
Guided inference of nested monotone
Boolean functions

Vetle I. Torvik a,*, Evangelos Triantaphyllou b

a Department of Psychiatry, University of Illinois at Chicago, MC 912, 1601 W Taylor Street,

Chicago, IL 60612, USA
b Department of Industrial and Manufacturing Systems Engineering, Louisiana State University,

3128 CEBA Building, Baton Rouge, LA 70803-6409, USA

Received 10 July 2002; received in revised form 3 December 2002; accepted 1 January 2003

Abstract

This paper addresses the problem of minimizing the average query complexity of

inferring a pair of nested monotone Boolean functions defined on f0; 1gn using a pair of

oracles. Here, nested refers to the case when one of the functions is always greater than

or equal to the other function. It is shown that the nested case is equivalent to inferring

the single function case defined on f0; 1gnþ1
when access to the two oracles is unre-

stricted. Two common examples of restricted oracles, namely sequential oracles and a

single three-valued oracle, are also analyzed. The most efficient known approach to

minimizing the average query complexity in inferring a single monotone Boolean

function is based on a query selection criterion. It is shown that the selection criterion

approach is easily modified for use with restricted oracles. Several real world examples

illustrate the necessity and sufficiency of the nested monotone Boolean function model.

Extensive computational results indicate that the nestedness assumption reduces the

average query complexity by a few percent. This is a dramatic improvement considering

the fact that this complexity is exponential in n.
� 2003 Elsevier Science Inc. All rights reserved.

Keywords: Nested monotone Boolean functions; Membership queries; Guided infer-

ence; Partially ordered sets (posets); Query selection criteria; Average query complexity

Information Sciences 151 (2003) 171–200

www.elsevier.com/locate/ins

*Corresponding author.

E-mail addresses: vtorvik@uic.edu (V.I. Torvik), trianta@lsu.edu (E. Triantaphyllou).

URLs: http://arrowsmith2.psych.uic.edu/torvik, http://www.imse.lsu.edu/vangelis.

0020-0255/03/$ - see front matter � 2003 Elsevier Science Inc. All rights reserved.

doi:10.1016/S0020-0255(03)00062-8

mail to: vtorvik@uic.edu

1. Introduction

Unlocking the mystery of natural phenomena is arguably a universal ob-

jective in scientific research. The rules governing a phenomenon can most often
be learned by observing it under a sufficiently high number of conditions that

are sufficiently high in resolution. This paper presents an active (or guided)

approach to this knowledge discovery task. The underlying motivation for this

approach is that being able to observe the phenomenon under specifically se-

lected conditions may increase the accuracy and completeness of the learned

knowledge at a faster rate than a passive observer who may not receive the

pieces relevant to the puzzle soon enough. This active learning environment

can be thought of as learning by successively submitting queries to an oracle
which responds with a Boolean value (phenomenon is present or absent). In

practice, the oracle may take the shape of a human expert, or it may be the

outcome of performing tasks such as running experiments or searching large

databases.

This paper focuses on applications where a given set of predictor variables

have monotonically non-decreasing effects on the phenomenon under study.

For example, a college applicant�s grade point average is likely to have a

positive effect on being accepted into a particular college when all other factors
are constant. As another example, suppose a personal computer tends to crash

when it runs a particular web browser and word processor simultaneously.

Then, it will probably crash if it also runs its CD player.

This paper further focuses on situations where the monotone functions and

their common n variables are Boolean (i.e., take on two values, say 0 and 1).

This does not necessarily limit the application domain as Kovalerchuk et al.

[12] establishes that any function can be represented by a sequence of mono-

tonically non-increasing and non-decreasing Boolean functions. Recent liter-
ature contains a plethora of fields where monotone Boolean functions

appropriately capture the phenomenon under study. Such diverse fields in-

clude, but are not limited to, social workers� decisions, lecturer evaluation and

employee selection [1], chemical carcinogenicity, tax auditing and real estate

valuation [3], breast cancer diagnosis and engineering reliability [13], signal

processing [17], rheumatology [2], social sciences [9], finance [15], and record

linkage in databases [10].

In applications, the monotonicity property is usually easy to identify due to
its intuitive nature. This is perhaps its most important feature when human

interaction is involved, since people tend to make very good use of knowledge

they can interpret, understand, and validate. Monotonicity is a property that

not only is sufficient and necessary in many applications but can also make the

knowledge discovery process easier and more efficient. Breast cancer, college

acceptance policies, and record linkage in databases are just a few applications

that we use to demonstrate these points.

172 V.I. Torvik, E. Triantaphyllou / Information Sciences 151 (2003) 171–200

A single monotone Boolean function does not capture the idea of a value

intermediate to 0 and 1, while a pair of nested monotone Boolean functions

does so. Here the functions f1 and f2 are referred to as nested when the rela-

tionship f1 P f2 (or f1 6 f2) holds. For example, in classification problems some
instances might belong to a class with a high probability (i.e., where f2 ¼ 1 and

f1 ¼ 1), and some might belong to the other class with a high probability (i.e.,

where f2 ¼ 0 and f1 ¼ 0). Other instances might not be classifiable with a

satisfactorily high probability. A pair of nested functions allows for an inter-

mediate classification (i.e., where f2 ¼ 0 and f1 ¼ 1) to be incorporated. This

fact makes the monotone Boolean function model more powerful. The appli-

cations of breast cancer diagnosis, record linkage for databases and college

applicant evaluations, described in Sections 3.2, 3.4 and 3.6, respectively, il-
lustrate that more complex models are not necessary and simpler models are

not sufficient.

In practice, a great deal of effort is put into the process of inferring functions

underlying certain phenomena. Software is tested to establish its reliability,

clinical trials are performed to establish the effect of drugs on diseases, etc. This

inference process generally involves gathering and analyzing data. Gathering

the data often involves some sort of labor that far outweighs the computations

used to analyze the data in terms of cost. Therefore, the main objective in this
paper is to minimize the labor associated with gathering the data (inquiries to

oracles), as long as it is computationally feasible.

Monotone Boolean functions lay the ground for a simple question-asking

strategy where it may be easy to pinpoint questions whose answers make

incomplete knowledge more general or stochastic knowledge more accurate.

More specifically, monotone Boolean functions are reconstructed by succes-

sive and systematic function evaluations (membership queries submitted to an

oracle). The oracle can be thought of as an entity that knows the underlying
monotone Boolean function and provides a Boolean value in response to each

query. Initially, the entire set of 2n Boolean vectors, denoted by f0; 1gn, is
considered unclassified. A vector is then selected from the set of unclassified

vectors and is submitted to the oracle as a membership query. After the

vector�s function value is provided by the oracle, the set of unclassified vec-

tors is reduced. These queries are then repeated until all of the vectors are

classified. Due to the underlying monotonicity and nestedness properties, a

learning algorithm that actively chooses its observations (i.e., is guided) may
significantly increase the learning rate, as a passive learner might not receive

the relevant pieces of information fast enough. Therefore, it is highly desir-

able not only to be able to pose questions (or queries), but to pose ‘‘smart’’

questions.

The main problem addressed in this paper is how to identify these ‘‘smart’’

questions using query selection criteria in order to completely and efficiently

infer a pair of functions underlying some phenomenon by only knowing that

V.I. Torvik, E. Triantaphyllou / Information Sciences 151 (2003) 171–200 173

they belong to the class of nested monotone Boolean functions defined on at

most n variables. It is assumed that the learning algorithm has access to a pair

of oracles that know the underlying functions, and each oracle provides a 0 or 1

function value in response to each query. The problem when the function to be
inferred is just a single monotone Boolean function has been studied exten-

sively in the literature (e.g., [4,6,7,16,18,22]). A comparative study of existing

algorithms for and a new query selection criterion approach to this problem

can be found in [20]. An extension to a stochastic oracle, in particular when the

oracle may misclassify each query, has been addressed in [21]. A unified and

more detailed version of these papers can be found in [19].

This paper differs from existing work by analyzing nested monotone

Boolean functions and the corresponding ways oracles may be queried in
practice, and has four major points. First, it shows how a selection criterion

approach to minimizing the average query complexity is extended to three

different inference scenarios ((1) sequentially from two oracles, (2) simul-

taneously from a single oracle, and (3) simultaneously from two oracles)

pertaining to a pair of nested monotone Boolean functions. Second, it dem-

onstrates how the nested monotone Boolean function model often is sufficient

(i.e., a more complex model is not necessary) and necessary (i.e., simpler

models are not sufficient) for a wide variety of real world applications. Third, it
quantifies the reduction in average query complexity due to the nestedness

assumption. Fourth, it compares the query complexities for the three different

inference scenarios.

