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1. Introduction

Current diagnostic methods in digital mammography [1], [9] are based primarily on neural networks

without incorporating fuzzy logic.  Nevertheless, it should be mentioned that these methods use degrees of

irregularity and circularity which are similar to key concepts in fuzzy logic.  These degrees are used as inputs

to neural networks [10].  In this paper we apply a fuzzy logic approach for classifying a mass found in a

mammogram as lobulated or microlobulated.  The lobulated and microlobulated features of a mass are important

in breast cancer diagnosis [8]. 

The proposed analysis is based on the medical definitions of the previous two terms, as given by the

American College of Radiology (ACR) Breast Imaging Lexicon.  According to this lexicon, a mass has "lobular"

shape if "it has contours with undulations."  Note that the lexicon defines the notion "lobular" without any

indication  of the size or number of undulations and without defining the concept of "undulation". The

descriptive words in each category describe a continuum from benign to malignant.  A lobular mass is most often

benign, although a few malignancies will be lobular.  Lobular malignancies are usually well differentiated

pathologically.  Furthermore, a mass with microlobulated margins has a lower chance for malignancy than one

with indistinct or spiculated margins.  A microlobulated mass would fit into the low-intermediate suspicion

category #4 of BI-RADS, and would have a 10-20% chance of malignancy.

In this paper the concept of undulation is defined as the contour between the minima of adjacent

concavities. The depth of such concavities may vary from small to very large (as explained in greater detail in

section 2). Therefore, for a formal computer algorithmic analysis, means that if a mass has any one of

"small/medium/large undulation", then the algorithm should classify it as lobular.  But this is not necessarily

what occurs in a real life situation because a radiologist may take into account the size, the number of

undulations, and how deep they are.  However, the ACR lexicon does not mention these attributes in the formal

definition of lobulation.  Therefore, it is likely that different radiologists may have different perceptions about

the size and number of undulations sufficient to classify the shape of a mass as lobular.

The term "microlobulated margins" means (according to the ACR lexicon) that "the margins undulate

with short cycles producing small undulations."  Again, different radiologists may have different perceptions

of what "short cycles" and "small undulation" mean.  The ACR lexicon does not provide a unified framework

for defining these terms in a consistent and objective manner and again radiologists are left making subjective

and individual decisions regarding these characteristics.

The following two hypothetical examples highlight the need for a unified framework for defining

terms related to the shape of masses in mammograms. 
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Example 1:

Suppose that a radiologist has found one  "big" and two "small" undulations in a given mass.  Does this mean

that the mass is lobular or microlobular or do both features coexist?  Also suppose that for the same mass a

second radiologist has decided that there are two "big" and one "small" undulations.  Again, we have the same

question: "Is this mass lobular or microlobular or do both features coexist?".

Example 2:  

Suppose that in some study, five out of ten radiologists concluded that a particular mass is lobular, but the other

five came to the opposite conclusion.  How should we train a computer system to detect a lobular mass by

utilizing this contradictory experience?  Should we exclude these cases from the training set?  However, similar

cases may appear again in a real life situation.  If we exclude these cases, any trained detection system will

diagnose them arbitrarily, although, most properly it should not identify lobular features.

The last example illustrates a typical source of intra- and extra-observer variability in mammography

and some of its consequences.  How can one minimize these problems?  This paper proposes a

lobular/microlobular mass identification approach which addresses this methodological and practical problem.

This approach can also become the basis for analyzing and formalizing other ACR lexicon terms.  The proposed

approach is designed in a manner which copies the way human experts make decisions.  Therefore, this paper

will concentrate only on the development of an approach for formalizing lobularity and microlobularity in the

masses found in a mammogram.  This paper has the following structure.  First it discusses the development of

the features, which characterize lobularity and microlobularity and the formalization of these features in terms

of a fuzzy logic approach (section 2).  Section 3 develops the notions of degrees of lobularity and microlobularity

based on formalized features.  Finally, the paper ends with some concluding remarks.

