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ABSTRACT

Many researchers have long observed some cases in which certain ranking irregularities can occur when the
original analytic hierarchy process (AHP), or some of its variants, are used. This paper presents two new categories
of ranking irregularities which defy common intuition. These ranking irregularities occur when one decomposes a
decision problem into a set of smaller problems each defined on two alternatives and the same criteria as the
original problem. These irregularities are possible when the original AHP, or some of its additive variants, are
used. Computational experiments on random test problems and an examination of some real-life case studies
suggest that these ranking irregularities are dramatically likely to occur. This paper also proves that these ranking
irregularities are not possible when a multiplicative variant of the AHP is used. Copyright © 2001 John Wiley &
Sons, Ltd.

KEY WORDS: multi-criteria decision making; analytic hierarchy process (AHP); ranking reversals; ideal mode
AHP; weighted product model; multiplicative AHP

1. BACKGROUND INFORMATION

The analytic hierarchy process (AHP) is a multi-
criteria decision making (MCDM) method and
was developed by Saaty (1980, 1994). The impor-
tance of the AHP and its variants is best illus-
trated in the more than 1000 references cited
in Saaty (1994), in Special Issues (e.g. Socio-
Economic Planning Sciences 10(6), 1986; Mathe-
matical Modelling 9(3–5), 1987; European Journal
of Operational Research 48(1), 1990; and Mathe-
matical and Computer Modelling 17(4/5), 1993),
the ISAHP symposia, and the development of the
Expert Choice software (www.expertchoice.com).

However, from the early days it was observed
that certain ranking irregularities may occur.
First, Belton and Gear (1983) noticed that when
copies (or near copies) of existing alternatives are
introduced in a decision-making problem, then it
is possible for the AHP to change the ranking of
the alternatives. They attributed this phenomenon
to the fact that in the AHP the values of relative

performance of the alternatives in terms of each
decision criterion in the decision matrix are nor-
malized so they add up to 1.00. They proposed
that these values be normalized by dividing them
by the largest entry of each column of the decision
matrix. When this modification is followed, then
the previous type of ranking reversal does not
occur. In this paper this variant of the AHP will
be called the revised AHP. Later, Saaty accepted
the previous variant and now it is also called the
ideal mode AHP. According to Belton (1986) and
Belton and Gear (1997) a key issue for the AHP
ranking reversals is the interpretation of the crite-
ria weights. Besides the revised AHP, other au-
thors also introduced other variants of the
original AHP (see, for instance, Lootsma, 1991,
1993). However, the AHP and some of its vari-
ants are considered by many as the most reliable
MCDM method.

The fact that rank reversals also occur in the
AHP when near copies are considered, has also
been studied by Dyer and Ravinder (1983) and
Dyer and Wendell (1985). Saaty (1983, 1987) pro-
vided some axioms and guidelines on how close a
near copy can be to an original alternative with-
out causing a rank reversal. He suggested that the
decision maker has to eliminate alternatives from
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consideration that score within 10% of another
alternative. This recommendation was later
sharply criticized by Dyer (1990a,b). Clearly,
these problems are still controversial in decision
analysis. Some additional discussions on these
truly important issues can be found in Trianta-
phyllou and Mann (1989, 1994a,b), Harker and
Vargas (1990), Saaty (1990), Winkler (1990) and
Buede and Maxwell (1995).

The structure of the typical MCDM problem
considered in this paper consists of a number, say
m, of alternatives and a number, say n, of decision
criteria. Each alternative can be evaluated in
terms of the decision criteria and the relative
importance (or weight) of each criterion can be
estimated as well. Let aij (i=1, 2, 3, . . . m, and
j=1, 2, 3, . . . n) denote the performance value of
the i-th alternative (i.e. Ai) in terms of the j-th
criterion (i.e. Cj). Also, denote as wj the weight of
criterion Cj. That is, the aij and wj are the known
values of this problem and form, what is called in
decision analysis, a decision matrix.

This paper is organized as follows. The next
section describes the first case of ranking contra-
diction between the rankings derived when alter-
natives are compared two at a time and also
simultaneously. The third section describes the
second case of ranking irregularity. Now the
rankings are derived when alternatives are com-
pared two at a time, and it is shown that some-
times they do not follow the transitivity property.
The fourth and fifth sections present computa-
tional results on randomly generated test prob-
lems and also in terms of 22 real life case-studies
taken from the literature. A multiplicative variant
of the AHP is studied in the sixth section. It is
also proved that this variant of the AHP does not
suffer of the two new cases of ranking irregulari-
ties reported here. Finally, the paper ends with
some concluding remarks.