This paper is organized as follows. Section 2 provides some background

information on monotone Boolean functions, and briefly describes the related

inference problems. Section 3 presents the details of the inference problems,

and illustrates the solution methodology on real world examples. The con-

cluding remarks given in Section 5 are based on the computational results
presented in Section 4.

2. Background information

The purpose of this section is to provide some background information on

monotone Boolean functions and the related inference problems. Section 2.1

addresses monotone Boolean functions and the extension to a pair of nested

functions. Section 2.2 defines the inference problems and their respective ob-
jectives.

2.1. Some properties of monotone Boolean functions

Let f0; 1gn denote the set of Boolean vectors defined on n Boolean variables.
A deterministic Boolean function defined on f0; 1gn is simply a mapping to

174 V.I. Torvik, E. Triantaphyllou / Information Sciences 151 (2003) 171–200

f0; 1g. A vector v in f0; 1gn is said to precede another vector w, denoted by

v � w, if and only if (iff) vi 6wi for i ¼ 1; 2; . . . ; n. Here vi (and wi) denotes the

ith element of vector v (and w, respectively). When a vector v precedes another
vector w and the two vectors are distinct (i.e., v 6¼ w,), then v is said to strictly
precede w, denoted by v � w. A monotone Boolean function f is called

non-decreasing if f ðvÞ6 f ðwÞ8ðv;wÞ : v � w, and non-increasing if f ðvÞP
f ðwÞ8ðv;wÞ : v � w. The set of non-decreasing functions defined on f0; 1gn is

denoted by Mn. This paper focuses on non-decreasing functions, which are

referred to as monotone, as analogous results hold for non-increasing functions.

A vector v� is called an upper zero of a function f if f ðvÞ > f ðv�Þ8v : v� � v.
Similarly, a vector v� is called a lower unit of a function f if f ðvÞ <
f ðv�Þ8v : v � v�. Lower units and upper zeros are also referred to as border
vectors. For any monotone Boolean function f , the set of lower units LU(f),
and the set of upper zeros, UZ(f) are unique and either one of these two sets

uniquely identifies f .
A pair of monotone Boolean functions f1 and f2 are called nested when

the following relationship holds: f1ðvÞP f2ðvÞ (or f1ðvÞ6 f2ðvÞ), 8v 2 f0; 1gn.
The case when f1 P f2 is addressed in this paper as analogous results hold

for the case when f1 6 f2. In other words, if f2ðvÞ is equal to 1, then f1ðvÞ
must also be equal 1, and if f1ðvÞ is equal to 0, then f2ðvÞ must also be equal
0, for any vector v. The latter definition gives meaning to the word nested,

while the more succinct expression f1 P f2 will be used throughout this paper.

The number of pairs of nested monotone Boolean functions defined on

f0; 1gn is simply Wðnþ 1Þ, where WðnÞ denotes the number of monotone

Boolean functions defined on f0; 1gn. This fact can be observed by con-

structing the partially ordered set (or poset for short) connecting two posets

P1 ¼ ðf0; 1gn;�Þ and P2 ¼ ðf0; 1gn;�Þ associated with functions f1 and f2 re-

spectively, by adding the edges corresponding to the precedence relations
f1ðvÞP f2ðvÞ, 8v 2 f0; 1gn. Posets can be viewed as directed graphs where each

vertex corresponds to a vector and a directed edge from vertex v to vertex w,
represents the precedence relation v � w. The operation of constructing the

new poset can be viewed as poset multiplication, denoted by , where the do-

main f0; 1gn makes up a poset and the functions make up another poset f0; 1g.
Multiplying f0; 1gn by f0; 1g creates f0; 1gnþ1

, as the example for n ¼ 2 in Fig.

1 shows.

Poset multiplication can be generalized to any set of vectors V and any
relation between the functions f1; f2; . . . ; fm. As an example consider the set of

vectors V ¼ f1; 2; 3g, and three functions that satisfy the following relation-

ships f1 6 f2 6 f3. Here, the set of vectors makes up a chain poset of length 3,

and the functions make up a chain poset of length 3. The new poset created by

multiplying the two posets is a 3� 3 matrix poset. This paper focuses on the

case when V ¼ f0; 1gn and F ¼ fð0; 0Þ; ð0; 1Þ; ð1; 1Þg, while the methodology is

applicable to any sets V � Rn and F � Rr as long as they are both finite.

V.I. Torvik, E. Triantaphyllou / Information Sciences 151 (2003) 171–200 175

2.2. Guided inference

Monotone Boolean functions lay the ground for a simple question-asking

strategy, which forms the basis of this paper. More specifically, the problem of

uncovering monotone Boolean functions by successive and systematic function

evaluations (membership queries submitted to an oracle) is addressed. This

paper deals with the problem of inferring a pair of nested functions with access

to two oracles (one for each function). The manner in which the functions�
values are obtained (i.e., restrictions on the access to oracles) depends on the
application. This problem is further broken down into Problems #1, #2 and #3

(described in Sections 3.1, 3.3 and 3.5, respectively) by the manner in which the

oracles are accessed. For each of these three problems, real world applications

are described in Sections 3.2, 3.4 and 3.6, respectively. The wide variety of

applications demonstrates the versatility of the monotonicity and nestedness

assumptions and illustrates the three major types of formulations they can take

on.

Problem #1 deals with applications where the costs associated with queries
to one of the oracles far outweighs the costs associated with the queries to the

other oracle, and situations where one has sequential access to the oracles. In

such applications, it is beneficial to reconstruct the function associated with the

least expensive oracle first, after which the reconstruction of the other function

begins. In other words, two monotone Boolean functions are to be sequentially

inferred from two oracles. Problem #2 deals with applications where a single

oracle knows both functions� values. That is, the oracle answers each query

with a pair of function values ðf1; f2Þ ¼ ð0; 0Þ, (1,0), or (1,1). In other words,
two monotone Boolean functions are to be simultaneously inferred from a

single three-valued oracle. For this problem the two nested monotone Boolean

functions are viewed as a single monotone function f taking on the three values

0, 1 and 2, corresponding to ðf1; f2Þ ¼ ð0; 0Þ, (1,0) and (1,1), respectively.

Notice that ðf1; f2Þ cannot take on the values (0,1) due to the nestedness

Fig. 1. Illustration of poset multiplication.

176 V.I. Torvik, E. Triantaphyllou / Information Sciences 151 (2003) 171–200

constraint f1 P f2. The single three-valued function is used to emphasize that

the Boolean function values arrive in pairs, for each vector, from a single or-

acle. Problem #3 deals with applications where the costs associated with access

to the two oracles are the same, and situations that allow for switching between
the two oracles intermittently. At any inference step of such applications, it

does not matter which oracle is queried. In other words, two monotone

Boolean functions are to be simultaneously inferred with unrestricted access to

two oracles.

The inference process consists of the following steps. Initially, the entire set

of 2n Boolean vectors f0; 1gn, is considered to be unclassified for both functions

f1 and f2. That is, the values of underlying monotone Boolean functions f1 and
f2 are all unknown and may be 0 or 1. A vector v is then selected from the set of
vectors Ui that are unclassified by function fi and is submitted to oracle i as a
membership query (either i ¼ 1 or 2). After the vector�s function value fiðvÞ is
provided by the oracle, the set of unclassified vectors Ui is reduced according

to the following monotonicity constraints: fiðwÞ ¼ 0, 8w 2 Ui: w � v, when
fiðvÞ ¼ 0, or the following monotonicity constraints: fiðwÞ ¼ 1, 8w 2 Ui: v � w,
when fiðvÞ ¼ 1, for i ¼ 1 or 2. Similarly, the other set of unclassified vectors

(i.e., U1 if i ¼ 2, and U2 if i ¼ 1) may be reduced according to the following

nestedness constraints: f1ðwÞ ¼ 1, 8w 2 U1: v � w, when f2ðvÞ ¼ 1, or the fol-
lowing nestedness constraints: f2ðwÞ ¼ 0, 8w 2 U2: w � v, when f1ðvÞ ¼ 0.

Vectors are then repeatedly selected from the unclassified set until all of the

vectors are classified by both functions (i.e., U1 ¼ U2 ¼ fg).
Given the classification of any vector in f0; 1gn, some of the other vectors

may be concurrently classified if the underlying functions are assumed to be

monotone. Therefore, only a subset of the 2n vectors may need to be evaluated

in order to completely reconstruct the underlying functions. A key problem is

then to select ‘‘promising’’ vectors so as to reduce the total number of queries
(or query complexity). In practice, the queries are often associated with some

sort of effort, such as consulting with experts, performing experiments or

running simulations. In these situations, the cost of the queries far exceeds the

computational cost. This paper is, therefore, focused on minimizing the query

complexity as long as it is computationally feasible.

