questionswhose answersmakeincompl ete knowl edge more general or stochastic knowledge more accurate.
Dueto the underlying monotonicity, alearning algorithm that actively choosesits observations (i.e., is guided) may
significantly increase the learning rate, as a passive learner might not receive the relevant pieces of information.
Therefore, it is highly desirable not only to be able to pose questions (or queries), but to pose “smart” questions.

The main problem addressed in this paper ishow to identify these “smart” questionsin order to completely
and efficiently infer a monotone Boolean function defined on at most n variables. The monotone Boolean function
can be thought of as a phenomenon, such as breast cancer or a computer crash, together with a set of n Boolean
predictorsor variables. It isassumed that the learning algorithm has access to an oracle that provides a 0-1 function
value in response to each query. The oracle can be thought of as an entity that knows the underlying monotone
Boolean function. In practiceit may take the shape asahuman expert or asthe outcome of atasks such as performing
experiments. It is further assumed that the oracle misclassifies each vector (associated with a query) with a fixed
probability g € (0,%). That is, for a given monotone Boolean function f, the oracle returns 1 for vector v with
probability p(v) = f(v)(1 - q) + (1 - f(v))g, and O with probability 1- p(v). It is assumed that the oracle is not
misleading the inference process and i s better at classifying the vectors than compl etely random guessing, hence the
oracle’ s misclassification probability is assumed to be less than V2.

The case when the oracle is deterministic (i.e., its misclassification probability q is equal to 0), has been
studied extensively in the literature. A comparative study of existing algorithms for this problem can be found in
Torvik and Triantaphyllou (2001a), and an extension to a pair of nested monotone Bool ean functions can be found
in Kovalerchuk et al. (1996) and Torvik and Triantaphyllou (2001b).

2

The stochastic inference problem involves estimating the misclassification parameter q as well as
reconstructing the underlying function f. In this paper, these two tasks are based on a maximum likelihood
framework. The monotone Boolean function that is the most likely to match the underlying function, given the
observed queries, is referred to as the inferred function and is denoted by f*. Associated with function f* is the
estimated misclassification probability which is denoted by g*.

Theinference process consists of two stepsthat are repeated successively. First avector is submitted to the
oracleasaquery. After avector’sfunction valueis provided by the oracle, both g* and f* may have to be updated.
Thesetwo stepsarerepeated until thelikelihood of theinferred function f* matching the underlying functionfishigh
relativeto thelikelihood of any of the other monotone Boolean functionsmatchingf. That is, the underlying function
is considered completely reconstructed when the maximum likelihood ratio for the inferred function A(f*) reaches
avaluethat iscloseto 1.

The paper isorganized asfollows. Before the details of the inference problem and the rel ated methodol ogy
are described in Section 3, some background information on monotone Boolean functions and related inference
problemsisprovided in Section 2. The conclusion given in Section 5 is based on the experimental results presented
in Section 4.

2. Background Information

Thissection buildstheframework used for the core methodol ogy used in Sections3 and 4. Section 2.1 providessome
formal notation and definitions, and also some useful properties related to monotone Boolean functions. The focus
of this paper is the fixed misclassification probability model of the oracle. This model, in addition to some more
general stochastic models, is presented in Section 2.2. Some of the related model objectives and optimization
procedures are al so briefly described. Some of the literature pertaining to guided inferencein the presence of errors
isreviewed in Section 2.3.

2.1 Some Properties of Monotone Boolean Functions

Let {0,1}" denote the set of Boolean vectors defined on n Boolean variables. A deterministic Boolean function
defined on {0,1} " is simply amapping to {0,1}. A vector v € {0,1}" is said to precede another vector w, denoted
by v < w, if and only if (iff) v, < w, fori =1, 2, ..., n. Herev, (w,) denotes the i-th element of vector v (w,
respectively). Similarly, avector vissaid to succeed another vector w, iff v, > w fori=1, 2, ..., n. Whenv precedes
(or succeeds) w, and the two vectors are distinct (i.e., v #w), then the vector vis said to strictly precede (or strictly
succeed, respectively) w, denoted by v >w (or v <w, respectively). A monotone Boolean function f is called non-
decreasing if f(v) < f(w) ¥ (v, w): v < w, and non-increasing if f(v) > f(w) V (v, w): v < w. This paper focuses on
non-decreasing functions, which are referred to as just monotone, as analogous results hold for non-increasing

functions.

Figure 1 showsasample partially ordered set (or poset for short). In general, posets can be formed by a set
of vectors together with the precedence relation <. Posets can be viewed as directed graphs where each vertex
corresponds to a vector and a directed edge from vertex v to vertex w, represents the precedence relation v < w.
When drawing a poset, the edge directions are often omitted since the graph is acyclic and so al the directions can
be forced upwards on a page by ordering the vertices by layers. The poset in Figure 1 is shown with the directions
because they are useful in the maximum flow a gorithms described in Section 3. For the purpose of reducing storage
and simplifying the visualization of posets, redundant relations, i.e., ones that are transitively implied by other

relations, are al'so omitted, asin Figure 1.

<>
(o) (9

Figure 1. The poset formed by
{0,1} 2 and the < relation.

A vector v* is called an upper zero of afunction f, if f(v*) =0and f(v) > f(v*) V v: v* < v. Similarly, a
vector v* iscalled alower unit of afunctionf, if f(v*) =1 and f(v) < f(v*) V v: v < v*. Lower unitsand upper zeros
arealso referred to asborder vectors. For any monotone Boolean function f, the set of lower units LU(f), and the set
of upper zeros, UZ(f) are unique and either one of these two sets uniquely identifiesf. Boolean functions are often
writtenin DigunctiveNormal Form (DNF) or Conjunctive Normal Form (CNF). For any monotone Bool eanfunction

f there is a one-to-one relationship between its lower units LU(f) and its termsin DNF as follows:

SV vy e V) = V (A V).

w e LU i: w=1
Similarly, there is a one-to-one relationship between the upper zeros UZ(f) of a monotone Boolean function f, and
its clausesin CNF asfollows:
SV vy ey V) = ANV V).
w e UZYf) i: w;=0
For example, the monotone Boolean function defined by itslower units{110, 101} can bewrittenin DNFasv,v, V
v,V;. The corresponding upper zeros are {011, 100} and CNF isv,(V, V v;). Since the lower units and upper zeros

are unigue to a monotone Boolean function, so are its representations in DNF and CNF. The set of monotone

4

functionsdefined on{ 0,1} "isdenoted by M,. For example, the set of monotone Bool ean functions defined on at most
2 variables written in DNF isgiven by M, = {F, v,v,, v;, V, , v; V v,, T}. Here, the uniform functions F and T are
defined asf(v) =0V v e {0,1}", and f(v) = 1V v € {0,1}", respectively.

The number of monotone Boolean functions defined on { 0,1} " is denoted by ¥ (n). All of the known values
for ¥(n) are given in Table 1. Wiedeman (1991) employed a Cray-2 super computer for 200 hours in order to
computethevaluefor nequal to 8. Thisgivesaflavor of thecomplexity of computing the exact number of monotone

Boolean functions. For larger values of n the best known asymptotic is due to Korshunov (1981):

n 1 n? n
i’ 2-1)\ s
2 n e 2n/2 2n+5 2n+4

), Jfor even n.

P ~

1 2))
(n/221/2) +1 (”/27_13/2)(W_#_#) ’ (”/27-11/2)(2(n+1)/2+ 2Z+4)
i ’ , Jor odd n.

Table 1. History of Monotone Boolean Function Enumeration for n=1,2, ..., 8.

P(1)=3 P©2) =6 ¥P(3)=20

P(4) =168 by Dedekind (1897)
P(5) = 7,581 by Church (1940)
¥(6) = 7,828,354 by Ward (1946)
¥(7) = 2,414,682,040,998 by Church (1965)
W(8) = 56,130,437,228,687,557,907,788 by Wiedeman (1991)

Many monotone Boolean functions are of similar form. For example, by permuting the variables in the
functionv, \V v,v,, thetwo functionsv, \VV v,v; and v, \/ v,v, are obtained. Also, by switching therol es of the operations
V and /\ in the function v,v,v; , thefunction v, \VV v, V v; is obtained. To formally describe this similarity, define the
following two posets: P,(f) = ({v €{0,1}" f(v) = Z}, <), for z=0and 1. Two posets, P* and P?, are said to be
isomorphic if there exists a one-to-one mapping of the vertices in P* to the vertices in P?, where the precedence
relations are preserved. That is, if v - v and w! -~ W2, then V! < wtiff v2 < w?, V v}, w! € Ptand V2, w? € P2. Two
monotone Boolean functionsf and g are called similar either if Py(f) isisomorphic to Py(g) (and P,(f) isisomorphic
to P,(g)), or if P,(f) isisomorphic to P,%(g) (and P,(f) isisomorphic to P,%(g)). Thefirst isomorphism is obtained by
permuting the variables, and the second isomorphism is obtained by switching the roles of the operations\/ and /\.
The sets of similar monotone Boolean functions of M, are: {F, T}, {ViVova, Vi V v, V Vg, { ViV, ViV, VoVg, v, V W, vy
Vg, Vo Vol ViV, V Vg, ViV, V VoV, ViV V VoV, vV VoV, W, V VG, Vo V VL) { Vg, Vs, Vo), and { vV, Vv v, Vv, va) .