2. CASE 1: RANKING IRREGULARITIES
WHEN ALL ALTERNATIVES ARE

COMPARED TWO AT A TIME AND ALSO
SIMULTANEOUSLY

The main ideas in this section are best described
in terms of two illustrative examples. The first
example deals with the original AHP and it is
presented next.

Example 1: the case of the original AHP
Suppose that the following is the decision matrix
and weights of importance of a simple problem
with three criteria and the three alternatives A1,
A2, and A3:

Alternative Criteria Combined
priorities

C1 C2 C3

(2/7 2/7 3/7)

A1 9/19 0.3052/12 2/7
A2 5/19 0.3441/12 4/7

0.351A3 5/19 9/12 1/7

The above data are assumed to have been derived
from perfectly consistent judgment matrices with
pairwise comparisons. This was assumed in order
to block out any effects due to inconsistent pair-
wise comparisons among the alternatives in terms
of each one of the decision criteria. When the
original AHP is applied to the above decision
matrix, then it can be easily seen that the three
alternatives have the priority values shown under
the ‘combined priorities’ vector. Therefore, in the
maximization case, the above combined priorities
indicate that the three alternatives are ranked as
follows: A3\A2\A1 (where the symbol ‘\ ’ in-
dicates ‘is better than ’).

In the following paragraphs the three alterna-
tives are compared in a pairwise fashion. At first,
it is assumed that the criteria weights remain
the same as before. Then, a set of smaller prob-
lems are formed by considering two alternatives
at a time. In general, there are m(m−1)/2
such smaller problems (where m is the number
of alternatives). These pairwise comparisons
of the alternatives should not be confused with
the traditional AHP pairwise comparisons of
the alternatives. The traditional pairwise com-
parisons examine pairs of alternatives in terms
of a single criterion at a time. The pairwise com-
parisons described here, refer to small problems
that are comprised of two alternatives and the
original criteria with the same weights of impor-
tance.

The first such sub-problem (which considers the
pair of alternatives A2 and A3) is described by the
following decision matrix:

Copyright © 2001 John Wiley & Sons, Ltd. J. Multi-Crit. Decis. Anal. 10: 11–25 (2001)
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Problem 1

Alternative DerivedCombinedCriteria
rankingpriorities

C1 C2 C3

3/7)(2/7 2/7

4/5 A2\A30.51431/10A2 5/10
0.4857A3 5/10 9/10 1/5

The columns of the above matrix have been nor-
malized again, in order to be consistent with the
basic requirement of the original AHP (which
requires the columns to add up to 1.00).

Similarly, the second and third such sub-
problem (which consider the pair of alternatives
(A1 and A2) and (A1 and A3), respectively) are as
follows:

Problem 2

DerivedAlternative Criteria Combined
priorities ranking

C3C2C1

(2/7 2/7 3/7)

A1\A20.5170A1 9/14 2/3 2/6
1/3 4/6 0.4830A2 5/14

Problem 3

CombinedCriteriaAlternative Derived
rankingpriorities

C3C2C1

(2/7 2/7 3/7)

0.52132/3 A1\A32/11A1 9/14
0.4787A3 5/14 9/11 1/3

The previous pairwise results, when are taken
together, indicate that the ranking of the three
alternatives must be: A1\A2\A3. That is, this
ranking is different of the one derived when all
the alternatives were considered simultaneously
(namely: A3\A2\A1). As a matter of fact, the

second ranking is the reverse of the first one.
Therefore, the questions which naturally are
raised at this point are: ‘Which one is the best
ranking?’ and ‘What are the correct combined pri-
orities of the three alternatives?’

Before we proceed to answering these ques-
tions, we present some further elaborations on
this illustrative example. Suppose that the com-
bined priorities of the three alternatives are de-
noted as P1, P2, and P3, respectively. In the light
of this notation, the previous three smaller prob-
lems imply that:

P2/P3:0.5143/0.4857=1.058884

P1/P2:0.5170/0.4830=1.070393

P1/P3:0.5213/0.4787=1.088991

In the above relations the approximation symbol
‘: ’ is used instead of equality. This is necessary
because if these were equalities, then from the
obvious relation: (P1/P2)× (P2/P3)=P1/P3, then
the following relation would also had to be true:
(1.070393)× (1.058884)=1.088911. However, this
is not true because the left hand side product is
equal to 1.133422. That is, the pairwise com-
parisons are not always consistent among them-
selves. These pairwise comparisons lead to the
introduction of the following pairwise comparison
matrix:

CombinedAlternatives A1 A2 A3

priorities

A1 1 1.070393 1.088991 0.3505205
A2 1/1.070393 0.33186421 1.058884

0.3176152A3 1/1.088991 1/1.058884 1

The above matrix with the pairwise comparisons
of the alternatives should not be confused with
the well known judgment matrices (i.e. the recip-
rocal matrices formed with the individual pairwise
comparisons elicited in terms of one criterion at a
time) produced during the data elicitation process
of the AHP. However, this matrix possesses ex-
actly the same mathematical properties as the
traditional judgment matrices. In this matrix the
alternatives are compared two at a time in terms
of all the three criteria combined. This matrix was
used to derive the combined priorities depicted
next to it.