Kovalerchuk et al. [13] considered the problem of inferring a pair of nested

monotone Boolean functions. Their algorithm is an extension of Hansel�s al-

gorithm [7] for a single monotone Boolean function. It exhibited a promising
efficiency in their cancer diagnosis application. However, their performance

analysis is far from conclusive as a single application represents a single pair of

nested monotone Boolean functions.

For the single monotone Boolean function case, Torvik and Triantaphyllou

[20] suggested minimizing the average number of queries over the entire class

of monotone Boolean functions defined on f0; 1gn. This objective can be

expressed mathematically as follows:

V.I. Torvik, E. Triantaphyllou / Information Sciences 151 (2003) 171–200 177

QðnÞ ¼ min
A

P
f2Mn

uðA; f Þ
wðnÞ ;

where uðA; f Þ denotes the number of queries performed by algorithm A in

reconstructing the monotone Boolean function f . The analogous objective for
nested monotone Boolean functions is used in this paper. The minimum av-

erage number of queries for Problem # k (for k ¼ 1, 2, and 3) can be expressed

mathematically as follows:

QkðnÞ ¼ min
Ak

P
f1;f22Mn:f2 6 f1

uðAk; f1; f2Þ
wðnþ 1Þ ;

where uðAk; f1; f2Þ denotes the number of queries performed by algorithm Ak,

in reconstructing the pair of nested monotone Boolean functions f1 and f2.
Here A1;A2 and A3 denote algorithms designed for Problems #1, #2 and #3,

respectively. The details of these three problems and the respective inference

algorithms are provided in Section 3.
Since the three problems differ in the way the oracles are queried, it should

be clarified that a query unit pertains to the membership value from one of the

two functions f1 and f2. This definition is intuitive for Problems #1 and #3,

where two oracles are accessed individually. For Problem #2, however, the

membership values are provided in pairs from a single three-valued oracle. To

make the definition of Q2ðnÞ comparable to Q1ðnÞ and Q3ðnÞ, each access to the

three-valued oracle in Problem #2 will be counted as two queries.

The minimum average number of queries for the unrestricted problem Q3ðnÞ
is equal to that of the single function case in one dimension higher Qðnþ 1Þ. To
see this connection consider a pair of nested monotone Boolean functions f1
and f2 defined on f0; 1gn. The query domain for the nested case can be viewed

as the product: f0; 1gn � ff1; f2g. Each of the vertices in the resulting poset

ðf0; 1gnþ1
;�Þ, may take on function values of 0 or 1, where the monotonicity

property is preserved. In other words, a pair of nested monotone Boolean

functions defined on f0; 1gn, are equivalent to a single monotone Boolean

function defined on f0; 1gnþ1
.

As an example, consider inferring a pair of nested monotone Boolean

functions defined on f0; 1g2. Fig. 1 shows the query domain in the form of the

poset ðf0; 1g3;�Þ, where the vertices are labeled ðvfiÞ, for i ¼ 1 and 2. Each

vertex in this poset is in the form of a query, where a sample query now could

be ð01f1Þ. If the answer to that query is 0, then the vertices strictly preceding

ð01f1Þ (i.e., ð00f1Þ,ð01f2Þ, and ð00f2Þ) in the new poset are also assigned the

value 0. This leaves the vertices ð11f1Þ, ð10f1Þ, ð11f2Þ, ð10f2Þ as unclassified.
As a side note, consider a set of functions making up a poset of the

form ðf0; 1gm;�Þ where each function is defined on the set of vectors of the

form ðf0; 1gn;�Þ. The query domain can then be viewed as a poset of the form

178 V.I. Torvik, E. Triantaphyllou / Information Sciences 151 (2003) 171–200

ðf0; 1gn;�Þ ðf0; 1gm;�Þ ¼ ðf0; 1gnþm
;�Þ. For example, inferring four func-

tions from four unrestricted oracles, defined on f0; 1g5, satisfying the relations

f1 6 f2; f1 6 f3; f2 6 f4 and f3 6 f4, is equivalent to inferring a single monotone

Boolean function defined on defined on f0; 1g2þ5 ¼ f0; 1g7.

3. The three key inference problems and some applications

This section describes the three key inference problems in detail. The goal of

the three problems is the same, namely to minimize the average number of

queries used to infer a pair of nested monotone Boolean functions defined on

the poset f0; 1gn. However, the manner in which the oracles that provide the

function values are accessed differs between the three problems.
In [20] we showed that the selection criterion min jK1ðvÞ � K0ðvÞj minimized

the average query complexity QðnÞ for a single monotone Boolean function

when n6 4, and was close to optimal when nP 5. Here, KzðvÞ denotes the

number of vertices that are concurrently classified when f ðvÞ ¼ z, for z ¼ 0 and

1. This selection criterion will be used for the three nested problems with slight

modifications.

The query domain for the nested case is made up of the set of vectors

f0; 1gn � ff1; f2g. For a vertex labeled ðvfiÞ, let Kzðv; fiÞ be the number of
vertices that are concurrently classified when the value of fiðvÞ is queried and

the answer is fiðvÞ ¼ z, for z ¼ 0 and 1. When the oracles are unrestricted (i.e.,

Problem #3), vertices are selected based on the criterion min jK1ðv; fiÞ�
K0ðv; fiÞj. This criterion is equivalent to the criterion min jK1ðvÞ � K0ðvÞj for the
single function case. The only change is in the notation since the oracle that is

to provide the answer has to be identified for Problem #3. This criterion is,

therefore, referred to as min jK1 � K0j. For sequential oracles (i.e., Problem

#1), queries of the form f2ðvÞ are infeasible until all of the queries of the form
f1ðvÞ are classified. In this case, the criterion used during the first phase is

min jK1ðv; f1Þ � K0ðv; f1Þj, after which the criterion min jK1ðv; f2Þ � K0ðv; f2Þj is
used. For the three-valued oracle (i.e., Problem #2), the queries are of the form

ðf1ðvÞ; f2ðvÞÞ and are selected using the criterion min jK11ðvÞ � K00ðvÞj. Here, the

value of the function KzzðvÞ equals the number of vertices concurrently classi-

fied when vertex v is queried and the result of the query is f1ðvÞ ¼ f2ðvÞ ¼ z, for
z ¼ 0 and 1. Once there are no pairs of vertices of the form (f1ðvÞ; f2ðvÞ) left
unclassified, the criterion min jK1ðv; fiÞ � K0ðv; fiÞj is used for the remaining of
the query selections.

3.1. Problem # 1––sequentially inferring nested functions

For this problem, the two functions are considered to be available via their
two respective oracles where the inference situation dictates that, for example,

V.I. Torvik, E. Triantaphyllou / Information Sciences 151 (2003) 171–200 179

function f1 should be completely reconstructed before the inference of function

f2 begins. In other words, the two functions are to be sequentially inferred. This

approach may simply be the only feasible or reasonable one or it may be

dictated by the cost of querying the oracle associated with f2 far surpassing the
cost of querying the other oracle.

3.2. An application of Problem #1 to breast cancer diagnosis

Breast cancer diagnosis will be used to illustrate the sequential inference

problem. Fig. 2 shows the two step sequential process in which breast cancer is

diagnosed. In the first step, an X-ray image (called a mammogram) of a tumor

is studied by a radiologist who determines whether performing a biopsy is

necessary. If the radiologist finds that a biopsy is not necessary, the diagnosis is

concluded. Otherwise, a biopsy is performed (a surgeon removes small piece of

the tumor) and a pathologist studies the removed tissue under a microscope to

see whether it is cancerous. One can argue that the cost of the invasive biopsy
procedure and analysis outweighs the cost of analyzing a mammogram and

that patients (if not surgeons) are reluctant to undergo a biopsy procedure

without a radiologist recommendation. Therefore, the radiologist can be

viewed as the oracle governing function f1 which should be completely restored

first. The biopsy can be viewed as the oracle governing function f2 whose

restoration begins afterwards. The nature of the two functions f1 and f2 implies

that they are nested (i.e., f1 P f2).
To illustrate the inference process using the criterion min jK1 � K0j for se-

quential inference, consider the pair of nested monotone Boolean functions

inferred by interviewing a radiologist in [13]. The inferred function that de-

scribes their ‘‘biopsy subproblem’’ is defined as follows:

f1ðvÞ ¼ v1v2 _ v3 _ v1v4 _ v2v4 _ v5;

where f1ðvÞ ¼ 1 if a biopsy is recommended for a tumor with the features

described by v. The inferred function that describes their ‘‘cancer subproblem’’

is defined as follows:

Fig. 2. Illustration of sequential oracles in breast cancer diagnosis.