A useful fact about similar functionsisthat certain propertiesare preserved within the subset. For example,
the average case behavior of the inference processis equivalent for similar functions aslong as certain randomness
precautions are taken. The fact that 6 non-similar functions represent the entire class of functions M, will reduce

the computational burden of the associated experiments performed in Section 4 by afactor of ¥(3)/6 = 3.33.

2.2 Stochastic Models for Monotone Boolean Functions
Suppose a set of observed vectors V = {V, \, ..., V} isgiven. For agiven number of queries m, let m,(v) be the
number of timesthe oracle classified vector vasz (for z=0and 1, and v €V). Associated with amonotone Boolean

function f, the number of errorsit performs on the set of observationsis given by:
ef) = D (v myv) + (LA Ymy ().
i=1

It isassumed that the oracle misclassifies each query with afixed probability q € (0, ¥2). Thatis, for agiven
monotone Boolean function f, the oracle returns 1 for vector v with probability p(v) = gx (1 - f(v)) + (1 - g)xf(v), and
Owith probability 1- p(v). An estimate for the fixed misclassification probability associated with function fissimply
the ratio of the number of errors over the total number of classifications performed, restricted by the maximum
allowable value of ¥z (i.e., min{e(f)/m, %4}). Note that the probability g is actually required to be strictly less than
1, but for practical purposes this estimate is sufficient when the observed error ratio is greater than or equal to %2.

If the sampled values are considered fixed, their joint probability distribution function can be thought of as
the likelihood of function f matching the underlying function as follows:

L(f)=g°O(L-gm e,

Thelikelihood valueof aparticul ar monotone Bool ean function decreasesexponentially asmore observations

are added and therefore thisvalue is generally very small. However, the likelihood ratio given by:

M) = 0

7
FeFD)

b

measures the likelihood of a particular function f* relative to the likelihood of all possible monotone Boolean
functions F(V), defined on the set of vectors V. Note that when the set of vectorsV is equal to {0,1}", then the set
of all possible monotone Boolean functions F(V) isequal to M,

Thegoal of the maximum likelihood problemisto find amonotone Boolean function f* € F(V), so that L(f*)
>L(f) V f € F(V). Assuming that the misclassification probability q € (0,%), thisproblemisequivalent to identifying
amonotone Boolean function f* that minimizes the number of errors e(f*) (Boros et al. (1995)). Notethat if g can
take on values greater than %, then the maximum likelihood solution may maximize the number of errors, as
demonstrated by Boros et al. (1995). In this paper, error maximization is avoided by restricting g to be less than %.

It should be noted that an error minimizing solution with g* < %2 always exists. One of the two uniform
monotone Boolean functions T, or F satisfies this restriction as follows:

k k
Y myv) Y me
ol L q = 4D - o

_ D _
q(I) = " T TR ‘ A m £ ‘ A ’
Y- my(v yrmy) D v yrmy(v')
i=1 i=

Therefore, q(T) + q(F) =1and 0 < g(T), q(F) < 1. Asaresult, g* < min{q(T), q(F)} < %. Note that this does not

6

necessarily imply that one of thetwo functionsT or F are error minimizing, but rather establishesthefact that anerror
minimizing function will indeed satisfy q* < Y.
The error minimization problem can be converted into an integer maximization problem as follows:
mine(f)=

minﬁ; (v i)mo(v N+ (1-fv i))ml(v) =

k k
mz‘n(—le (v Yom, (v ~ my(v) + 212 m,(v).

k

Sincetheterm Z m,(v’) isconstant, it can beremoved fromtheoptimization objective. Furthermore, maximizing
i=1

a particular objective function is equivalent to minimizing the negative of that objective function, resulting in the

following simplified integer optimization problem:
k
max) S Yom, (')~ (o)

subject to f(V) < f(V) V V,V € V: vV < V, and
f(v) = Oor 1.

This problem is known as a maximum closure problem, which can be converted into a maximum flow
problem as described in Section 3.1 (see also Picard (1976)). The most efficient algorithms developed for the
maximum flow problem use the idea of preflows developed by Karzanov (1974). For example, the lift-to-front
algorithm (e.g., Cormen et al. (1997)) takes O(V°) time. Thefact that this problem can be solved in polynomial time
isanice property of the single g parameter model.

For two dimensional problems (i.e., V < R?), the minimum number of errors can also be guaranteed viaa
dynamic programming approach (Bloch and Silverman (1997)). Thisapproach isalso applicablewhen (V,<) forms
aplanar poset (i.e., aposet that can be drawn in aplane without crossing lines). The posets considered in this paper
are of theform ({0,1} ", <), and for n greater than 2 they are unfortunately not planar.

A more complex error model can potentially maintain as many parametersasthe size of thedomain V. That

is, each vector v may have an associated unique parameter p(v). Inthis case, minimizing the weighted least squares:
min)_ (p(v') = PO Nem @) + my(vY)
i=1

subject to p(V) < p(V) V V,V € V: V< V,
sy = —) i Lk
m(v’) + myv’)

where

yields a maximum likelihood solution (Robertson et al. (1988)). Thisis a hard optimization problem, and several
algorithms have been devel oped to solveit optimally and near optimally. The Pooled Adjacent Violators Algorithm
(PAVA) by Ayer et al. (1955) only guarantees optimality when (V,<) formsachain poset (alsoreferredtoasasimple
order). The Min-Max agorithm developed by Lee (1983) and the Isotonic Block Class with Stratification (IBCS)

7

algorithm by Block et al. (1994) guarantee optimality for the general poset but both algorithms can potentially
consume exponential time. For other posets such as the simple tree order, the matrix order (Bloch and Silverman,
1997) and aligned orders (Boros et al. 1994), polynomial algorithms do exist. Unfortunately, no polynomial
algorithm for the general poset was found in the literature.

In addition to the full parametric model, there are models of intermediate parametric complexity. One
exampleisthelogistic regression model with non-negativity constraintsonits parameters, as used for record linkage
in databases by Judson (2001). A monaotone decision tree approach can be found in Makino et al. (1999), and a
sequential monotone rule induction approach can be found in Ben-David (1992 and 1995).

It should be noted that the single parameter error model considered in this paper is somewhat restrictive.
However, the goal isto efficiently uncover the underlying monotone Boolean function and not necessarily come up
with accurate estimatesfor the errors. Thefact remainsthat the error minimizing monotone Boolean function isalso
amaximum likelihood solution, aslong asthe errors occur according to adistribution that bel ongsto the exponential
family (Robertson et al. (1988)). In other words, for agiven set of observationsthe inferred function isthe same for
avery large class of error models. The error estimates are only used to measure the confidence (in terms of the
maximum likelihood ratio) in having inferring the correct function. A more accurate estimate of the maximum
likelihood ratio may require a substantial increase in computational complexity, as for the full parametric model
described above.

2.3. Existing Approachesto Guided Inference
The problem of guided inferencein the presence of stochastic errorsisreferred to assequential design of experiments
in the statistics community. The field of optimal experiment design (Federov (1972)) contains various optimality
criteria that are applicable in a sequential setting. The most common vector selection criterion is based on
instantaneous variance reduction. Other selection criteria, such asthe maximum information gain used in MacKay
(1992) and Tatsuoka (1999), have been studied. However, no guided inference studies using amaximum likelihood
framework were found in the literature.

The theory of optimal experiment design is the most extensive for simple regression models (Federov
(1972)). Fortunately, efficient guided inference for more complex models have been studied. Cohn et al. (1996)
considered guided inference of feed forward neural networks. However, a sound theory has not been established.

In fact, the same article reported a convergence problem for which a partial remedy wasintroduced in Cohn (1995).

3. TheMethodology I nvolved in the Stochastic Guided I nference Problem

This section develops the details of the core methodologies that will be used for the stochastic guided inference
problem. Section 3.1 presents a detailed overview of the a maximum flow algorithm for the general error
minimization problem. This algorithm is used as a basis for the incremental version developed in Section 3.2. A

sample dataset is used to illustrate the different aspects of these two algorithms, as well as the various likelihood

8

computations provided in Section 3.3. The goal of the paper is to define a vector selection criterion to guide the

inference of stochastic monotone Boolean functions. Various criteria are further discussed in Section 3.3.