Copyright © 2001 John Wiley & Sons, Ltd. J. Multi-Crit. Decis. Anal. 10: 11–25 (2001)
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These combined priorities were derived from
the previous pairwise comparisons by applying
the Saaty approximation of estimating the right
principal eigenvector on the previous reciprocal
matrix. This approximation is done by multiply-
ing the elements in each row and then by taking
the m-th root (i.e. the third root in this example)
(Saaty, 1980). The values thus obtained are then
normalized and the ‘combined priorities ’ vector is
obtained. For a critical evaluation of the eigenvec-
tor approach and some alternative approaches in
processing pairwise matrices the reader may want
to refer to Triantaphyllou and Mann (1990,
1994b) and Triantaphyllou et al. (1990).

At this point it becomes apparent that the
ranking of the three alternatives implied by the
last combined priorities is: A1\A2\A3. Obvi-
ously, this ranking is identical to the ranking
obtained from the combination of the solutions of
the earlier three sub-problems. Again, this rank-
ing is different (reverse) than the ranking obtained
when all the alternatives are considered in the
traditional manner (as depicted at the beginning
of this example). 

A natural thought at this point is whether one
should always analyse an AHP problem as in the
previous example. The answer to this question is
negative. The reason is that sometimes the rank-
ing obtained from the pairwise matrix may be
contradictory to the ranking implied by the indi-
vidual pairwise comparisons. This situation is fur-
ther demonstrated in the next numerical example.

Example 2: the case of ideal mode AHP
Similarly to the previous example, the case of the
ideal mode AHP is best described in terms of an
example. Suppose that the following is the deci-
sion matrix of a simple problem with three criteria
and the three alternatives A1, A2, and A3 (now the
data have been divided by the largest entry in
each column):

Alternative Criteria Combined
priorities

C3C1 C2

9/22)(4/22 9/22

2/8 0.5398A1 9/9 5/8
5/8 0.6850A2 1/9 8/8

2/8 8/8A3 0.67308/9

As earlier, the above data are also assumed to
have been derived from perfectly consistent judg-
ment matrices with pairwise comparisons. When
the ideal mode AHP is applied to the above
decision matrix, then it can be easily seen that the
three alternatives have the priority values shown
under the ‘combined priorities ’ vector. Therefore,
in the maximization case, the three alternatives
are ranked as follows: A2\A3\A1.

Working as in the first example, this problem
can be decomposed into three sub-problems, each
one of which involves two alternatives and all the
criteria. These problems, and the corresponding
results, are:

Problem 1

Alternative Criteria Combined Derived
priorities ranking

C1 C2 C3

(4/22 9/22 9/22)

A2 1/8 8/8 A3\A25/8 0.687500
A3 8/8 2/8 8/8 0.693182

Problem 2

Alternative Criteria Combined Derived
priorities ranking

C1 C2 C3

(4/22 9/22 9/22)

A1 9/9 5/8 2/5 0.601136 A2\A1

A2 1/9 8/8 5/5 0.838384

Problem 3

Alternative Criteria Combined Derived
priorities ranking

C1 C2 C3

(4/22 9/22 9/22)

A1 9/9 5/5 2/8 0.693181 A3\A1

A3 8/9 2/5 8/8 0.734343

Copyright © 2001 John Wiley & Sons, Ltd. J. Multi-Crit. Decis. Anal. 10: 11–25 (2001)
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The previous results, when are taken together,
indicate that the ranking of the three alterna-
tives must be: A3\A2\A1. This ranking is dif-
ferent of the one derived when all the
alternatives were considered simultaneously
(namely: A2\A3\A1).