180 V.I. Torvik, E. Triantaphyllou / Information Sciences 151 (2003) 171–200

f2ðvÞ ¼ v1v2 _ v3 _ v1v5 _ v2v5 _ v4v5;

where f2ðvÞ ¼ 1 if a tumor with the features described by v is highly suspicious

for malignancy and 0 otherwise. Here vi describes the ith diagnostic feature

which is 1 if it is ‘‘pro-cancer’’ and 0 if it is ‘‘contra-cancer’’. The five individual

features are defined as follows:

v1 ¼ 1 if amount and volume of calcifications is ‘‘pro-cancer’’, 0 otherwise,

v2 ¼ 1 if shape and density of calcifications is ‘‘pro-cancer’’, 0 otherwise,

v3 ¼ 1 if ductal orientation is ‘‘pro-cancer’’, 0 otherwise,

v4 ¼ 1 if comparison with previous exam is ‘‘pro-cancer’’, 0 otherwise and
v5 ¼ 1 if associated findings is ‘‘pro-cancer’’, 0 otherwise.

It should be noted that v1 and v2 are also monotone Boolean functions that

have to be inferred prior to the inference of f . The details of that decompo-

sition are left out for the purpose of simplifying this illustration. The interested

reader is referred to [13,14] for more details. It should also be noted that the

two functions were both inferred from querying the radiologist. For the pur-

pose of illustrating the sequential oracles, it is assumed here that the values of

function f2 are available via the biopsy procedure. It is also assumed that a set
of mammograms and their features is available for selection, and this set covers

all vectors f0; 1g5.
Fig. 3 shows the sequence of queries and their answers for the breast cancer

diagnosis application, when the queries are selected based on the criterion

min jK1 � K0j. Below each query, the remaining unclassified vectors are shown in

the form of a poset with the selected vector circled. Initially, all of the vectors

f0; 1g5 ff2; f1g ¼ f0; 1g6 are unclassified and several vectors on the middle

layer possess the same minimum feasible value jK1 � K0j ¼ 0. One of these vec-
tors ð000111Þ ¼ ð00011f1Þ is arbitrarily selected for the first query. The radiol-

ogist is asked whether a biopsy is recommended for a tumor with ‘‘pro-cancer’’

features in comparison with previous examination (v4 ¼ 1) and in associated

findings (v5 ¼ 1). After the radiologist answers ‘‘yes’’ (i.e., f1ð00011Þ ¼ 1Þ, the set
of unclassified vectors is reduced and then forms the poset shown below the

second query. In this poset, the minimum jK1 � K0j value of 1, belongs to the

vector ð111000Þ ¼ ð11100f2Þ which is an infeasible query at this point. However,

there are several vectors with the minimum feasible jK1 � K0j value of 2. The
vector ð011001Þ ¼ ð01100f1Þ is one of them. The radiologist is asked whether a

biopsy is recommended for a tumor with ‘‘pro-cancer’’ features in shape and

density of calcifications (v2 ¼ 1) and in ductal orientation (v3 ¼ 1). After the ra-

diologist answers ‘‘yes’’ (i.e., f1ð01100Þ ¼ 1Þ, the set of unclassified vectors is

further reduced and forms the poset shown below the third query. This process

continues and after the 10th query, the biopsy recommendation function f1 is

completely restored (i.e., all of the vectors of the form ðv1v2v3v4v51Þ are classified).
At this point the inference of the cancer function f2 from the biopsy oracle

begins. The feasible vectors are now of the form ðv1v2v3v4v50Þ, and make up the

V.I. Torvik, E. Triantaphyllou / Information Sciences 151 (2003) 171–200 181

poset shown below the 11th query. The minimum jK1 � K0j value of 0 belongs

to vector ð110100Þ ¼ ð11010f2Þ. A biopsy is performed on a tumor with ‘‘pro-

cancer’’ features in amount and volume of calcifications (v1 ¼ 1), in shape and

density of calcifications (v2 ¼ 1), and in comparison with previous examination

(v4 ¼ 1). After the cancer is detected (i.e., f2ð11010Þ ¼ 1), the set of unclassified

vectors is further reduced and forms the poset shown below the 12th query.

Fig. 3. Sequential inference of the two nested breast cancer diagnosis functions using the selection

criterion.

182 V.I. Torvik, E. Triantaphyllou / Information Sciences 151 (2003) 171–200

The querying continues for a total of 23 queries; the first 10 for the radiologist

and last 13 in the form of biopsies.

3.3. Problem #2––inferring nested functions from a single three-valued oracle

For this problem the two nested monotone Boolean functions are viewed as

a single function f taking on the three values 0, 1 and 2, corresponding to

ðf1; f2Þ ¼ ð0; 0Þ, (1,0) and (1,1), respectively. Notice that (f1; f2) cannot take on
the values (0,1) due to the nestedness constraint f1 P f2. The single three-val-
ued function is used to emphasize that the Boolean function values arrive in

pairs, for each vector, from a single oracle.

This problem is similar to that of inferring a single monotone Boolean

function in that a single oracle provides the answers. In contrast, some vectors

may need to be evaluated by two oracles for Problems #1 and #3. In Problem

#2, vectors are not considered just classified or unclassified, but also partially

classified. Some time into the inference process unclassified vectors may take

on the values 0, 1 and 2 as function values while partially classified vectors may
take on the values 0 and 1, or the values 1 and 2.

3.4. An application of Problem #2 to record linkage in databases

The problem of merging a pair of databases with n common fields will be
used to illustrate a three-valued oracle. Fig. 4 shows a database administrator

as an oracle who is asked whether a pair of records should be merged. The goal

in the record linkage problem is to find which records in Database A matches

the records in Database B so that the newly created database does not have

replications of the same records nor is missing any of the records from either of

the two old databases. The interested reader is referred to [5,10,23] for further

details on the record linkage problem.

Suppose the two databases have n common fields. Let variable vi be defined
as 1 if a pair of records from the two databases have the same value on the ith
field, and 0 otherwise, for i ¼ 1; 2; . . . ; n. Consider a Database A defined with

the following fields: first name, last name, state of residence, email address, age,

gender, salary, and a Database B defined on the following fields: first

name initial, middle name initial, last name, address, zip code, phone number,

Fig. 4. Illustration of a single three-valued oracle in record linkage.

V.I. Torvik, E. Triantaphyllou / Information Sciences 151 (2003) 171–200 183

occupation, age, gender. For a pair of records rA and rB from Databases A and

B, respectively, five variables can be defined by the five fields common to

Databases A and B as follows:

v1 ¼ 1, if first name initialðrAÞ ¼ first name initialðrBÞ, 0 otherwise,
v2 ¼ 1, if last nameðrAÞ ¼ last nameðrBÞ, 0 otherwise,

v3 ¼ 1, if state of residenceðrAÞ ¼ state of residenceðrBÞ, 0 otherwise,

v4 ¼ 1, if ageðrAÞ ¼ ageðrBÞ, 0 otherwise, and

v5 ¼ 1, if genderðrAÞ ¼ genderðrBÞ, 0 otherwise.

Please notice that the state of zip codeðrBÞ can be converted into state of

residenceðrBÞ, and first name initialðrAÞ can be extracted from first nameðrAÞ.
Suppose that a pair of records should be merged if they have the same values

on at least:
(first name initial, last name, state of residence and age), or

(first name initial, last name, state of residence and gender), or

(first name initial, last name, age and gender), or

(last name, state of residence, age and gender).

Further, suppose that a pair of records should be given further consider-

ation if they do not satisfy the conditions for merging and have same values on

at least:

(first name initial, last name and state of residence), or
(first name initial, last name and age), or

(last name, age and gender).

That is, the underlying functions to be inferred are given as follows:

f1ðvÞ ¼ v1v2v3 _ v1v2v4 _ v2v4v5; and

f2ðvÞ ¼ v1v2v3v4 _ v1v2v3v5 _ v1v2v4v5 _ v2v3v4v5;

where the common values of a pair of records are described by the vector

v ¼ ðv1v2v3v4v5Þ. When f1ðvÞ ¼ f2ðvÞ ¼ 0, the records should not be merged.

When f1ðvÞ ¼ 1 and f2ðvÞ ¼ 0, the records should be given further consider-

ation. When f1ðvÞ ¼ f2ðvÞ ¼ 1, the records should be merged.
The inference process can be viewed as a dialogue between the database

administrator and the person posing the queries. Fig. 5 shows the sequence of

queries and their answers for the record linkage application, when the queries

are selected based on the criterion min jK11 � K00j. Below each query, the re-

maining unclassified vectors are shown in the form of a poset with the selected

vector(s) circled. Initially, all of the vectors f0; 1g5 ff2; f1g ¼ f0; 1g6 are

unclassified. A query of the form f ðv1v2v3v4v5Þ corresponds to the pair of

vectors ðv1v2v3v4v50Þ and ðv1v2v3v4v51Þ. When there are no unclassified pairs
left, the queries are given in the form f1ðv1v2v3v4v5Þ or f2ðv1v2v3v4v5Þ to show

what information was gained by the query f ðv1v2v3v4v5Þ.
Initially, several pairs of vectors possess the same minimum feasible value

jK11 � K00j ¼ 8. One of these pairs fð000110Þ; ð000111Þg is arbitrarily selected

184 V.I. Torvik, E. Triantaphyllou / Information Sciences 151 (2003) 171–200

for the first query. The database administrator is asked whether two records
with the same age (v4 ¼ 1) and gender (v5 ¼ 1) should be merged. After the

database administrator answers ‘‘no’’ (i.e., f ð00011Þ ¼ 0), the set of unclassi-

fied vectors is reduced and then forms the poset shown below the second query.