3.1 Error Minimization via Maximum Flow Computations

As mentioned earlier, the error minimizing (and consequently the maximum likelihood) problem can be solved as
amaximum flow problem. General purpose maximum flow algorithms often maintain a flow graph in addition to
aso-called residual graph. The residual graph signifies how much additional flow is allowed along the edges, and
isthefocusof thealgorithm’ scomputations, whiletheflow graphissimply the solution to the problem. For theerror
minimizing problem considered in this paper, the flow graph is not needed since the optimal monotone Boolean
function and the associated estimated misclassification probability can be found directly from the residual graph.
Therefore, the flow graph is omitted in the following algorithms, while the concept of a flow is used to describe
algorithmic features.

The initial residual graph for the error minimizing problem can be constructed using the algorithm
CONSTRUCT-RESIDUAL-GRAPH showninFigure2 (seea so Picard (1976)). Theoriginal vectorsV together with
the so-called source and sink vertices, labeled sand t, respectively, make up the set of verticesin theresidual graph.
The set of capacitated directed edges is constructed in three steps as follows.

In lines 1-3, edges are added for each pair of vectorsv < w € V. Here redundant precedence relations (i.e.,
relations where another vector u exists for which v < u < w) are omitted. The capacities along these edges can be
thought of asinfinite since they are used to allow free flow along preceding vertices. For practical purposes these
capacities only have to be sufficiently large to be able to handle the maximum flow warranted. The fact that the

maximum flow will never exceed M, given by:

M=min{ Y — (mO)-m®), Y (m®-mO)}
v my(v) > my(v) v my(v) < my(v)
is evident from the construction of the rest of the capacitated directed edges. Therefore, capacities of any quantity
greater than or equal to M, is sufficient for finding the maximum flow. However, for the purpose of finding the
optimal monotoneBooleanfunctionf* duringthelast execution of theal gorithm FLOW-INCREA SE showninFigure
6, and during the execution of the algorithm MAX-FLOW-INCREMENT1 shown in Figure 8, M + 1 isused.

In lines 4-6, edges are added from the source vertex s to each vector v with a mgjority of 1-valued
observations (i.e., m,(v) > my(v)) with acapacity of m,(v) - my(v). Similarly, inlines7-8, an edgeisadded to the sink
vertex t with a capacity of my(v) - m,(v), from each vector v with a majority of O-valued observations (i.e., my(v) <
my(v)). Please note that the vectorswith the same number of 0 and 1 valued observations (i.e., m,(v) = my(v)) arethe

only vertices not directly connected to either the sink or the source.

CONSTRUCT- RESI DUAL- GRAPH(V, m, m)

for each v in V

8
9V

for each u < vinV

1

2

3 c(v,u) <« Ml
4 for each vinV
S if m(v) > my(v)
6 c(s,v) = m(v)
7

- my(v)

el seif m(v) < m(v)

c(v,t) — m(v)

-~V + {s,t}

- m(v)

Figure 2. The agorithm used to construct the initial residual
graph from the observed data.

For the purpose of illustrating the graph construction process consider the sample of observations for the set of

vectors{0,1}° givenin Table 2. Eachrow inthetable givesthe observed values of aparticular vector. For example,

vector 100 was observed atotal of 9 times of which 4 timesit was 1-valued and 5 timesit was 0-valued, making the
value of m,(100) - my(100) equal to -1.

Thevectorsand their associated m, (V) - my(v) valuestogether with their irredundant precedencerelationsare

shown asagraphin Figure 3. Thisgraphisused asabasisfor constructing theresidual graph for the maximum flow

problem. The directed edges of the graph can be thought of as infinitely capacitated, while a capacity of M + 1 =

min {1+2+1, 3+2+2+1} + 1 =5 issufficient for practical purposes.

Table 2. Sample data.

Vol myv) [my(v) | my(v) - my(v)
1211 0 1 -1
120 3 5 -2
101 4 1 3
o11| 3 1 2
100]| 4 5 -1
o0| 2 0 2
oo1| 3 3 0
o0o0| 1 0 1

@-1
z
(0192 (001)0

(009)

Figure 3. The graph used to construct
the residual graph.

For the residua graph shown in Figure 4, these capacities are assigned to 6. This value is deliberately

assigned a unit greater than the current set of observations dictate, since the illustrations in Section 3.2 include

10

Figure 4. Theresidual graph constructed
from the sample data.

different scenarios where a single observation is added. When working with an incremental problem where the m,
and m; quantities are uncertain, a safe value for the capacities is simply the total number of observations when
inference is terminated, which is 36 for the sample data.

The vertices {000, 010, 101, 011} all have a majority of 1-valued observations and their respective m,(v) -
my(v) values are givenin Table 2 as 1, 2, 3 and 2, respectively. Edges are, therefore, added from the source vertex
sto each of these vertices, with respective capacities of 1, 2, 3 and 2, to the graph in Figure 4. The vertices {100,
110, 111} all have amajority of O-valued observations and their respective m,(v) - my(v) values are givenin Table
2 as -1, -2, and -1. Edges are, therefore, added from each of these vertices to the sink vertex t, with respective
capacitiesof 1, 2, and 1, to the graph in Figure 4.

Thevertex label ed 001 hasthe samenumber of O-valued as 1-val ued observationsand isthereforenot directly
connected to either the sink or the source vertex. Infact, to find the maximum flow for the graph givenin Figure 4,
this vertex can be omitted. However, since the value of m,(001) - m,(001) may change as more observations are
added, it will bekept. For the general incremental problem the m,(v) - my(v) values may change from zero to anon-
zero value (and vice-versa) several times. Thisismorelikely to occur in the beginning of the inference process, and
for a greater misclassification probability g. Regardless of what the value of q is, successively adding the
corresponding vertex to (and removing it from) the residual graph is unnecessary and inefficient.

The Ford-Fulkerson (1962) maximum flow algorithm iteratively finds paths from the source vertex sto the
sink vertex t. Asan example of apath fromstot, consider the onegoingvia010 and 110 in Figure 4. For the general
case, identifying such a path is not trivial, and an O(V?) method called a Breadth-First-Search (e.g., Cormen et al.
(1997)) isoftenused. Thealgorithm BREADTH-FIRST-SEARCH(G,s,t) showninFigure5, performsBreadth-First-

11

BREADTH- FI RST- SEARCH(G, s, t)
1 e<0

2 Q- s

3 r(s) -~ infinite %arger than nmax c
4 for each v inV

5 f(v) -0

6 r(v) < c(s,v)

7 e - e+ m(v)

8 while Q #{}

9 v - 1]

10 f(v) <1

11 Q- Q- v

12 e - e - m(v) + m(v)
13 for each u in adj(v)
14 if f(u =0

15 m(u) < v

16 if u=t

17 term nate

18 Q - {Qu}

19 f(u < %

20 r(v) -« mn{c(u,v),r(u)}

Figure 5. The algorithm used to traverse the residual graph.

Search modified to accommodate the maximum flow problem. The algorithm traverses a graph G starting at the
source vertex s. It does so by iteratively (lines 9-20) taking the first vertex v out of a queue of vertices, denoted by
Q (that initially only consists of s), and visits all its adjacent vertices, denoted by adj[v]. Once a vertex has been
visited it is added to the end of the queue, unlessit has already been in the queue (i.e., assigned f(v)<1 on line 10).

For the purpose of finding a path from sto t in the Ford-Fulkerson algorithm, the Breadth-First-Search is
modified to additionally store the search tree (i.e., for each vertex v store its parent, denoted by 1(v)) and its
associated minimum capacity edge value, denoted by r(v), along the path from sto any vertex v in the search tree.
Asthe pseduo code in Figure 5 indicates, the modified algorithm also terminates whenever t has been visited.

When a path is found, the search tree will easily provide a path from sto t, by recursively tracing parents
starting with 7t(t), and the associated minimum capacity edge value, r(t). When apath is not found the search tree
contains each vertex v that is reachable from s, and is labeled f(v) = 1.

Theresidual graph’ sedge capacitiescorresponding tothe precedencerel ationsare alwayspositivesincethey
areinitialy set to avalue greater than the maximum flow value. Asaresult, if avertex visreachable from s, each
vertex w succeeding v is also reachable from s, and hence labeled f(w) = 1. Therefore, the variable f used in
BREADTH-FIRST-SEARCH, definesamonotone Bool ean function, and the variabl e e hol dsthe associ ated number
errors (f).