2.  Formalization with Fuzzy Logic

In this section we change the previous two definitions slightly.  We define a mass to be lobular if it

has a contour with some big and deep undulations.  The margins of a mass are microlobulated if they have

several small concavities (cycles) producing several small and shallow undulations.  At a first glance it may

appear that we did not improve the precision of the definitions.  However, these reformulations are of critical

importance.  They allow us to apply fuzzy logic and express the original two principal ACR definitions as

functions of secondary and easily fuzzifiable terms. 

The above considerations involve two important fuzzy terms, namely the terms "some" and "several."



3

These terms have a rather clear meaning when they are used in context with other terms of natural language [2],

[3].  We can then define a fuzzy set with the fuzzy terms {few, some, several, many} for the number of

undulations.  Note that the number of undulations can be equal to 0,1,2,3,...etc.

 For instance, for the fuzzy term "few" the  number of undulations can be set equal to 0.  That is, the

corresponding family of the four fuzzy membership functions are: µfew(x), µsome(x), µseveral(x), and µmany(x) (see also

figure 1).  Some possible sampled values of these membership functions could be:  µfew(2)=1/3,  µsome(2)= 2/3,

µsome(3)=1,  µmany(2)=0, etc.  Interviewed radiologists felt comfortable with this formalization. Although one

may argue with the numerical values of the above membership functions, the main issue here is that it is possible

to effectively quantify fuzzy concepts which are critical for consistent and objective classification of masses as

lobular or microlobular.

Figure 1.  Membership functions related to the number of undulations.

Next we define the meaning of the terms of the fuzzy set {small, big}.  This set is crucial in defining

the size of undulations.  First we need an adequate scale to measure the length of a given undulation.  We

consider the length of an undulation in relative terms since different masses may have different sizes.  For

instance, an undulation of 3mm in length could be considered "microlobular" in a large mass while a small mass

with the same undulation could be considered as "lobular".

Therefore, we first need to compute L; the maximum length of a mass.  This approach allows us to

estimate the undulation length as a fraction of L.  In figure 2(a) we present a mass with undulations. Specifically,

the curve between points A and B is an undulation.  We can formalize the fuzzy terms "small" and "big" by
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characterizing undulations on a scale determined by the relative undulation length (see also figure 2(b)).

According to the membership functions in figure 2(b), a relative length of more than L/4 can be defined as a big

undulation,  while an undulation of relative length of less that L/12 could be considered a small undulation.

Undulations of intermediate length can be assigned intermediate membership values. 

 

Figure 2.(a)  A mass with undulations.

Figure 2.(b)  Membership functions related to the length of undulations.
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Since masses may have varying degree of depth of lobularity one can also define the fuzzy

membership functions regarding the ("shallow" or "deep") of undulations.  Thus, we introduce a relative measure

of the depth of lobularity, which is defined as a fraction of the maximum length (denoted as L) of the mass.

This step is similar to those described in the previous fuzzy sets.

The concept of a lobular mass can now be formulated as follows:  A mass is  lobular if it has at least

3 undulations with length and depth of not less than L/4.  We can also formulate the concept of microlobulated

mass margins.  The mass margins are microlobulated if there are at least 6 undulations with length and

depth of not more than L/12.  These definitions are based on the interdependence of the concepts of size, depth,

and number of undulations and can be used to quantify the concepts of lobular and microlobular masses

objectively and consistently.  We present the fuzzy logic structures for the lobular and microlobular concepts in

figures 3 and 4, respectively.

Figure 3 shows the fuzzy logic structures of a mass with three undulations.  Each undulation is

presented with its length and depth.  All these undulations are big and deep.  Hence, all membership functions

are equal to 1.00 and according to our formalization such a mass is lobular.  Similarly, figure 4 shows a

microlobulated mass with 6 undulations and all of them are small and shallow.

         -->  undulation 1 length = big µbig(undulation1)  = 1.00 
 depth   = deep µdeep(undulation1) = 1.00
MASS -->  undulation 2 length = big µbig(undulation2)  = 1.00

depth   = deep µdeep(undulation2) = 1.00
         ---> undulation 3 length = big µbig(undulation3)  = 1.00

depth   = deep µdeep(undulation3) = 1.00

Figure 3.  Fuzzy logic structures for a lobular mass.