In this poset, the minimum jK11 � K00j value of 0, belongs to the pair of vectors

fð001110Þ; ð001111Þg. The database administrator is asked whether two re-

cords with the same state of residence (v3 ¼ 1), age (v4 ¼ 1) and gender (v5 ¼ 1)

should be merged. After the database administrator answers ‘‘no’’ (i.e.,

f ð00111Þ ¼ 0), the set of unclassified vectors is reduced and then forms the
poset shown below the third query. This process continues and after the 13th

query, there are no pairs of unclassified vectors of the form fðv1v2v3v4v50Þ,
ðv1v2v3v4v51Þg.

From there on the selection criterion min jK1 � K0j is used. From Fig. 5, it

is obvious that the remaining vectors (011110), (110110) and (111100) are

Fig. 5. Inferring the two nested record linkage functions from a three-valued oracle using the

selection criterion.

V.I. Torvik, E. Triantaphyllou / Information Sciences 151 (2003) 171–200 185

unrelated. As a result, all of them have to be queried and the query order does

not matter. For the 13th query, the database administrator is asked whether

two records with the same last name (v2 ¼ 1), state of residence (v3 ¼ 1), age

(v4 ¼ 1) and gender (v5 ¼ 1) should be merged. After the database adminis-
trator answers ‘‘yes’’ (i.e., f ð01111Þ ¼ 2), the set of unclassified vectors is re-

duced and then forms the poset shown below the 14th query. After 15 queries

to the database administrator, the record linkage function is completely re-

stored. Please note that it is known from the first 12 queries that f1ð01111Þ ¼
f1ð11011Þ ¼ f1ð11110Þ ¼ 1. In other words, the information gained by the 13th,

14th and 15th queries are that f2ð01111Þ ¼ f2ð11011Þ ¼ f2ð11110Þ ¼ 1, re-

spectively, which are shown over the respective posets in Fig. 5.

3.5. Problem #3––inferring nested functions from two unrestricted oracles

This problem is similar to Problem #1, in that two oracles are queried

separately. Unlike Problem #1, no restrictions are put on the manner in which

the two oracles are queried. At each inference step, a vector can be submitted

to any of the two oracles. In this sense, this is the least restrictive of the three

problems, and it is therefore expected that this approach will be the more ef-

ficient.

3.6. An application of Problem #3 to college applicant evaluations

Consider the evaluation process used for accepting students into a particular

college illustrated in Fig. 6. When a selection committee evaluates applications

they often place them into three ordered categories based on variables such

grade point average (GPA), standardized test scores, quality of an essay, rec-

ommendations, etc. The bottom category consists of students who are not to be
accepted. The top category consists of students who are to be accepted, while

an intermediate category consists of applicants who need to be considered

more carefully.

Fig. 6. Illustration of two oracles for the student acceptance policy.

186 V.I. Torvik, E. Triantaphyllou / Information Sciences 151 (2003) 171–200

Suppose a college dean wishes to establish guidelines that the selection

committee is to follow when placing applicants into these three categories. To

that end, the dean asks two professors from the college, one who is known to

be lenient and another who is known to be strict, to evaluate applications. The
lenient professor�s acceptance function is given by f1 while the strict professor�s
acceptance function is given by f2. Here, f1ðvÞ ¼ 1 if a student with criteria

described by vector v is accepted by the lenient professor, and f1ðvÞ ¼ 0 if it is

not accepted by the lenient professor. Also, f2ðvÞ ¼ 1 if a student with criteria

described by vector v is accepted by the strict professor, and f2ðvÞ ¼ 0 if it is not

accepted by the strict professor.

It is assumed that a student with criteria v, who is accepted by the strict

professor will also be accepted by the lenient professor (i.e., f2ðvÞ ¼ 1 implies
that f1ðvÞ ¼ 1). It is also assumed that, if the student is not accepted by the

lenient professor, the student will neither be accepted by the strict professor

(i.e., f1ðvÞ ¼ 0 implies that f2ðvÞ ¼ 0). This describes the nestedness assumption

made of the two professors acceptance functions: f1 P f2.
The college dean has two oracles (the two professors) that govern the two

functions, where the order in which the oracles are queried is not restricted.

That is, any application can be evaluated by either of the two professors at any

given time during the inference process.
For the purpose of illustrating the inference process consider the following

four simplified acceptance criteria for the college as follows:

v1 ¼ 1 for a high GPA, 0 otherwise,

v2 ¼ 1 for a high GRE score, 0 otherwise,

v3 ¼ 1 for an essay of high quality, 0 otherwise and

v4 ¼ 1 for good recommendations, 0 otherwise.

Suppose, the lenient professor will accept students with the following min-

imum requirements:
(a high GPA), or

(a high GRE score and good recommendations), or

(an essay of high quality and good recommendations),

while the strict professor will accept students with the following minimum

requirements:

(a high GPA, a high GRE score and good recommendations), or

(a high GPA, an essay of high quality and good recommendation).

That is, the two functions to be inferred are:

f1ðvÞ ¼ v1 _ v2v4 _ v3v4; and f2ðvÞ ¼ v1v2v4 _ v1v3v4:

The students who satisfy the strict and the lenient professors� minimum re-

quirements will be accepted. The students who satisfy the lenient professor�s
minimum requirements but not the strict professors are given further consid-

eration. The students who do not satisfy either of the professors� minimum
requirements are not accepted.

V.I. Torvik, E. Triantaphyllou / Information Sciences 151 (2003) 171–200 187

Fig. 7 shows the sequence of queries and their answers for the student

evaluation application when the queries are selected based on the criterion

min jK1 � K0j. Below each query, the remaining unclassified vectors are shown

in the form of a poset with the selected vector circled. Initially, all of the vectors

f0; 1g4 ff2; f1g ¼ f0; 1g5 are unclassified. A vector of the form ðv1v2v3v41Þ
corresponds to a query of the form f1ðv1v2v3v4Þ, and a vector of the form
ðv1v2v3v40Þ corresponds to a query of the form f2ðv1v2v3v4Þ.

Several vectors on the two middle layers possess the same minimum feasible

value jK1 � K0j ¼ 4. One of these vectors ð00011Þ ¼ ð0001f1Þ is arbitrarily se-

lected for the first query. The lenient professor evaluates whether a student

with good recommendations (v4 ¼ 1) should be accepted. After the lenient

professor answers ‘‘no’’ (i.e., f1ð0001Þ ¼ 0), the set of unclassified vectors is

reduced and then forms the poset shown below the second query. In this poset,

the minimum jK1 � K0j value of 0 belongs to the vectors (00111), (01011) and
(10011). The vector ð00111Þ ¼ ð0011f1Þ is selected. The lenient professor

evaluates whether a student with an essay of high quality (v3 ¼ 1) and good

recommendations (v4 ¼ 1) should be accepted. After the lenient professor an-

swers ‘‘yes’’ (i.e., f1ð0011Þ ¼ 1), the set of unclassified vectors is further reduced

Fig. 7. Simultaneous inference of the two nested college acceptance policy functions using the

selection criterion.

188 V.I. Torvik, E. Triantaphyllou / Information Sciences 151 (2003) 171–200

and forms the poset shown below the third query. This process continues for an

additional seven queries to the lenient professor and five queries to the strict

professor (not in that order) as shown in Fig. 7. After the 14th query, both

professors� acceptance functions, and hence the college acceptance policy, are
completely restored.

3.7. Hierarchical decomposition of variables

The variables used for the different applications described in the previous

sections are simplified in the illustrations. In some applications, the variables

may be monotone Boolean functions defined on set of Boolean variables at a

lower level. Kovalerchuk et al. [13] decomposed the five breast cancer diag-

nostic variables (from Section 3.2) in a hierarchical manner as follows. The first
variable v1 is defined as 1 if the amount and volume of calcifications is ‘‘pro-

cancer’’, and 0 if it is ‘‘contra-cancer’’. In reality, this variable was inferred

(through queries to the radiologist) as the following monotone Boolean

function:

v1ðx1; x2; x3Þ ¼ x2 _ x1x3:

Here, the extra variables are defined as follows:

x1 ¼ 1 if the number of calcifications/cm2 is ‘‘large’’, 0 if ‘‘small’’,

x2 ¼ 1 if the volume of calcifications (cm3) is ‘‘small’’, 0 if ‘‘large’’ and

x3 ¼ 1 if the total number of calcifications is ‘‘large’’, 0 if ‘‘small’’.