The algorithm FLOW-INCREASE shown in Figure 6 performs a single iteration of the Ford-Fulkerson
(2962) algorithm. FLOW-INCREA SE works on theresidual graph which starts out asthe graph created by algorithm
CONSTRUCT-RESIDUAL-GRAPH. For the sample datain Table 2 the initial residual graph is shown in Figure

12

4. During each execution of FLOW-INCREASE, a path from the source vertex sto the sink vertex t, with apositive
capacity (i.e., a path that can be augmented with increased flow) is found using the algorithm BREADTH-FIRST -
SEARCH. Anaugmenting path (V¢, v*?, ..., v!), where V¢ = sand v* = t, for which the minimum capacity edge value
ismin{ c(V, V1), c(V, V), ..., c(V*,V1)} =r >0, isfoundinline 1 of FLOW-INCREASE. Thenotationisreversed

by k, k-1, ..., 1 in order to be consistent with the implementation given in Figure 6.

FLOW | NCREASE(G, s, t)

1 BREADTH FI RST- SEARCH(G, s, t)

2 0f o(t) = {}

v(l) <t

ro< r(t)

i - 2

while v(i) « m(v(i-1)) # {}
c(v(i),v(i-1)) < c(v(i),v(i-1)) - r
c(v(i-1),v(i)) < c(v(i-21),v(i)) +r
-0 +1

©Coo~NOUTh~W

Figure 6. An algorithm used to update the capacities along an augmenting path.

If apathisfoundinline 1 of FLOW-INCREASE, the flow aong the augmenting path isincreased as much
aspossiblein lines 3-9. That is, the capacities along the path are reduced as much as possible without making any
of the capacities negative: c(V<?, V¥2) « (V<% V¥2) -1, c(V*%, V¥2) < c(V%, V¥9) -1, ..., c(V2, V1) < c(V2, V) - .
Furthermore, the capacities along the same path in the opposite direction are increased by the same amount. That
is, (V4 V@) < c(VH, VA + 1, c(V% V®) « c(V4 VP) + 1, ..., c(V! VM + r. If apath from the source sto the sink vertex
t is not found on line 1 of FLOW-INCREASE, the BREADTH-FIRST-SEARCH algorithm terminates with a
monotone Boolean function defined by the variable f, and e contains the corresponding number of errors.

Figure 7 shows the graphs resulting from three executions of the FL OW-INCREA SE algorithm, starting out
with the residual graph created in Figure 4. The left most graph is the result of the first execution, and successive
graphsareshownto theright of it. The bold edges givethelayouts of the pathsthat were augmented and indi cate how
much the capacities changed. For example, the path (s, 010, 110, t) intheinitial residual graph was augmented with
2 units. That is, the capacities along (s, 010, 110, t) were reduced by 2 units, while the capacities along the path (t,
110, 010, s) were increased by 2 units, creating the leftmost graph in Figure 7.

Theresidual graph after thethird iteration (i.e., therightmost graph in Figure 7) does not contain apath from
the source vertex sto the sink vertex t. The three vertices |abeled 101, 011 and 111 are reachable from s. That is,
the optimal monotone Boolean function found by the maximum flow algorithm is defined by f*(111) = f*(101) =
f*(011) = 1, and f*(000) = f* (100) = f*(010) = f*(001) = f*(110) = 0. Thisfunction can also be defined by its lower
units LU(f*) = {101, 011}, and consequently as f* =v,v; V v,v;, and yields atotal of e(f*) = my(111) + m,(101) +
m,(011) + m,(000) + m,(100) + m,(010) + m,(001) + m(110)=1+1+1+1+3+2+ 4+ 3 =16 errors. Therefore,
g* = e(f*)/m=16/36 = 0.444.

13

Figure 7. Theiterations of the algorithm FLOW-INCREA SE on the sample data.

3.2 An Incremental Maximum Flow Algorithm for Error Minimization
Supposethe error minimizing function f,* and its misclassification parameter q,,*, associated with a set of vectors
V={V,V .., V} andtheir my(v) and m,(v) values, are given. When anew vector is classified by the oracle (i.e.,
m,(v) < m,(Vv) + 1), thefunction f,,* and its misclassification parameter g, may haveto beupdated. Sincethenew
error minimizing functionislikely to becloseto the old function it may beinefficient to solvethe entire problem over
again.

Simply stated the incremental problem consists of finding f..,* and consequently q..,* When m,(v) < m,(v)
+ 1. If thenew classificationis consistent with the old function (i.e., f,,* (v) = 2), thenthe old function remainserror
minimizing (i.e., f,4* =f.*). Therefore, the number of errors remains the same and the misclassification estimate
isreduced to g..,* = €(f,4*)/(M,4 + 1). Note that this case is the most likely one since it occurs with an estimated
probability of 1- q,4* > %2

On the other hand, if the new classification isinconsistent with the old function (i.e., f 4 * (V) = 1- 2), theold
function may or may not remain error minimizing. The only case in which the old function does not remain error
minimizingiswhenthereisan alternate error minimizing functionf,* ontheold datafor which f* (v) =z Inthiscase
f.* is error minimizing for the new data. However, the number of possible error minimizing functions may be
exponential in V, and therefore storing all them may not be an efficient solution to this problem. To avoid this
computational burden an incremental maximum flow algorithm is devel oped.

The algorithm MAX-FLOW-INCREMENT1 described in Figure 8 shows the details of the update m,(v) <
m,(v) + 1 when z= 1. An anal ogous algorithm can be created for the case when z= 0. Therefore, only the case when
z = 1is considered here. The updates performed in algorithm MAX-FLOW-INCREMENT1 are very different

depending on the value of m,(v) - my(v), because of the manner in which the original residual graph was constructed.

14

MAX- FLOW | NCREMENTL1(G f, e, m, m, V)

1 if m(v) > m(v)

2 c(s, v) < c(s, v) +1

3 if c(s, v) =1

4 if path fromv to t exists

5 increase flow by 1 along (s, v, ..., t)

6 e —e+1- f(v)

7 el se

8 if f(v) =0

9 f(w - 1 for win {v and x reachable from v}
10 el se

11 if c(v, t) >0

12 c(v, t) < c(v, t) - 1

13 e ~e+1

14 else (c(v, t) =0) %flow on (v,t) > 0 was max
15 c(t, v) < c(t, v) -1

16 increase flow by 1 on path fromv to s

17 if path froms tot exists

18 increase flow by 1 on path froms to t

19 update f and e if necessary

Figure 8. The agorithm used to update the residual graph when f(v) = 1 isobserved.

The first case is determined by m,(v) > my(v). Here the vertex v will be (and may have been) directly
connected to sby c(s, v) being positiveintheinitial residual graph. When m,(v) < my(v) + 1, thisfact remainstrue.
That is, m,(v) > my(V) still holds, and the position of the edge does not change, whileits capacity is merely increased
by oneunit asfollows: c(s, v) < c(s,v) + 1. Thisstep(line2inof MAX-FLOW-INCREMENTY1) takesatotal of O(1)
time.

If c(s, v) = 1 after this update takes place, then this edge was operating at its maximum capacity (i.e., c(s, v)
= 0) beforethisupdate. Adding another unit of capacity along the edge (s, v) may allow another unit of flow along
a path from the source vertex sto the sink vertex t viathe vertex v. If such a path exists, none of the vertices along
this path were reachable from s before the update (if so additional flow could go from sto t before update, which
contradicts the maximum flow assumption). Hence, none will be reachable after the flow has been increased along
thispath. That is, f * remains the same, while the number of errors remains the sameif f*(v) = 1, and isincreased
by 1 unitif f*(v) =0 (i.e, (f*) - &(f*) + f*(v), ason line 6). If such a path does not exist and f*(v) = 0, then vertex
v has changed from not being reachable to being reachablefrom s. Therefore, any vertex w reachable fromv isnow
also reachablefroms. If f*(v) =0, then by the definition of *, it isupdated asfollows: f*(w) < 1 for each vertex w
reachable from v (including v). These steps (lines 4-9) take atotal time of O(V?).

The second caseisidentified by m,(v) <my(v). Herethevertex vwasdirectly connected tot by c(v, t) being
positiveintheinitial residual graph. If the current value of c(v, t) is positive, then the capacity on the edge (v, t) was
not fully utilized in the maximum flow. Consequently, reducingitscapacity by 1 unit does not change the maximum
flow or theresidual graph other than asfollows: c(v, t) < c(v, t) - 1. That is, the optimal monotone Boolean function

f* remains the same. Since vertex v is not reachable from the source vertex s (otherwise additional flow from sto

15

t would be allowed, which is a contradiction of the maximum flow assumption), we can further deduce that f* (v) =
0. That is, the number of errorsisincreased by one unit. These steps (lines 12-13) take atotal of O(1) time.