As in the previous illustrative example, ob-
serve that the following relations must be true:

P2/P3:0.687500/0.693182=0.991803

P1/P2:0.601136/0.838384=0.717018

P1/P3:0.693182/0.734343=0.943948

These pairwise comparisons lead to the intro-
duction of the following pairwise comparison
matrix:

CombinedA3Alternatives A1 A2

priorities

0.29126570.717018 0.9439481A1

1 0.991803A2 1/0.717018 0.3696254
0.339108711/0.9918031/0.943948A3

The combined priority values (which now add
up to one) indicate that the ranking of the three
alternatives must be: A2\A3\A1. However,
when the pairwise comparisons in the previous
matrix are considered one at a time, then the
derived ranking is different. Namely, this rank-
ing is: A3\A2\A1. This ranking is (by defini-
tion) identical to the ranking derived from
solving the three smaller sub-problems and then
combining the partial solutions. That is, in this
case the ranking derived from the combined
pairwise matrix is different than the ranking
derived when the three smaller sub-problems are
considered. Clearly, this was not the case in Ex-
ample 1. 

Dyer (1990a) claimed that any ranking irregular-
ities will be eliminated if the final stage of the
AHP is modified as follows. His suggestion was
to subtract the smallest value in each vector in
the decision matrix and then divide by the
largest remaining element. However, as the fol-
lowing numerical example illustrates, ranking ir-
regularities are still possible to occur.

Example 3: the case of an AHP variant (Dyer,
1990a)
Consider the following problem with four crite-
ria and three alternatives. As before, the aij data
are real (non-normalized) numbers from the
continuous interval (1, 9).

Alternative Criteria

C1 C2 C4C3

(0.43 0.39)0.12 0.06

A1 5.106.78 7.19 3.28
A2 4.26 5.761.44 8.20
A3 8.145.52 3.99 7.26

When Dyer’s suggestion is applied on the previ-
ous matrix, the following decision matrix is
derived:

Alternative Criteria

C4C1 C2 C3

0.39)(0.43 0.12 0.06

A1 1.00 01.00 0
A2 0.220 0 1.00
A3 0.50 1.000.44 0.81

Then, the final priorities of the three alternatives
are: P1=0.550, P2=0.145, and P3=0.707.
Therefore, the suggested ranking of these alterna-
tives is: A3\A1\A2.

Next, suppose that the three alternatives are
examined two at a time (as in the previous exam-
ples). It can be easily verified that when the pair
A1 and A2 is considered and Dyer’s suggestion is
applied on this smaller problem (which now has
two alternatives and four decision criteria), the
derived ranking is: A1\A2. Similarly, the ranking
derived when the pair A2 and A3 is considered
is: A3\A2. Also, when the pair A1 and A3 is
considered, the ranking becomes: A1\A3. Thus,
the ranking derived when the alternatives are
considered two at a time is: A1\A3\A2. Obvi-
ously, this ranking is in contradiction with the one
derived when all the alternatives were considered
simultaneously (i.e. A3\A1\A2). Besides the

Copyright © 2001 John Wiley & Sons, Ltd. J. Multi-Crit. Decis. Anal. 10: 11–25 (2001)
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previous categories of ranking irregularities, a dif-
ferent type of ranking irregularity may occur and
it is discussed in the next section. 

3. CASE 2: RANKING IRREGULARITIES
WHEN THE ALTERNATIVES ARE

COMPARED TWO AT A TIME

The previous discussions clearly raise the issue
that when the original or ideal mode AHP are
used, then sometimes it may not be obvious
what is the correct ranking. Should one accept
the ranking derived when all the alternatives
and decision criteria are used? Or should one
accept the ranking derived from combining the
solutions of the smaller problems which consider
two alternatives at a time (and all the criteria
together)? When the matrix with the combined
pairwise comparisons is considered, then may
also be the case that one may derive a third
ranking which is different than the previous two
rankings. Next, it will be shown that the above
scenario is possible when the original or ideal
mode AHP are used.

One may argue here that when the decision
maker encounters a problematic situation as in
the previous scenarios, then he/she must be
more careful in accepting the final results. A
re-evaluation of the characteristics of the prob-
lem (especially if a new decision criterion is in-
troduced) may result to more robust data which
lead to less ambiguous conclusions. However, as
the three illustrative examples discussed in the
previous section demonstrate, it is possible to
reach contradictory results even when all the
pairwise comparisons (i.e. the ones which con-
sider pairs of alternatives in terms of a single
criterion) are perfectly consistent. Recall that
this was actually the case with the data in the
decision matrices in these examples. Therefore,
the first question to be answered is which is the
right ranking of the alternatives.

Deciding on which one is the right ranking
can be an open-ended question. One may argue
that the correct ranking is the one derived when
all the alternatives and decision criteria are con-
sidered simultaneously. However, one may also
claim that the solutions of the smaller problems
are more reliable because these involve simpler
(only two alternatives are considered at a time)

decision problems. If one accepts the premise
that simpler problems lead to more reliable solu-
tions, then the next statement to be accepted is
that the ranking obtained by combining the par-
tial rankings of the smaller problems is the most
reliable one.