The second variable v2 is defined as 1 if the shape and density of calcifications

is ‘‘pro-cancer’’, and 0 if it is ‘‘contra-cancer’’. In reality, this variable was

inferred (through queries to the radiologist) as the following monotone Bool-

ean function:

v2ðx4; x5; x6; x7; x8Þ ¼ x4 _ x5 _ x6x7x8:

Here, the extra variables are defined as follows:

x4 ¼ 1 if the irregularity in the shape of individual calcifications is ‘‘marked’’, 0

if ‘‘mild’’,

x5 ¼ 1 if the variation in the shape of calcifications is ‘‘marked’’, 0 if ‘‘mild’’,
x6 ¼ 1 if the variation in the size of calcifications is ‘‘marked’’, 0 if ‘‘mild’’,

x7 ¼ 1 if the variation in the density of calcifications is ‘‘marked’’, 0 if ‘‘mild’’,

and

x8 ¼ 1 if the density of calcifications is ‘‘marked’’, 0 if ‘‘mild’’.

In general, one can construct a hierarchy of the sets of variables, where each

set of variables corresponds to an independent inference problem. Fig. 8 shows

this hierarchy for the breast cancer diagnostic variables. The upper level

consists of the set fv1; v2; v3; v4; v5g which is linked to the sets of variables
fx1; x2; x3g and fx4; x5; x6; x7; x8g at the lower level. Here, the variables v1 and v2
have to be defined before the inference problem defined on the set variables

V.I. Torvik, E. Triantaphyllou / Information Sciences 151 (2003) 171–200 189

fv1; v2; v3; v4; v5g can begin. In general, the inference problems at the lower level

have to be completed before the inference problems at the upper levels can

begin.

The breast cancer inference problem is defined on the set of Boolean vari-

ables fx1; x2; x3; x4; x5; x6; x7; x8; v3; v4; v5; fig. This problem includes a total of

212 ¼ 4096 vectors to choose from. However, it can be approached hierarchi-

cally, as three independent problems defined on the sets fx1; x2; x3g, fx4; x5;
x6; x7; x8g, and fv1; v2; v3; v4; v5; fig, respectively. These problems include a total
of 23 þ 25 þ 26 ¼ 104 possible vectors to choose from. The hierarchical ap-

proach to this problem reduces the number of possible vectors to choose from

by a factor of 4096/104� 39.4. Please notice that a single monotone Boolean

function is to be inferred for each of the sets fx1; x2; x3g, and fx4; x5; x6; x7; x8g.
This corresponds to the single function inference problem defined on the sets

f0; 1g3 and f0; 1g5, respectively. In contrast, a pair of nested monotone

Boolean functions defined on the set fv1; v2; v3; v4; v5g are to be sequentially

inferred. This corresponds to Problem #1 and includes the query domain
f0; 1g6.

Similar hierarchies can be constructed for the other applications described in

this paper. As an example consider the college acceptance policy application

described in Section 3.6. The variable corresponding to the GRE score may be

defined in terms of the individual verbal, quantitative and analytical scores.

That is, the variable v1 may be defined as a monotone Boolean function defined

on the following variables:

x1 ¼ 1 for a high verbal GRE score, 0 otherwise,
x2 ¼ 1 for a high quantitative GRE score, 0 otherwise and

x3 ¼ 1 for a high analytical GRE score, 0 otherwise.

For example, a quantitative score of 700 or higher (out of 800) may be

considered as a high score, implying that the variable x2 is equal to 1.

Similar decompositions can be created for the variables v2; v3 and v4, as
follows. The variable v2 defined in terms of the recommendations may be a

monotone Boolean function defined on the following variables:

x4 ¼ 1 if highly motivated, 0 otherwise,
x5 ¼ 1 if creative, 0 otherwise and

x6 ¼ 1 if bright/smart, 0 otherwise.

Fig. 8. Hierarchical decomposition of the variables for the breast cancer diagnosis application.

190 V.I. Torvik, E. Triantaphyllou / Information Sciences 151 (2003) 171–200

For example, if the people who wrote recommendations refer to the student

as highly motivated, then the variable x4 is equal to 1. The variable v3 defined in

terms of the essay may be a monotone Boolean function defined on the fol-

lowing variables:
x7 ¼ 1 for good writing skills, 0 otherwise,

x8 ¼ 1 if the interests match the college program, 0 otherwise and

x9 ¼ 1 for a good vision, 0 otherwise.

The variable v4 defined in terms of the GPA may be a function defined on

the following variables:

x10 ¼ 1 for a high science GPA, 0 otherwise,

x11 ¼ 1 for a high arts GPA, 0 otherwise and

x12 ¼ 1 for a high language GPA, 0 otherwise.
Here, the variable x10 can be further decomposed into the following variables:

y1 ¼ 1 for a high applied math GPA, 0 otherwise,

y2 ¼ 1 for a high theoretical math GPA, 0 otherwise and

y3 ¼ 1 for a high physics or chemistry GPA, 0 otherwise.

Notice that the monotonicity assumption holds for each of the subsets of

variables. For example, a high applied math GPA is more likely to result in a

high GPA, than a low applied math GPA. Therefore, a high applied math GPA is

more likely to result in acceptance than a low math GPA, since a high GPA is
more likely to result in acceptance.

Fig. 9 shows the hierarchical decomposition of these variables. The inference

problem defined on the set of Boolean variables fx1; x2; x3; x4; x5; x6; x7; x8; x9; y1;
y2; y3; x11; x12; fig consists of 215 ¼ 32,768 possible vectors to choose from.

Fortunately, it can be approached hierarchically, as six independent problems.

Five are in the form of the single function inference problem defined on the set

f0; 1g3, and one is in the form of Problem #3 with the query domain f0; 1g5.
Combined, these sets consist of 5� 23 þ 25 ¼ 72 vectors to choose from. The
hierarchical approach to this problem reduces the number of possible vectors

to choose from by a factor of 32,768=72 � 455.

Fig. 9. Hierarchical decomposition of the variables for the college acceptance policy application.

V.I. Torvik, E. Triantaphyllou / Information Sciences 151 (2003) 171–200 191

As another illustrative example consider the record linkage application de-

scribed in Section 3.4. Databases often contain errors. For example, the last

name McGinniss may correspond to a person with the last name McGuinness.

The variable v2 is defined as 1 if a pair of last names are the same, and 0
otherwise. Hierarchical decomposition allows for similar last names to be

matched, even when they are not an exact match. For example, the variable v2
can be defined in terms of the following monotone Boolean function:

v2ðx1; x2Þ ¼ x1x2;

where the variables are given by:
x1 ¼ 1 if the last names are unique, 0 otherwise and

x2 ¼ 1 if there is an agreement in a large number of the characters, 0 other-

wise.

For example, the last names McGinniss and McGuinness may result in

x1 ¼ 1 and x2 ¼ 1, for which v3 ¼ 1. Notice here that the monotonicity as-

sumption holds since the more unique (i.e., rarer) a last name is and the greater

agreements in the number of characters, the more likely the last names are to

be the same.
It should also be noted that for any of the inference problems considered in

this paper, it is a strict requirement that function(s) at the uppermost level is

(are) defined on a set of Boolean variables. Therefore, each set of variables at

the lower level(s) has to correspond to a single Boolean function. Otherwise,

one or more of the variables at higher levels will not be Boolean. As a con-

sequence, a single two-valued oracle must be used for each of the inference

problem(s) at the lower level(s) in Problems #1, #2 and #3.

In the breast cancer application it seems reasonable to use the radiologist as
the oracle when inferring the functions at the lower level. In the college ac-

ceptance policy, it seems reasonable to consider the lenient and the strict

professor together as a single oracle for the inference problems at the lower

levels. That is, each query is answered with a Boolean value that is in agree-

ment with both professors. For the record linkage application, the database

administrator is the sole oracle who should provide Boolean answers in the

inference problems at the lower level(s).

The reduction in the query domain is not the only benefit of the hierarchical
decomposition of the inference problems. For example, a tumor with charac-

teristics described by the 11 element vector ðx1x2x3x4x5x6x7x8v3v4v5Þmay be hard

for a radiologist to evaluate. In contrast, the queries for the three indepen-

dent inference problems are of the much simpler forms ðx1x2x3Þ, ðx4x5x6x7x8Þ
and ðv1v2v3v4v5Þ. A college applicant given by the 14 element vector

ðx1x2x3x4x5x6x7x8x9y1y2y3x11x12Þ may be hard for the professors to evaluate. In

contrast, the queries for the six independent inference problems are of the

much simpler forms ðy1y2y3Þ, ðx1x2x3Þ, ðx4x5x6Þ, ðx7x8x9Þ, ðx10x11x12Þ and
ðv1v2v3v4Þ.