The most computationally expensive case iswhen c(v, t) iszero. Here, the edge (v, t) was operating with a
positive flow (sinceitsinitial capacity was assigned to my(v) - m,(v) > 0) at its maximum capacity. Therefore, the
flow along a path from vertex sto vertex t that goes viaedge (v, t), which is guaranteed to exist, has to be reduced
by 1 unit and the capacity is updated as follows: c(v, t) < ¢(v, t) - 1. Thisupdateisequivalent to c(t, v) < c(t, v) - 1,
and increasing the flow by 1 unit along apath from vertex vto vertex s, shownin lines 15-16. The single unit of flow
that was retracted along the path (s, ..., v, t), may be pushed through another path from vertex s to vertex t. The
algorithm FL OW-INCREA SE can beused to performthisoperation and thealgorithm BREADTH-FIRST-SEARCH
is needed afterwards to potentially update f* and e*. These steps (lines 15-19) take a total of O(V?) time. In
summary, the total computational complexity of algorithm MAX-FLOW-INCREMENT1 is O(V?).

For the purpose of illustrating algorithm MAX-FLOW-INCREMENT1, consider Examples 1, 2, and 3,
describing three different increment scenariosfor thedatagivenin Table 2. Theinitial residua graph for the MAX-
FLOW-INCREMENT1 algorithmisgiven astheright most of thegraphsin Figure 3. Pleaserecall that the associated
vauesare m=36, f* =v,v;V vV, € =16, and g* = 16/36 =~ 0.444. Now consider the three following examples
when another 1 valued vector (i.e., f(v) = 1) is observed.

Example 1. f(011) = 1 is observed:

m,(011) = 3 > my(011) = 1 and so c(s, 011)« c(s, 011) + 1 =1+ 1 = 2. The capacity was not fully utilized, therefore
f* and € remain the same, while g* isupdated to 16/37 = 0.432. Only lines 1 and 2 were executed for this update.
Thetotal time used is O(1), and the updated graph is shown in Figure 9.

Figure 9. Theresidual graph for Example 1.
16

Example 2. f(010) = 1 is observed:

m,(010) = 2 > m,(010) = 0 and so c(s, 010)« c(s, 010) + 1 =0+ 1 = 1. The capacity was fully utilized but no new
path is created along (s, 010, ..., t). Since f*(010) = 0, anew set of vertices that are reachable from sis created as
follows: f(010) < 1, and f(110) < 1. Asaresult, the new optimal monotone Boolean function isf* = v, V v,v,, €*
remains the same at 16, and finally g* is updated to 16/37 ~ 0.432. Lines 1-4, 8, and 9 were executed using atotal
of O(V?) time. The updated graph is shown in Figure 10.

Figure 10. The residua graph for Example 2.

Example 3. f(100) = 1 is observed:

m,(100) = 4 <m,(100) =5 and c(100, t) = 0, so the edge isfully utilized and c(t, 100) is reduced by 1 unit: c(t, 100)
<¢(t,100) - 1=1-1 =0, and along the path (100, 000, s) the flow isincreased by 1 unit asfollows: ¢(100, 000) <
¢(100, 000) - 1=1-1=0, ¢(000, 100) « ¢(000, 100) + 1 =5+ 1=6, ¢(000, S) - ¢(000, s) - 1 =1- 1 =0, c(s, 000)+
c(s,000) +1=0+1=1. Nopathfromstotexists, so f* isupdated asfollows: f(000) < 1, f(100) < 1, f(010) - 1,
f(001) < 1, f(110) < 1, making the new optimal monotone Boolean function f* =T, for which the number of errors
€* remainsthesameat 16, and finally q* = 16/37 = 0.432. Lines 1, 11, 15, 16, 17 and 19 were executed using atotal
of O(V?) time. The updates are shown in Figure 11.

As mentioned earlier the fastest maximum flow algorithms are of the preflow type (Karzanov (1974)) and
take O(V®) time. However, the incremental agorithm developed in this section uses the idea of augmenting paths
which was conceived earlier by Ford and Fulkerson (1962). The fastest known maximum flow algorithms based on
augmenting paths use O(VE?) time (Edmonds and Karp (1972)), where E denotes the set of edges which can be of
size O(V). Theincremental algorithm devel oped here uses O(V?) time for each observation, and hence takes atotal

17

Figure 11. Theresidua graph for Example 3.

of O(mV?) time. Here m denotes the number of observations which is generally greater than the number of vectors
V. That is, using the incremental algorithm for a non-incremental problem does not improve upon the existing
algorithmtaking O(V®) time. However, theincremental algorithm reducesthe complexity of solving theincremental

problem by afactor of O(V).

3.3 Defining an Evaluative Criterion
The status of the inference process will be considered to be in one of three stages. Stage 1 starts with the first
guestion, and lasts until a deterministic monotone Boolean function is obtained. During Stage 1 only vectors that
may take on both 0 and 1 values are queried. Asaresult, no (identifiable) errors are observed in Stage 1, and thus
the monotone Boolean function inferred during Stage 1 is deterministic. This function, however, may or may not
be the correct function. In fact, the probability that it is the correct function is equal to the probability that no
misclassifications were made: (1- q)™, where mis the number of questions used during Stage 1 and q is the true
misclassification probability. Thisprobability decreasesrapidly with m, regardiess of the value of q. Therefore, the
gueries performed after Stage 1 will benefit greatly from areduction in the number of Stage 1 queries. Please note
that since no inconsistencies have been observed, there is no way to estimate q at this point.

After adeterministic monotone Boolean function is obtained in Stage 1, the inference process enters Stage
2. Atthispointitisunclear asto how to select queriesfor Stage 2, so arandom selection procedure will be used for
this stage. After thefirst error occursin Stage 2, the inference process enters Stage 3, in which it will remain until
termination. Stage 3 is the focus of this paper, because it is the only stage in which the likelihood ratio can be

properly evaluated and g can be estimated based on the observed vectors.

18

Please recall that the likelihood function is given by:
L(f) =2 - g™ e,
and the likelihood ratio is given by:

w_ L)
O > Lf)

fe F (V)

Asan example of the likelihood ratio computations consider the example datagivenin Table 2. The function f* =
v,V; V v,v; found in Section 3.1 produces 16 errors. Its associ ated estimated misclassification probability g* is 16/36
= 4/9, since the total number of observationsism=36. Therefore, the likelihood value of this function L(f*) is
(4/9)*%(1 - 4/9)%¢ = 1.818x10™. Notice how small thisvalue s after only 36 observations. The likelihood values
for the other functions are given in Table 3. Adding up al the likelihood values yields (13x1.455 + 2x1.536 +
5x1.818)x10™ = 3.107 x10°. Then the maximum likelihood ratio is computed as follows: A(f*) = 1.818x10°
/3,107 x10™"° = 0.0585.

Now let us return to the vector selection (or guided inference) problem. The probability that the correct
function is inferred during Stage 1 decreases rapidly with the number of queries used during that stage. As
mentioned earlier, Stage 1 has been studied extensively in the past. Torvik and Triantaphyllou (2001a) suggested
selecting the vector v that minimizes the quantity [K,(v) - K;(v)|, where K (v) isthe number of unclassified vectors
preceding v if z= 0, or succeeding vif z= 1. The vector selection criterion minmizes the average number of queries
used for Stage 1 for nup to andincluding 4. According to theempirical resultsof Torvik and Triantaphyllou (2001a),
thisis currently the best known criterion and is probably very close to optimal for n greater than 4.The probability
that the correct function is inferred during Stage 1 decreases rapidly with the number of queries used during that
stage. Therefore, the selection criterion min|K,(v) - K,(v)| will be used as a standard for Stage 1, when comparing
different approachesfor thefollowing Stage 3. Thisavoidsbiasinthe sensethat all Stage 3 approacheswill benefit
from using min|K,(v) - K,(v)| during Stage 1.

Oneimportant property of theeval uative criterionfor Stage 3isthat the maximum likelihood ratio converges
to 1. Itispossible to define selection criteria that do not converge. If, for example, the same vector is invariably
selected, the estimated value of qwill convergetoitstruevalue. Inthiscase, thelikelihood values may remain equal
for severa monotone Boolean functions and hence the maximum likelihood ratio will never convergeto 1.