Besides the last reason, there is a second ar-
gument why the ranking obtained from the
smaller problems might be more reliable than
the ranking obtained when all the alternatives
are considered simultaneously in terms of all the
criteria. In the past (see, for instance, Belton
and Gear, 1983; Triantaphyllou and Mann,
1989; Dyer 1990a,b), both the original and ideal
mode AHP have been sharply criticized because
their ranking of the alternatives may change
when new or copies of existing alternatives are
introduced in a decision problem. These obser-
vations formed the basis of many controversial
disputes in the scientific and practitioners com-
munities regarding the validity of the AHP
method.

When the decision maker accepts the ranking
derived by combining the solutions of the
smaller problems, then irregularities due to the
introduction of copies or near copies of existing
alternatives cannot occur. This is obviously true
because the ranking of the alternatives is based
on how they are ranked when they are con-
sidered two at the time. When new alternatives
are introduced, then the results of comparing
the existing alternatives among themselves
remain identical as before the introduction of
the new alternatives. Therefore, the relative
ranking of the old alternatives will never
change as a result of introducing additional alter-
natives.

However, it is possible that the previous se-
quence of smaller problems may still result in
some ranking abnormalities. More specifically,
when the original or the ideal mode AHP are
used for comparing two alternatives at the same
time, then it is possible to reach a new type of
ranking contradiction. This is best illustrated in
the following example.

Example 4: the case of the ideal mode AHP
Next we consider an illustrative problem with
four criteria and three alternatives. The aij data
are real (non-normalized) numbers from the
continuous interval [1, 9].

Copyright © 2001 John Wiley & Sons, Ltd. J. Multi-Crit. Decis. Anal. 10: 11–25 (2001)
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Alternative Criteria

C3 C4C2C1

0.05 0.27)(0.27 0.41

7.59 1.27A1 6.131.92
4.31 7.118.573.12A2

7.70 4.77 7.45 3.29A3

Suppose that one uses the ideal mode AHP.
When alternatives A1 and A2 are compared as in
the last two examples, then it is derived that:
A2\A1. Similarly, when alternatives A1 and A3

are compared, then it is derived that: A1\A3.
That is, these relations suggest that the ranking
of the three alternatives must be as follows:
A2\A1\A3. However, when the two alterna-
tives A3 and A2 are compared, then the derived
ranking is: A3\A2. That is, a logical contradic-
tion (i.e. failure to follow the transitivity prop-
erty in the derived rankings) is reached. A
similar phenomenon can be observed when
using the original AHP method. 

4. SOME COMPUTATIONAL RESULTS

The previous illustrative examples clearly
demonstrate that certain types of ranking irregu-
larities may occur when the AHP, or some of
its variants, are used. In order to gain a deeper
understanding on how frequently such irregulari-
ties may occur on random test problems, a com-
putational study was undertaken. The data were
random numbers from the interval [1, 9] (in or-
der to be compatible with the numerical proper-
ties of the Saaty scale). In these test problems
the number of alternatives was equal to the fol-
lowing ten different values: 3, 5, 7, . . . 21. Simi-
larly, the number of criteria was equal to
3, 5, 7, . . . 21. Thus, a total of 100 (=10×10)
different cases were examined with 10000 repli-
cations (in order to derive statistically significant
results) per each case. Each random problem
was solved using the original and ideal mode
AHP. The test problems were treated as the pre-
vious illustrative examples. Any ranking irregu-
larity was recorded. Figures 1–6 summarize
these results.

Figures 1 and 2 depict how often the indica-
tion of the best alternative was different when

all the alternatives were considered simulta-
neously and when they were considered in pairs
(i.e. similar to the analysis in Examples 1 and
2). Figure 1 refers to the use of the original
AHP, while Figure 2 to the use of the ideal
mode AHP. Different curves correspond to
problems with different numbers of alternatives.
As it can be seen from these figures, problems
with few alternatives had smaller contradiction
rates. The number of decision criteria in a prob-
lem seemed to play an insignificant role. Also,
these figures show similar contradiction rates for
the two versions of the AHP.

On the other hand, Figures 3 and 4 depict
contradictions in the ranking of any alternative.
Now the number of alternatives plays a decisive
role, while the number of decision criteria is not
as important. Moreover, the contradiction rates
are significantly more dramatic. For instance,
for problems with five alternatives, the contra-
diction rates are almost 50%. As before, there is
no much difference between the results obtained
when the original or ideal mode AHP was used.
As it was expected, the contradiction rates in
Figures 3 and 4 are much higher than those in
Figures 1 and 2. This was expected because the
cases of contradiction in the first two figures are
naturally included in the results of Figures 3
and 4.