192 V.I. Torvik, E. Triantaphyllou / Information Sciences 151 (2003) 171–200

3.8. Randomly generating a pair of nested monotone Boolean functions

The previous sections showed the applicability of the nested monotone

Boolean function inference and demonstrated how the various selection criteria
can be used in practice. In this section, a framework for further analyzing the

efficiency of this approach is developed. As discussed in [20], computing the

exact average number of queries QðnÞ and identifying the corresponding op-

timal vertices for the single function problem become computationally bur-

densome for larger values of n. We therefore developed an algorithm for

randomly generating monotone Boolean functions and estimating the average

query complexity based on an unequal probability sampling framework. The

same algorithm will be used here for generating nested monotone Boolean
functions. The only difference is the manner in which the inclusion probabilities

are computed. A brief overview of the algorithm is presented next, and the

interested reader is referred to [20] for the details.

The algorithm creates the general Boolean function f by classifying f ðvÞ as 1
with probability pðvÞ, or 0 with probability 1� pðvÞ independently for all

vectors in f0; 1gn. The first target monotone Boolean function f1 is then defined

by the lower units of f , while the second target monotone Boolean function f2
is defined by the upper zeros of f . After the pair of nested functions have been
generated, the inclusion probability has to be computed. To that end, define the

two random monotone Boolean functions F1 and F2 by the output of a single

execution of the algorithm. Then, the inclusion probability for the pair of

functions ðf1; f2Þ is simply the product of the individual vector assignment

probabilities, excluding the vectors that lie in between the LU(f) and UZ(f),
given by S ¼ f0; 1gn � fw : w1 � w � w2;w1 2 LUðf Þ;w2 2 UZðf Þg. The in-

clusion probability is given by the following equation:

PrfF1 ¼ f1 _ F2 ¼ f2g ¼
Y

v2fw:f ðwÞ¼1;w2Sg
pðvÞ

Y

v2fw:f ðwÞ¼0;w2Sg
ð1� pðvÞÞ:

To generate the functions close to uniformly, a random 0 or 1 vector assign-

ment is performed according to the vector�s respective fraction of monotone

Boolean functions that classify it as 0 or 1. In [20] we developed the following

definition:

pðvÞ ¼ eaðn;kÞðk�n=2Þ

1þ eaðn;kÞðk�n=2Þ ; v 2 f0; 1gn and k ¼ jvj;

where

aðn; 0Þ ¼ lnðwðnÞ � 1Þ
n=2

and generalizing with the following approximation aðn;kÞ�aðmaxfn�k;kg;0Þ
for k¼1;2;...;n.

V.I. Torvik, E. Triantaphyllou / Information Sciences 151 (2003) 171–200 193

It should be noted that it may be necessary to work with the inclusion

probabilities on a logarithmic base as they get extremely small. For example,

Wð11Þ > 10144 using Korshunov�s asymptotic [11]. This procedure does not

result in complete uniformity, yet it is a step in this direction using independent
assignments. For small values of n (less than 7 or 8), this approximation is not

needed as the exact values are known.

4. Some results for inferring nested monotone Boolean functions

In [20] we developed the selection criterion min jK1 � K0j for the single

monotone Boolean function inference problem that was optimal for the chain

and the sawtooth posets of any size. This criterion was further observed to be

optimal for f0; 1gn when n6 4, and probably close to optimal for f0; 1gn when
n > 4. Since Problem #3 with n variables is equivalent to single monotone

Boolean function inference problem with nþ 1 variables, the following

relationship holds: Q3ðnÞ ¼ Qðnþ 1Þ. As a result, the selection criterion

min jK1 � K0j is optimal for Problem #3 with 3 or fewer variables and probably
close to optimal for 4 or more variables.

The different selection criteria described in Section 3 do not specify which

vector to select when there are ties. For the purpose of comparing the algo-

rithms on the same ground and without introducing another aspect of ran-

domness, ties were broken by selecting the first vector in the list of tied

vectors. The results in Figs. 10–12 are based on an exhaustive analysis (i.e., all

the monotone functions were generated) for n up to and including 4. For n
greater than 4, random samples of functions were generated as described in
Section 3.8. The number of pairs of nested monotone Boolean functions

generated were 2000 for n ¼ 5, 6, 7, and 200 for n ¼ 8, 9, 10, and 100 for

n ¼ 11 and 12. This is the maximum number of pairs of functions used in the

estimate, because the functions were generated with replacement. However,

since the likelihood of generating the same functions more than once is small

(especially for larger values of n) the effective sample size was generally close

to these maxima.

Fig. 10 shows the average number of queries for the three problems when
selection criteria are used. The Horvitz–Thompson [8] estimator was used to

compute the averages for n greater than 4. The average number of queries is

normalized by the maximum possible number of queries 2nþ1 so that the

magnitude of all the averages are not overshadowed by the large values ob-

tained for n equal to 12. As a consequence, two algorithms that result in

parallel curves in such a plot, have an exponential (in n) difference in the av-

erage number of queries. Also, the gap between the curves and the horizontal

line Average Number of Queries=2nþ1 ¼ 1 (not shown in the figure) can be
thought of as the benefit of the monotone and nestedness assumptions to-

194 V.I. Torvik, E. Triantaphyllou / Information Sciences 151 (2003) 171–200

gether. This is due to the fact that 2nþ1 is the number of required queries when

the underlying pair of functions are not necessarily nested nor monotone.

The lower curve corresponds to the unrestricted case, which performed the

fewest number of queries on the average. The selection criterion min jK1 � K0j
used for the unrestricted problem achieves the minimum average number of

queries for n up to 3. Its curve can therefore be thought of as a lower bound on

the average number of queries for n up to 3. This curve seems to approach

about 20% for nP 12, that is about 1600 queries out the maximum of

213 ¼ 8192 are performed for n ¼ 12. The middle curve corresponds to the

sequential case. The sequential queries are not as efficient as the unrestricted

queries, though they are very close for n ¼ 1, 2, 3 and 4. The upper curve

corresponds to the three-valued case, which is the least efficient of the three
types of oracles.

Fig. 11 further quantifies the increase in the average number of queries due

to the two restrictions on the oracles. As mentioned earlier, the sequential

oracles are not very restrictive for n ¼ 1, 2, 3 and 4, with the greatest increase in

average number of queries at about 1% occurring for n ¼ 3, and 0 for n ¼ 1, 2

and 4. For nP 5, the increase in query complexity due to sequential oracles

oscillates between two curves that increase with the number of variables. The

Fig. 10. Average query complexity of the selection criteria used for the poset f0; 1gn.

V.I. Torvik, E. Triantaphyllou / Information Sciences 151 (2003) 171–200 195

lower curve corresponds to the even number of variables and it levels off at

about 12% for nP 10. The upper curve correspond to the odd number of

variables and it levels off at about 33% for nP 7. That is, the increase in the

average number of queries due to the sequential restriction is between 12% and
33% for nP 7.

In contrast, the three-valued oracle is much more restrictive. The increase in

average number of queries due to the three-valued oracle, oscillates between

38% and 58%. The increases in the average number of queries for the sequential

and three-valued cases are dramatic. This is due to the fact that the average

number of queries increases exponentially with the number of variables.

Fig. 12 shows the reduction in the average number of queries due to the

nestedness assumption. If the nestedness property of the two functions defined
on f0; 1gn is ignored, the minimum total number of queries is on the average

2QðnÞ. The benefit from the nestedness assumption for Problem #2 is quanti-

fied by the ratio of Q3ðnÞ=2QðnÞ ¼ Q3ðnÞ=2Q3ðn� 1Þ. The values of Q3ðnÞ were
computed and shown for n ¼ 1; 2; . . . ; 12 in Fig. 10. Here, Q3ð0Þ ¼ 5=3 is used

to compute the ratio Q3ð1Þ=2Q3ð0Þ. This reduction increases with the number

Fig. 11. Increase in average query complexities of the selection criteria on the poset f0; 1gn due to
restricted access to the oracles.

196 V.I. Torvik, E. Triantaphyllou / Information Sciences 151 (2003) 171–200

of variables. It starts out at 20% for n ¼ 1, and lies between 2% and 11% for

n > 7.

5. Concluding remarks

This study is focused on the extension of the single monotone Boolean

function inference problem to the inference of a pair of nested monotone

Boolean functions. The benefits of this research are many-fold.

First, it shows how the optimal and selection criterion approach to mini-

mizing the average query complexity is extended to three different inference

scenarios pertaining to a pair of nested monotone Boolean functions. The se-

lection criteria seem to be good choices for the nested inference problem. They
are optimal for n ¼ 1, 2, 3 and are probably very close to optimal for n greater

than 3.