Aswas demonstrated in Torvik and Triantaphyllou (2001a), intuition may lead to an inefficient selection
criterion for Stage 1. The same holds true for Stage 3. For example, let E,(v) be defined by the number of errors
associated with assigning the function value f(v) to z, as follows:

EW) = Y, mw)-mw), E,®) = Y myw)-m,w).

wxy viw

Then, consider defining the vector v which contributes with the most to errors by max(Ey(v)+E,(v)). This vector

selection criterion may lead to the same vector being invariable queried and hence it might suffer from convergence

19

problems, as will be demonstrated empirically in Section 4.
Table 3. Example likelihood values for all functionsin M.

f ef) [a) [L(0]

F 20 Y 1.455x10** 0.0468
ViVVs 21 | % 1.455x10 | 0.0468
ViV, 23 Y 1.455x10"* 0.0468
VA'A 18 Y 1.455x10"* 0.0468
TAVAVATAVA 20 | % 1.455x10 | 0.0468
A 21 Y 1.455x10"* 0.0468
(VAVA 19 Y 1.455x10"* 0.0468
VATAAA 19 | % 1.455x10 | 0.0468
TAVAVAVAVA 16 | 4/9 | 1.818x10" | 0.0585
VAVAVAVAVAVAVAYA 18 Ya 1.455x10* 0.0468
TAVAVAVAVA 21 | % 1.455x10 | 0.0468
V, 19 Y 1.455x10"* 0.0468
v, Vv, 17 17/36 | 1.536x10™ 0.0495
VAVATAVA 16 | 4/9 | 1.818x10" | 0.0585
A 16 4/9 1.818x10"* 0.0585
v, V v, 16 4/9 1.818x10"* 0.0585
VATATATAA 17 | 17/36 | 1.536x101 | 0.0495
(VAVA'A 19 Y 1.455x10"* 0.0468
VAVATAVA 18 | % 1.455x10 | 0.0468
T 16 4/9 1.818x10"* 0.0585

Thelikelihood framework seemsto form agreat basisfor defining a Stage 3 vector selection criterion. Since
the goal isto make the likelihood ratio converge to 1 as fast as possible, a reasonabl e approach would be to select
the vector that maximizes the expected maximum likelihood ratio at each inference step. To do this, the expected
maximum likelihood ratio AA(V) = p(V)A,(V) + (1 - p(v))A,(v) has to be estimated for each vector v. Here A,(v)
denotes the resulting maximum likelihood ratio when f(v) = zis observed. Please recall that p(v) is the probability
of observing f(v) = 1. That is, it can be estimated by p*(v) = g*(1- f*(v)) + (1 - g*)f*(v).

As an example consider observing the vector (001). Table 4 gives the updated likelihood ratios for each

monotone Boolean function in M, when m,(001) = m,(001) + 1, for z=0and 1. For a monotone Boolean function

20

f, and a classification z, (001, f) and A,(001, f) here denote the updated number of errors and the likelihood ratio,
respectively. The updated maximum likelihood ratios are A,(001, T) = 0.0649 and A,(001, v,v; VV V,v5) = 0.0657.
Since the optimal function assigns the vector (001) to O (i.e.,, f*(001) = 0), the estimated probability of observing
f(001) = 1isgiven by p*(001) = g* = 4/9. Therefore, the expected maximum likelihood ratio when querying vector
001 is given by AA(001) = p*(001)A,(001, T) + (1 - p* (001))A4(00L, V,v5 \V V,V;) = 4/9 x0.0649 + 5/9 x0.0657 =
0.0653. Similar computations for the other vectorsyield AA(000) = 0.0651, AA(010) = 0.0654, AA(011) = 0.0592,
AM(100) = 0.0652, AA(101) = 0.0592, AA(110) = 0.0654, and finally AA(111) = 0.0592. The vectors with the
largest expected likelihood ratio value are 010 and 110. Since no further improvements of the selection criterionis

immediately obvious, ties are broken arbitrarily.

Table 4. Updated likelihood ratios for m,(001) = m,(001) + 1.

f A() e,(001,f) | A,(001,f) | e(001,f) | Ay (00L,)
F 0.0468 |21 0.0462 20 0.0468
(VATAYA 0.0468 | 22 0.0462 21 0.0468
A 0.0468 | 24 0.0462 23 0.0468
AA 0.0468 | 19 0.0462 18 0.0474
(VAVAVAVATA 0.0468 |21 0.0462 20 0.0468
v, 0.0468 | 22 0.0462 21 0.0468
VATA 0.0468 | 20 0.0462 19 0.0468
AVATA'A 0.0468 | 20 0.0462 19 0.0468
VAVAAVAVATA 0.0585 | 17 0.0522 16 0.0657
vV, Vv, V vy, | 0.0468 | 19 0.0462 18 0.0474
VAVAAVAVATA 0.0468 | 22 0.0462 21 0.0468
A 0.0468 | 20 0.0462 19 0.0468
v, Vv, 0.0495 | 18 0.0469 17 0.0529
(VAVATATA 0.0585 | 17 0.0522 16 0.0657
A 0.0585 | 16 0.0649 17 0.0529
v, Vv, 0.0585 | 16 0.0649 17 0.0529
v, Vv, Vv, 0.0495 | 17 0.0522 18 0.0474
v, Vv, 0.0468 | 19 0.0462 20 0.0468
(VAAVAVAVA 0.0468 | 18 0.0469 19 0.0468
T 0.0585 | 16 0.0649 17 0.0529

21

Thesimulationsin Section 4 reveal theefficiency of the eval uative criterion max AA (V) in termsof the query
complexity. It may take an exponential time (in the size of V) to compute max AA(v). Since the computational time
for incrementally finding the inferred function is of O(V?), it would be nice to find an evaluative criterion that does
not take more time than this and still makes the likelihood converge to 1 at a faster rate than randomly selecting
vectors. One such possibility may be based on the inferred border vectors.

For the sake of argument suppose that the underlying monotone Boolean function f to be inferred is known.
Then randomly selecting vectors from its corresponding border vectors will make the maximum likelihood ratio
converge to 1. As the number of queries m goes to infinity, the ratios my(v)/(my(v) + my(v)) V v € LU(f) and
m,(w)/(my(w) + my(w)) V w € UZ(f) all converge to g. The number of errors performed by any other monotone
Boolean function g is at least x = min{min{ m,(v) - my(v),v € LU()} {my(w) - my(w), w € UZ(f)} greater than the
number of errors performed by function f. Furthermore, x = gm- (1-gym=m(2q - 1) for largem. That is, the number
of additional errorsincreases at least linearly with m. Then, as mgoesto infinity, so does the number of additional
errors performed by each of the other monotone Boolean functions. That is, therelative likelihoods L(f)/L(g) > (o/(1-
g))* convergeto 0 as mgoesto infinity. Since the number other monotone Boolean functionsis afinite number that
does not depend on m, the likelihood ratio A(f) = L(f) / (L(f) + } L(g)) convergesto 1 as mgoesto infinity.

Focusing the queries at the border vectors of the underlying function probably allows this convergence to
occur at afaster rate than randomly selecting from all the vectors. In situations where the underlying function is
unknown, it may bethat focusing the queries on the border vectorsof theinferred function (i.e., ve LU(f*) u UZ(f*))
is better than completely random selection. In the long run, an inferred border vector will not prevail if it isnot an
underlying border vector. Since the misclassification rate isless than Y%, the rate at which the incorrectly classified
inferred border vectors become correctly classified is greater the rate at which correctly classified inferred border
vectors become incorrectly classified. Therefore, in the long run al the classifications become correct when the
gueries are selected from the set of border vectors of the inferred function.

Notice that this convergence holds even if the misclassification probability is different for each vector, as
long asthey areall lessthan %2 Another added benefit isthat finding the border vectorsiseasy, sincethey arereadily
available from the inferred function f*. In fact, a simple modification of the incremental maximum flow algorithm
can store each of these vectors asthey are found. For each monotone Bool ean function there are at most O(V) border
vectorsin aset of vectors V. During the inference process the inferred function may take on any of these monotone

Boolean functions. Therefore, randomly selecting one of the border vectors takes O(V) time.

4. Experimental Results
For the purpose of comparing the efficiency of the different selection criteria for Stage 3 on the same basis, ties
resulting from the selection criteria (min|K,(v) - K,(v)| for Stage 1, and max(E,(Vv) + E;(v)), max AA(v), and v €

LU(f*) u UZ(f*) for Stage 3) were broken randomly. The four different inference processes using max AA(v), v e

22

LU(f*) u UZ(f*), max(Ey(v) + E,(v), or random selection for Stage 3 were simulated on the set of vectors {0,1}".

For all three Stage 3 selections criteria, the criterion min|K,(v) - K,(v)| was used for Stage 1 and random
selection was used for Stage 2. The resulting simulations were repeated 100, 50, 25, and 10 times for each of 6
representative functions of M,,, with misclassification probabilities 0.1, 0.2, 0.3, and 0.4, for n = 2, 3, 4 and 5,
respectively. For nequal to 6, the number of monotone Boolean functionsis 7,828,354 and generating all of them
to evaluate their likelihoods became too computationally burdensome for the 600 Mhz Pentium 111 based personal
computer with 384 Mbytes of RAM used in these experiments. This limitation is also be due to the fact that the
programs were run in interpreting mode for MATLAB 5.3 under the Windows 98 operating system.