Figures 5 and 6 present the contradiction
rates when the alternatives are compared two at
a time and cases of logical inconsistencies (i.e.
failure to satisfy the transitivity property) were
found (as in Example 4). The roles of the num-
ber of alternatives and number of decision crite-
ria are similar as before. However, now the
ideal mode AHP performs significantly worse
than the original AHP.

In all these results problems with less alterna-
tives yielded fewer ranking contradictions than
problems with more alternatives. This was ex-
pected because the number of pairs of alterna-
tives to be considered for a given case is directly
related to the number m of alternatives in the
problem (i.e. equal to m(m−1)/2). Thus, the
chances of finding a logical inconsistency in-
crease accordingly. As it can be seen from the
illustrative examples, the number of criteria did
not play a prime role. This is also evident in the
computational results by the almost horizontal
curves.

Copyright © 2001 John Wiley & Sons, Ltd. J. Multi-Crit. Decis. Anal. 10: 11–25 (2001)
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Figure 1. Contradiction rates on the indication of the
best alternative when alternatives are considered to-
gether and in pairs: the original AHP case.

Figure 2. Contradiction rates on the indication of the
best alternative when alternatives are considered to-
gether and in pairs: the ideal mode AHP case.

Figure 3. Contradiction rates on the indication of any
alternative when alternatives are considered together
and in pairs.

Figure 4. Contradiction rates on the indication of any
alternative when alternatives are considered together
and in pairs: the ideal mode AHP case.

Figure 5. Contradiction rates on the indication of any
alternative when alternatives are considered in pairs:
the original AHP case.

Figure 6. Contradiction rates on the indication of any
alternative when alternatives are considered in pairs:
the ideal mode AHP case.

Copyright © 2001 John Wiley & Sons, Ltd. J. Multi-Crit. Decis. Anal. 10: 11–25 (2001)
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5. RESULTS FROM SOME REAL-LIFE
CASE STUDIES

The previous empirical analyses revealed that the
ranking irregularities studied in this paper may
occur frequently in simulated problems. The
question which is raised at this point is whether
the same could be true with real-life problems.
In order to enhance our understanding in this
situation, a number of actual case studies were
considered. These cases were selected randomly
from the published literature. That is, no special
screening was performed. The only requirement
was to be able to extract the numerical data
needed to form a decision matrix. Next, the data
were processed as in the previous illustrative ex-
amples and any ranking irregularities were
recorded.

In all these 22 case studies the two types of
ranking irregularities described earlier were stud-
ied. The logical inconsistency abnormality (i.e.
the one that occurred in the data in example 4)
was not observed in any one of the 22 real-life
case studies examined. Recall that from Figures
1 and 2 this kind of abnormality occurred rather
seldomly (i.e. less that 20%) in the random test
problems. Therefore, it should not be surprising
that it was not detected in these test problems
(which were involving few criteria and alterna-
tives). The results are tabulated in Tables I and
II.

However, the ranking irregularity which oc-
curs when one compares the ranking derived
when all the alternatives are considered and
when alternatives are considered two at a time
occurs impressively often. Out of the 22 case
studies this ranking abnormality occurred 16
times (i.e. 73%) when the original AHP was used
and 17 times (i.e. 77%) when the ideal mode
AHP was used. Moreover, the number of inter-
nal contradictions (i.e. the number of pairs the
rankings were different) was often different when
one was applying the original or the ideal mode
AHP on the same problem (Tables I and II).

6. A MULTIPLICATIVE VERSION OF THE
AHP

The use of multiplicative formulas in deriving
the relative priorities in decision making is not
new (Lootsma, 1991, 1993). A pivotal develop-

ment is to use multiplicative formulations when
one aggregates the performance values aij with
the criteria weights wj. This is the core step in
the weighted product model (which is briefly re-
viewed in the following sub-section). It is inter-
esting to observe here that Barzilai and Lootsma
(1994) have proposed to use a multiplicative
variant of the AHP in order to model power
relations in group decision making. In this paper
we will use a similar approach for single deci-
sion-maker problems. Some other developments
related to the multiplicative AHP are described
in Lootsma (1993, 1999) and Ramanathan
(1997).

All the previous problematic situations are
caused by the required normalization (either by
dividing by the sum of the elements or by the
maximum value in a vector) and the use of an
additive function on the data of the decision ma-
trix. Absolute data cannot be used when the
decision criteria are defined on different units
(such as dollars, minutes, pounds, etc.). There-
fore, one must normalize the pertinent data one
way or another. Unfortunately, these normaliza-
tion steps and the use of additive functions may
lead to inconclusive and erroneous results as was
the case with the previous numerical examples.