Second, it demonstrates how the nested monotone Boolean function model

often is sufficient (i.e., a more complex model is not necessary) and necessary

(i.e., simpler models are not sufficient) for a wide variety of real world appli-

cations. A simpler model, such as a single monotone Boolean function, will at

best provide a poor approximation of the phenomenon under study. At worst,

it will be unable to model the phenomenon. A more complex model, such as
two independent monotone Boolean functions, will at the very least, result in

Fig. 12. Improvement in the average query complexity on the poset f0; 1gndue to the nestedness

assumption.

V.I. Torvik, E. Triantaphyllou / Information Sciences 151 (2003) 171–200 197

an increased query complexity. In addition, the inferred functions may lead to

conflicting knowledge and are more likely to contain errors.

Third, it quantifies the reduction in average query complexity due to the

nestedness assumption. The benefits of guided inference of a single monotone
Boolean function using the selection criterion have been well documented in

the past. The additional improvement due to the nestedness assumption is a

few percent. However, the average query complexity on the poset f0; 1gn is

exponential in n, which makes a few percent reduction a dramatic improve-

ment.

Fourth, it compares the efficiency of the three major types of oracles. The

three-valued oracle provides the most significant restriction on the oracles. It

causes up to 58% increase in the average number of queries. It is interesting to
observe that the sequential oracles are just as efficient as the unrestricted or-

acles when the number of variables is less than five. This implies that the pair of

nested monotone Boolean functions defined on these posets can be inferred

sequentially without losing optimality for small problems.

The objective of minimizing the average query complexity based on the

monotonicity and the nestedness assumptions is appropriate in a wide variety

of real world applications. In some applications, additional properties may be

known about the underlying function. In this case another objective may be
more appropriate. For example, it may be that the application limits the

number of lower units, shifting the focus of the optimal vertices from the

vertical center to the vertical edge of the poset. In other cases, the cost of

querying the first oracle may be less than, yet of similar magnitude as, the cost

of querying the second oracle. Then, the first few queries should be directed at

the first oracle. After a few queries it may be cost beneficial to also query the

second oracle. It would be interesting to see how dialogue with the oracles

change as the assumptions used in this paper are modified.
In this paper we focused on the query domain f0; 1gn. However, the query

selection criterion approach to learning monotone Boolean functions is ap-

plicable in the much more general monotone setting: V ! F , where the sets

V � Rn and F � Rr are both finite. The monotone mapping V ! F , where the
set V � Rn is infinite and the set F � Rr is finite, forms another intriguing

problem. It is well known that binary search is optimal when the query domain

V is a bounded subset of the real line and F ¼ f0; 1g. However, when the set

V is multidimensional and infinite (e.g., V ¼ ½a; b�2), pinpointing the optimal
queries is a much more complex problem. The selection criterion min jK1 � K0j
can be modified to accommodate this case also. Let U denote the unclassified

set (i.e., � V) and let the parameters K0ðvÞ and K1ðvÞ now denote the size of the

subsets fw 2 U : w � vg and fw 2 U : v � wg, respectively. For example, KzðvÞ
is measured in terms of length, area, volume, etc. when n ¼ 1, 2, 3, etc., re-

spectively. The selection criterion min jK1 � K0j is then optimal for n ¼ 1. How

well this criterion performs when n > 1, is an open question.

198 V.I. Torvik, E. Triantaphyllou / Information Sciences 151 (2003) 171–200

Acknowledgement

The authors gratefully acknowledge the support from the Office of Naval

Research (ONR) Grant N00014-97-1-0632.

References

[1] A. Ben-David, Automatic generation of symbolic multiattribute ordinal knowledge-based

DSSs: methodology and applications, Decision Sciences 23 (6) (1992) 1357–1372.

[2] D.A. Bloch, B.W. Silverman, Monotone discriminant functions and their applications in

rheumatology, Journal of the American Statistical Association 92 (437) (1997) 144–153.

[3] E. Boros, P.L. Hammer, J.N. Hooker, Predicting cause–effect relationships from incomplete

discrete observations, SIAM Journal on Discrete Mathematics 7 (4) (1994) 531–543.

[4] E. Boros, P.L. Hammer, T. Ibaraki, K. Makino, Polynomial-time recognition of 2-monotonic

positive Boolean functions given by an oracle, SIAM Journal on Computing 26 (1) (1997)

93–109.

[5] I.P. Fellegi, A.B. Sunter, A Theory for Record Linkage, Journal of the American Statistical

Association 64 (1969) 1183–1210.

[6] D.N. Gainanov, On one criterion of the optimality of an algorithm for evaluating monotonic

boolean functions, USSR Computational Mathematics and Mathematical Physics 24 (4)

(1984) 176–181.

[7] G. Hansel, Sur le nombre des fonctions Bool�eeennes monotones de n variables, C. R. Acad. Sc.

Paris 262 (1966) 1088–1090 (in French).

[8] D.G. Horvitz, D.J. Thompson, A generalization of sampling without replacement from a finite

universe, Journal of the American Statistical Association 47 (1952) 663–685.

[9] D.H. Judson, On the inference of semi-coherent structures from data, A Master�s Thesis,

University of Nevada, Reno, NV, USA, 1999.

[10] D.H. Judson, A partial order approach to record linkage, Federal Committee on Statistical

Methodology Conference, Arlington, VA, USA, 14–16 November, 2001.

[11] A.D. Korshunov, On the number of monotone Boolean functions, Problemy Kibernetiki 38

(1981) 5–108 (in Russian).

[12] B. Kovalerchuk, E. Triantaphyllou, E. Vityaev, Monotone Boolean function learning

techniques integrated with user interaction, Proceedings of the Workshop Learning from

Examples vs. Programming by Demonstration, 12th International Conference on Machine

Learning, Lake Tahoa, CA, 1995, pp. 41–48.

[13] B. Kovalerchuk, E. Triantaphyllou, A.S. Deshpande, Interactive learning of monotone

Boolean functions, Information Sciences 94 (1996) 87–118.

[14] B. Kovalerchuk, E. Triantaphyllou, J.F. Ruiz, V.I. Torvik, E. Vitayev, The reliability issue of

computer-aided breast cancer diagnosis, Computers and Biomedical Research 33 (2000)

296–313.

[15] B. Kovalerchuk, E. Vityaev, Data Mining in Finance, Kluwer Academic Publishers, Boston,

MA, 2000.

[16] K. Makino, T. Ibaraki, A fast and simple algorithm for identifying 2-monotonic positive

Boolean functions, in: Proceedings of ISAACS�95, Algorithms and Computation, Springer-

Verlag, Berlin, Germany, 1995, pp. 291–300.

[17] I. Shmulevich, Properties and applications of monotone Boolean functions and stack filters, A

Ph.D. Dissertation, Purdue University, West Lafayette, IN, USA, 1997.

[18] N.A. Sokolov, On the optimal evaluation of monotonic Boolean functions, USSR Compu-

tational Mathematics and Mathematical Physics 22 (2) (1982) 207–220.

V.I. Torvik, E. Triantaphyllou / Information Sciences 151 (2003) 171–200 199

[19] V.I. Torvik, Knowledge discovery and data mining: a guided approach based on monotone

Boolean functions, Ph.D. Dissertation, Louisiana State University, Baton Rouge, LA, USA,

2002.

[20] V.I. Torvik, E. Triantaphyllou, Minimizing the average query complexity of learning

monotone Boolean functions, INFORMS Journal on Computing 14 (2) (2002) 144–174.

[21] V.I. Torvik, E. Triantaphyllou, Guided inference of stochastic monotone Boolean functions,

Working paper, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL,

USA, 2003.

[22] L.G. Valiant, A theory of the learnable, Communications of the ACM 27 (11) (1984) 1134–

1142.

[23] W. Winkler, Matching and record linkage, in: B.G. Cox et al. (Eds.), Business Survey

Methods, John Wiley & Sons, New York, NY, 1995.

200 V.I. Torvik, E. Triantaphyllou / Information Sciences 151 (2003) 171–200

	Guided inference of nested monotone Boolean functions
	Introduction
	Background information
	Some properties of monotone Boolean functions
	Guided inference

	The three key inference problems and some applications
	Problem # 1--sequentially inferring nested functions
	An application of Problem #1 to breast cancer diagnosis
	Problem #2--inferring nested functions from a single three-valued oracle
	An application of Problem #2 to record linkage in databases
	Problem #3--inferring nested functions from two unrestricted oracles
	An application of Problem #3 to college applicant evaluations
	Hierarchical decomposition of variables
	Randomly generating a pair of nested monotone Boolean functions

	Some results for inferring nested monotone Boolean functions
	Concluding remarks
	Acknowledgements
	References