The representative functions are given in Table 5. For n = 4 and 5, the representative functions were
randomly generated from a uniform distribution with individual probabilities of 1/%¥(n) = 1/168 and 1/7581,
respectively. For n= 3, the representative functions consist of non-similar functions (one from each similar subset
of M,). Thesefunctionsrepresent all the functionsin M,, since the average case behavior isthe same for a pair of
similar monotone Boolean functions. To compute the overall average for a given ¢, the individual curves were
weighted by the number of similar functions the representative function has (including itself) in M,. Theindividual
curves for the monotone Boolean functions F, v,v,v,, v,V,, ,V, \V v v,, v, and v,v, V v,v, V v,v,, were therefore
weighted by 2, 2, 6, 6, 3 and 1, respectively. For n = 2, 4, and 5, the overall averages were computed without
weights. Theoverall averagesfor n = 2 and 3 benefit from areduced variance, since no additional errors are added

due to sampling of functions asdone for n=4 and 5.

Table 5. The representative functions used in the simulations.

n=2 n=3 n=4 n=5
F F VAVAVAVAVIRVAVAVAVA (VAVAVAVAVARVAVAVARVAVAYA
V,V, ATA'A VAV RVAYAVARVAVAVARVAVAVIRVAVATA VAVAAVAVAVARVAVAVSRVAYAVAVA
A V,V, (VAVAAVAVAYA VVAVAVAVIRVAVAVAYA
v, (VAVAAVAVAVA YAVAVARVAVAVAVARVAVAVAVA (VAVAVAVAVARVAVAVARVAVAVAVA
v, Vv, A (VAVAAVAVAVARVAVATA (VAVAAVAVAVARVAVAVARVAVAYA
T VAVVAYAVARVAVAVA v, Vv, Vv, (Y AVARVAVAVAVARVAVAVAVRVAVAVAVAVAVAVAVA

Figure 12 shows the resulting average maximum likelihood curves for the inference problem defined on n
=2,3,4,and5,andq=0.1, 0.2, 0.3, and 0.4. Each curveisthe average of 600, 300, 150, and 60 simulated inference
processes observed for n = 2, 3, 4, and 5, respectively. In each plot, the horizontal axis corresponds to the number
of Stage 3 queries, and the vertical axis correspondsto the maximum likelihood ratio. The curvesare shown for the
range of Stage 3 querieswherethe curvesfor the evaluative criterion max AA(v) hasamaximum likelihood ratio that

isless than 0.99.

23

. max AA(v)
Horizontal Axis = Number of Stage 3 Queries « v OLU®FY O UZ()
. L + random
Vertical Axis = Maximum Likelihood Ratio max(EO(v) + El(v))
q=0.1 g=0.2 q=0.3 q=0.4
1 1 s 1 o 1 ’
g
»
n=2 0.5 0.5 0.5 0.5
L
0 0 0 0
0 10 20 0 50 0 50 100 0 500
1 1 o 1 s 1
n=3 0.5 0.5 *0.5 0.5
i >
N
0 0 0 0
0 10 20 0 50 0 100 0 500
1 1 1 1
. N
n=4 0.5 0.5 0.5 0.5
»
> " |
0 0 0 0
0 20 0 50 0 100 200 0 500
1 1 1 1
l N
n
n=5 0.5 v¥0.5 0.5 0.5
. v
’ 1
0 0 0 BEft—t—e—e—e—se * 0
0 20 40 0 50 100 0 100 200 0 500

Figure 12. Average case behavior for various selection criteria.

Not only do the curves corresponding to the guided selection criteriamax AA(v) and v € LU(f*) u UZ(f*)
converge to 1 but they do so at a much faster rate than the curves corresponding to unguided random selection. In
fact, the random selection achieves a maximum likelihood ratio of only about 0.7 after the same number of queries
asthe criterion max AA (V) usesto reach 0.99, and the criterion v € LU(f*) u UZ(f*) uses to reach about 0.9, for n
=4.

The difference between the curves for unguided sel ection and these two guided selections grows for higher
values of the misclassification probability and for higher dimensions. That is, the benefits from actively selecting
vectors over passively receiving observations, are greater for larger values of g and n. In other words, the higher the
misclassfication probability and the dimension of the problem are, the greater the benefits of guiding theinference

process become.

24

The curves associated with criterion max(Ey(v) + E,(v)) seemsto convergeto avalue significantly lessthan
1. For example, when n = 3 and q = 0.3, the maximum likelihood ratio converges to about 0.4, and this value
decreases asthe values of g and nincrease. Therefore, thelarger error rate and vector domain is, the more important
it becomes to define an appropriate vector selection criterion.

Table 6 gives the average number of queries needed by the selection criterion max AA (V) to convergeto a
maximum likelihood ratio of 0.99 for n =2, 3, 4, and 5, and for q = 0.1, 0.2, 0.3, and 0.4. For a given n, these
numbersincrease dramatically as qincreases. Infact, there seemsto be morethan adoubling in the numbersfor fixed
increments of g. For agiven g, these numbersdo not increase in such adramatic fashion when nincreases. However,

they do increase faster than linearly with n.

Table 6. The average number of Stage 3 queries used by max AA(v) to reach A > 0.99.

g=0.1 g=0.2 g=0.3 g=04
n=2 22 54 125 560
n=3 27 65 170 710
n=4 33 85 241 951
n=>5 45 111 277 1167

Figure 13 further illustrates how the average number of queries increases with g and n. The vertical axis
corresponds to the number of queries and are shown on a log,, scale. The horizontal axis corresponds to the
dimension n, and each curve corresponds to a particular misclasssification probability g. These curves exhibit three
significant properties. First, they all tend to increase linearly with n, indicating that the number of queries tend to
increase exponentially with n. Second, the curvesseemto beparallel, indicating that thisexponential increaseisfixed
regardless of what the value of q is. Third, the distance between the parallel lines tend to increase with fixed
increments of q, indicating that the number of queriesincreasesfaster than exponentially with g. That is, the number
of queries can be approximated by a function of the parameters n and q in the form a2™ + ¢(g)2* + e, where a, b,
d, and e are constants and c(q) is an increasing function of g. It should be noted that this approximation may not be
appropriate in greater dimensions (i.e., for n > 5), or outside this range of misclassification probabilities (i.e, for q
<0.10rq>0.4).

This approximation also sheds some light on the total computational complexity of finding the error
minimizing function. Please recall from Section 3.2 that the time used by the incremental maximum flow algorithm
per observation was O(V?). Therefore, thetotal time spent refitting the model is O(mv?) where misthetotal number
of queries needed to make the maximum likelihood ratio reach 0.99. The number of queriesdivided by |V| decreases
with |V, according the datain Table 6. Thus, the total time used by the incremental algorithm islessthan O(V®). In

contrast, the fastest known general purpose maximum flow algorithm is of O(V®). This is the complexity of the

25

Average Number of Stage 3 Queries Used by max AA(v) to Reach A > 0.99

101 | |
2 3 4 5
Number of Variables, n

Figure 13. Average query complexity of max AA(v) on the poset {0,1} " with
misclassification probability q.

problemif all the datawere gathered before the error minimizing monotone Boolean function wasfound. Therefore,
the time used fitting the model is not increased by using the incremental approach.

It should be noted that the computational complexity of eval uating the maximum likelihood ratio, and hence
the evaluative criterion, is exponential in the size of the set V. In some applications where the set V is large,
computing the criterion max AA(v) may be an infeasible task. However, randomly selecting a border vector (i.e., v
€ LU(f*) u UZ(f*)) takes at most O(V) time. Even though focusing on border vectors does not reduce the query
complexity as much asthe criterion max AA(v), it performs much better than random selection.

Pleaserecall from Section 3.3 that randomly selecting theinferred border vectors(i.e., v e LU(f*) u UZ(f*))
makes the maximum likelihood ratio convergeto 1, aslong asthe misclassification probabilitiesare al lessthan %%.
That is, the misclassification probabilities do not necessarily have to be fixed. To see whether this holds for the
selection criterion max A A(V), consider an unrestricted model wherethe misclassification probability q(v) isarandom
variable distributed uniformly on the interval [q(1- 8), q(1 + 0)], where € [0,1], for each vector v € {0,1}".

26

The case when 6 = 0, corresponds to the fixed misclassification probability model (i.e, g(v) =qVve
{0,1}"). The range of values that g(v) can take on increases with 0, but the expected value of g(v) is equal to g.
Therefore, the estimate of the maximum likelihood ratio based on the fixed g model isworse for larger values of 0.
To compare this estimate to an unrestricted estimate, the inference process was simulated 200 timesfor each d =0,
0.5, and 1, when g = 0.2, n = 3. Figure 14 shows the average maximum likelihood ratio curves for the unrestricted
model (dotted curves) and the fixed model (solid curves) when using the selection criterion max AA (V).