As it was stated in the previous paragraph, if
the decision maker deals with qualitative data,
or with multiple units of measure, then he/she
must use some kind of relative data. That is, the
aij data must be normalized by either dividing by
the sum of the entries in that vector, or by the
maximum value, or by some other way. How-
ever, the use of an additive function can be eas-
ily avoided. This is the case, for instance, in the
weighted product model (WPM).

Under the WPM approach alternatives are
compared two at a time (Miller and Starr, 1969;
Chen and Hwang, 1992):

R
�AK

AL

�
= 5

n

j=1

�aKj

aLj

�Wj

(1)

If the above ratio is greater than or equal to
one, then (in the maximization case) the conclu-
sion is that alternative AK is better than or equal
to alternative AL. Obviously, the best alternative
A* is the one which is better than or at least
equal to all other alternatives. Note that the
WPM is very similar to the additive function
used in the AHP. The WPM is sometimes called
dimensionless analysis because its structure elimi-
nates any units of measure.
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6.1. Ranking consistency under the multiplicative
AHP
This sub-section demonstrates that when the
WPM procedure (i.e. formula (1)) is used in the
last step of the AHP (as it is also recommended in
the multiplicative version of the AHP in Barzilai
and Lootsma, 1994; p. 162), then the previous
ranking irregularities cannot occur. To see this
consider any three alternatives, say A1, A2 and A3.
Let this problem have n decision criteria. Next,
suppose that alternative A1 is more preferred than
alternative A2. That is, A1\A2. Then, according
to formula (1) the following relation must be true:

R(A1/A2)= 5
n

i=1

�a1i

a2i

�Wi

\1

U 5
n

i=1

(a1i)
Wi\5

n

i=1

(a2i)
Wi (2)

Similarly with above, now suppose that alterna-
tive A2 is more preferred than alternative A3. That
is, A2\A3. Then, according to formula (1) the
following relation must be true:

R(A2/A3)= 5
n

i=1

�a2i

a3i

�Wi

\1

U 5
n

i=1

(a2i)
Wi\5

n

i=1

(a3i)
Wi (3)

Relations (2) and (3), when they are combined,
yield:

5
n

i=1

(a1i)
Wi\5

n

i=1

(a3i)
Wi U 5

n

i=1

�a1i

a3i

�Wi

\1

UR(A1/A3)\1 UA1\A3 (4)

The above analysis demonstrates that if A1\A2,
and A2\A3, then under the proposed multiplica-
tive model, one always gets A1\A3. That is, the
transitivity property holds.

The above proof can easily be generalized to
demonstrate that the proposed multiplicative
AHP can never yield a ranking abnormality of the
form A1\A2\ ···\Ak\ ···\A1. The above con-
siderations, and the assumption that the compari-
son matrices are perfectly consistent, lead to the
proof of the following Theorem 1.

Theorem 1
Under the multiplicative AHP, the derived pair-
wise rankings always satisfy the transitivity
property.

In the original AHP, or in its variants which use
additive functions, the previous transitivity prop-

erty is not guaranteed. However, as the previous
analysis established, under the multiplicative
AHP, this kind of ranking consistency is always
preserved.

An alternative formulation of the main WPM
formula, given as (1), is to consider a single
alternative at a time. In this way the relative
priorities of the alternatives (and consecutively,
their ranking) can be derived. The relative prior-
ity, say Pi, of alternative Ai is derived by using the
following formula (5) (which is a variant of the
previous formula (1)):

Pi= 5
n

j=1

(aij)
wj, for i=1, 2, 3, . . . , m (5)

It is noticeable that the relative priority values,
derived by using the previous formula (5)), are
independent of the way the relative performance
values aij have been normalized (assuming that
they are different than zero). This is summarized
in theorem 2 (which can be easily proved) as
follows.

Theorem 2
When the priorities are derived according to for-
mula (5) and then are normalized, they remain
independent of the way the relative performance
values aij have been normalized.

The above analyses are further illustrated in terms
of a numerical example.

Example 5: an application of the multiplicative
AHP
Consider the data used in Example 4 (also pre-
sented below).

CriteriaAlternative

C1 C4C2 C3

(0.27 0.27)0.41 0.05

A1 1.92 7.59 1.27 6.13
A2 3.12 7.114.31 8.57

3.29A3 7.70 4.77 7.45

When the ideal mode AHP was applied, the rank-
ing derived when two alternatives were considered
at a time, had some internal contradictions. Next,
the multiplicative formula (1) is applied on these

Copyright © 2001 John Wiley & Sons, Ltd. J. Multi-Crit. Decis. Anal. 10: 11–25 (2001)
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data. The first pair to consider is alternatives A1

and A2. The corresponding calculations are:

R(A1/A2)=
�1.92

3.12
�0.27

×
�7.59

4.31
�0.41

×
�1.27

8.57
�0.05

×
�6.13

7.11
�0.27

=0.966B1.00

Therefore, these alternatives are ranked as fol-
lows: A2\A1. It can be observed here that the
data within the parentheses can be normalized in
any possible way, but the values of the ratios will
remain unchanged. Next, the pair A2 and A3 is
considered:

R(A2/A3)=
�3.12

7.70
�0.27

×
�4.31

4.77
�0.41

×
�8.57

7.45
�0.05

×
�7.11

3.29
�0.27

=0.932B1.00

Therefore, these alternatives are ranked as fol-
lows: A3\A2. From the last two rankings the
following ranking is derived for all three alterna-
tives: A3\A2\A1. Observe, that when the last
pair A1 and A3 is considered, then the derived
ranking is in agreement with the previous global
ranking of the three alternatives. The correspond-
ing calculations for the pair A1 and A3 are pre-
sented next:

R(A1/A3)=
�1.92

7.70
�0.27

×
�7.59

4.77
�0.41

×
�1.27

7.45
�0.05

×
�6.13

3.29
�0.27

=0.900B1.00

The above result could also had been obtained by
observing that:

R(A1/A3)=R(A1/A2)/A(A3/A2)

=R(A1/A2)/A(A2/A3)

=0.966×0.932=0.900B1

This was naturally expected because as it was
proved in the previous sub-section, all the ranking
irregularities studied in this paper are not possible
when the recommended multiplicative version of
the AHP is used. Obviously, this was not the case
in Example 4, where a ranking irregularity had
occurred (it is worth recalling here that the rank-

ing suggested at the beginning of Example 4 was:
A2\A1\A3).

Next, suppose that the relative performance
values of the previous three alternatives in terms
of the four decision criteria were available. That
is, the following decision matrix is assumed to be
known:

CriteriaAlternative

C4C1 C2 C3

(0.27 0.41 0.05 0.27)

A1 0.151 0.3710.455 0.073
0.430A2 0.245 0.259 0.496

A3 0.604 0.286 0.1990.431

When formula (5) is applied on the previous
decision matrix, the derived priority values (be-
fore normalization) are: P1=0.735, P2=0.742,
and P3=0.754. Therefore, the ranking of the
three alternatives is: A3\A2\A1, which is identi-
cal (as it should be) with the one found
earlier. 

7. CONCLUDING REMARKS

The present study, along with other studies on
ranking irregularities, reinforces a growing belief
among many decision analysts that ranking irreg-
ularities are unavoidable when the AHP is used.
This phenomenon seems to be an inherited diffi-
culty when one deals with criteria which are
defined on different units. This paper has
demonstrated, via some numerical examples, that
ranking abnormalities are possible even when the
data are perfectly known (and thus perfectly con-
sistent). Therefore, it can very well be the case
that the decision maker may never know the exact
ranking of the alternatives in a given multi-criteria
decision-making problem when the original AHP,
or its current additive variants, are used. An
extensive computational study and an examina-
tion of 22 real-life case studies randomly taken
from the open literature demonstrated that these
ranking abnormalities may occur dramatically
often.

The multiplicative variant of the AHP proposed
in (Lootsma, 1993, 1999), and (Barzilai and
Lootsma, 1994) is also advocated in this paper.

Copyright © 2001 John Wiley & Sons, Ltd. J. Multi-Crit. Decis. Anal. 10: 11–25 (2001)
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This is an adaptation of the well known weighted
sum model (WPM) (Miller and Starr, 1969; Chen
and Hwang, 1992) in the last step of the AHP, in
which the decision matrix is processed and the
final ranking of the alternatives is determined. In
this way, the two new cases of ranking irregulari-
ties studied in this paper are not possible. This has
been proven theoretically in this paper.

It should be emphasized at this point that the
fact that the proposed multiplicative AHP does
not possess any of the ranking irregularities stud-
ied in this paper does not necessarily guarantee
that this method is perfect (i.e. the rankings
derived are always the true ones). However, it is
obvious that the reverse argument should always
be true: That is, a perfect MCDM method should
never possess any of the ranking irregularities
studied in this paper. Clearly, this is a very impor-
tant and fascinating issue in decision analysis, and
more research is required.
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