Theregular and the unrestricted maximum likelihood ratios both converge to 1, though at slower ratesas o
increases. In other words, evaluative criterion max AA(v) is appropriate in situations where the misclassification
probability is not necessarily fixed. In general, the unrestricted maximum likelihood ratio is much smaller than the
regular one. The case when q(v) isfixed at 0.2 (i.e., d = 0), the regular maximum likelihood ratio should be used,
and for 0 > 0 it is an overestimate of the true maximum likelihood ratio. The case when & = 1, the unrestricted
maximum likelihood ratio should be used, and for 0 < 1 it may be an underestimate. The true likelihood ratio lies

somewhere in between the two.

Maximum Likelihood Ratio

—— A* for q(v) = 0.2
0.2y —o— A*for g(v) ~ U[0.1, 0.3] 7
—=— A* for q(v) ~ U[O, 0.4]

-« Unrestricted A* for q(v) = 0.2

0.1} E
- @ Unrestricted A* for q(v) ~ U[0.1, 0.3]
- » Unrestricted A* for q(v) ~ U[0, 0.4]
0 1 1 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180 200

Number of Stage 3 Queries

Figure 14. The unrestricted and regular maximum likelihood ratios simulated
with expectedq=0.2and n = 3.

27

5. Conclusion

The maximum likelihood ratio approach to modeling the inference process of monotone Boolean functionsyielded
a number of benefits. It was demonstrated that an appropriately defined guided learner, such as maximizing the
expected maximum likelihood ratio (max AA(v)) or randomly selecting inferred border vectors (v € LU(f*) u
UZ(f*)), allowed the maximum likelihood ratio to converge to 1, even when the misclassification probability was
not fixed. This avoids the bias problems associated with the variance approach reported in Cohn et al. (1996), and
also observed with the selection criterion based on the number of errors (max(Ey(v) + E;(V)).

For large problems (i.e., n > 5), it may not be possible to compute the eval uative criterion max AA(v) since
it takes exponential time (in the size of the query domain V) to do so. For such problems, queries can be selected
randomly from the border vectors (v € LU(f*) u UZ(f*)). This only takes O(V) time, and results in much fewer
gueries than completely random selection on the average.

For complete reconstruction of monotone Boolean functions, the guided approach showed a dramatic
reduction in the average number of queriesover apassivelearner ontheaverage. Thesimulationsalso indicated that
this improvement grows at least exponentially as the number of variables n and the error rate q increase. Thus,
defining an appropriate and efficient eval uative criterioniseven more beneficial for large problemsand applications

with ahigh error rate.

Acknowledgements

The authors would like to thank Professor Jerry L. Trahan in the Electrical Engineering Department at Louisiana
State University for stimulating discussions of theincremental maximumflow algorithm. Also, theauthorsgratefully
acknowledge the support from the Office of Naval Research Grant NO0014-97-1-0632.

References

Ayer, M., Brunk, H.D., Ewing, G.M., Reid, W.T. Silverman, E. 1955. An Empirical Distribution Function for
Sampling with Incomplete Information. Annals of Mathematical Statistics 26 641-647.

Ben-David, A. 1992. Automatic Generation of Symbolic Multiattribute Ordinal Knowledge-Based DSSs:
Methodology and Applications. Decision Sciences 23(6) 1357-1372.

Ben-David, A. 1995. Monotonicity Maintenancein Information-Theoretic Machine Learning Algorithms. Machine
Learning 19(1) 29-43.

Bloch, D.A., Silverman, B.W. 1997. Monotone Discriminant Functions And Their Applicationsin Rheumatology.
Journal of the American Statistical Association 92(437) 144-153.

Block, H., Qian, S., Sampson, A. 1994. Structure Algorithmsfor Partially Ordered |sotonic Regression. Journal of
Computational and Graphical Satistics 3(3) 285-300.

Boros, E., Hammer, P.L., Hooker, J.N. 1994. Predicting Cause-Effect Relationships from Incomplete Discrete
Observations. SAM Journal on Discrete Mathematics 7(4) 531-543.

28

Boros, E., Hammer, P.L., Hooker, J.N. 1995. Boolean Regression. Annals of Operations Research 58 201-226.
Church, R. 1940. Numerical Analysisof Certain FreeDistributive Structures. Duke Mathematical Journal 6 732-734.

Church, R. 1965. Enumeration by Rank of the Free Distributive Lattice with 7 Generators. Notices of the American
Mathematical Society 11 724.

Cohn, D.A. 1996. Neural Network Exploration Using Optimal Experiment Design. Neural Networks9(6) 1071-1083.

Cohn, D.A. 1995. Minimizing Statistical Biaswith Queries. A.l. Memo No. 1552, Artificial Intelligence Laboratory,
Massachusetts Institute of Technology, Cambridge, MA, USA.

Cormen, T.H , Leiserson, C.H., Rivest, R.L. 1997. Introduction to Algorithms. The MIT Press, Cambridge, MA,
USA.

Dedekind, R. 1897. Ueber Zerlegungen von Zahlen durch ihre Grossten Gemeinsamen Teiler. Festschrift Hoch.
Brauhnschweig u. ges Werke I1, 103-148 (in German).

Edmonds, J. Karp, R.M. 1972. Theoretical Improvementsin the Algorithmic Efficiency for Network Flow Problems.
Journal of the ACM, 19 248-264.

Federov, V.V. 1972. Theory of Optimal Experiments. Academic Press, New York, NY, USA.
Ford, L.R. Fulkerson, D.R. 1962. Flowsin Networks. Princeton University Press, Princeton, NJ, USA.

Judson, D.H. 1999. On the Inference of Semi-Coherent Structures from Data. A Master’'s Thesis, Department of
Mathematics, University of Nevada, Reno, NV, USA.

Judson, D.H. 2001. A partial order approach to record linkage. Federa Committee on Statistical Methodol ogy
conference, November 14-16, Arlington, VA, USA.

Karzanov, A.V. 1974. Determining the Maximal Flow in aNetwork by the Method of Preflows. Soviet Mathematics
Doklady 15 434-437.

Korshunov, A.D. 1981. On the Number of Monotone Boolean Functions. Problemy Kibernetiki 38 5-108 (in
Russian).

Kovalerchuk, B., Triantaphyllou, E. Vityaev, E. 1995. M onotone Bool ean Function Learning Techniques Integrated
with User Interaction. Proceedingsof Workshop “ L earning from Examplesvs. Programming by Demonstration”, 12
International Conference on Machine Learning, Lake Tahoa, CA, USA, 41-48.

Kovalerchuk, B., Triantaphyllou, E. Deshpande, A.S. 1996. Interactive L earning of Monotone Boolean Functions.
Information Sciences, 94 87-118.

Kovalerchuk, B. Vityaev, E. 2000. Data Mining in Finance. Kluwer Academic Publishers, Boston, MA, USA.
Lee, C.I.C. 1983. The min-max Algorithm and Isotonic Regression. The Annals of Statistics. 11 467-477.

MacKay, D.J.C. 1992. Information-based Objective Functions for Active Data Selection. Neural Computation 4(4)
589-603.

29

Makino, K., Suda, T., Ono, H., Ibaraki, T. 1999. Data Analysis by Positive Decision Trees. |[EICE Transactions on
Information and Systems E82-D(1) 76-88.

Picard, J.C. 1976. Maximal Closure of a Graph and Applicationsto Combinatorial Problems. Management Science
22 1268-1272.

Raobertson, T., Wright, F.T., Dykstra, R.L. 1988. Order Restricted Statistical Inference. John Wiley & Sons, New
York, NY, USA.

Shmulevich, 1. 1997. Properties and Applications of Monotone Boolean Functions and Stack Filters. A Ph.D.
Dissertation, Department of Electrical Engineering, Purdue University, West Lafayette, IN, USA.

Tatsuoka, C., Ferguson, T. 1999. Sequential Classification on Partially Ordered Sets. Technical Report 99-05,
Department of Statistics, The George Washington University, Washington D.C., USA.

Torvik, V1., Triantaphyllou, E. 2001a. Minimizing the Average Query Complexity of Learning Monotone Boolean
Functions. To appear in INFORMS Journal on Computing.

Torvik, V.I., Triantaphyllou, E. 2001b. Guided Inference of Nested Monotone Boolean Functions. Pending journal
review.

Ward, M. 1946. Note on the Order of the Free Distributive Lattice. Bulletin of the American Mathematical Society
52 135 423.

Wiedemann, D. 1991. A Computation of the Eight Dedekind Number. Order 8 5-6.

30