         ---> undulation 1 length = small µsmall(undulation1)   = 1.00
depth    = shallow µshallow(undulation1) = 1.00

         ---> undulation 2 length = small µsmall(undulation2)   = 1.00 
depth    = shallow µshallow(undulation2) = 1.00

MASS ---> undulation 3 length = small µsmall(undulation3)   = 1.00
depth    = shallow µdeep(undulation3)    = 1.00

         ---> undulation 4 length = small µsmall(undulation4)   = 1.00
depth    = shallow µshallow(undulation4) = 1.00

         ---> undulation 5 length = small µsmall(undulation5)   = 1.00
depth    = shallow µshallow(undulation5) = 1.00

         ---> undulation 6 length = small µsmall(undulation6)   = 1.00
depth    = shallow µshallow(undulation6) = 1.00

Figure 4.  Fuzzy logic structures for a microlobulated mass.
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The previous definitions allow some masses to be classified as both lobular and microlobulated

without any contradiction if the mass has at least 9 undulations (of which 3 are lobular and 6 are microlobular).

That is, one just needs to join the structures given in figures 3 and 4.  Cases of an intermediate nature can also

be formalized.  Examples of such cases are depicted in figure 5.

We take the three biggest and deepest  undulations and compute the minimum of their membership

function values for the terms "big" and "deep".  We define this value as the degree of lobularity (or DL).  For

instance, for the mass described in figure 5 the minimum for the first three undulations is 0.70, that is, for this

case DL = 0.70.  Similarly, it can be easily verified that the degree of microlobularity (or DM) computed with

the remaining 6 undulations is 0.60.  Such estimates can be used as inputs for a breast cancer computer-aided

diagnostic (CAD) system. 

         --->  undulation 1 length = big µbig(undulation1)     = 0.80
depth   = deep µdeep(undulation1)    = 0.70

         --->  undulation 2 length = big µbig(undulation2)     = 0.73
depth    = deep µdeep(undulation2)    = 0.71

         --->  undulation 3 length = big µbig(undulation3)     = 0.90
depth    = deep µdeep(undulation3)    = 0.80

MASS --->  undulation 4  length = small µsmall(undulation4)   = 0.90
depth    = shallow µshallow(undulation4) = 0.80

         --->  undulation 5 length = small µsmall(undulation5)   = 0.90 
depth     = shallow µshallow(undulation5) = 0.70

         --->  undulation 6 length = small µsmall(undulation6)   = 0.60
     depth    = shallow µdeep(undulation6)    = 0.70

         --->  undulation 7 length = small µsmall(undulation7)   = 0.67
depth    = shallow µshallow(undulation7) = 0.97

         --->  undulation 8 length = small µsmall(undulation8)   = 0.80
depth    = shallow µshallow(undulation8) = 1.00

         --->  undulation 9 length = small µsmall(undulation9)   = 0.84
depth    = shallow µshallow(undulation9) = 0.79

Figure 5. Structural descriptions for a fuzzy lobular and microlobulated mass.

If the number of undulations is less than 3, we combine the membership functions for the length and

depth with a membership function for the number of undulations (as defined in figure 1).  In this combination,

we compute the minimum of these three values in accordance with standard fuzzy logic practice. We analyze the

arguments for the minimum in the next section.  Now let us consider, for instance, the mass with two undulations

presented in figure 6.
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         ---> undulation 1 length = big µbig(undulation1)  = 0.80 
   depth   = deep µdeep(undulation1) = 0.70
MASS
    ---> undulation 2 length = big µbig(undulation2)  = 0.60

depth    = deep µdeep(undulation2) = 0.60

Figure 6.  Fuzzy logic structures for a mass with less than three undulations.

Figure 6 allows to compute 0.60 as the corresponding degree of lobularity (DL), while figure 1 shows that

µsome(2) = 0.66  for a case with 2 undulations.  Thus, their minimum of 0.60 characterizes the lobularity of this

mass.  It is important to state here that the proposed fuzzy membership functions are only indicative.  Their

exact form can be determined from a consensus approach among radiologists and/or by using historic data.  In

the next section we present the DL and DM ideas formally.

3. Degrees of Lobularity and Microlobularity

Radiologists use an informal approach in determining the lobularity and microlobularity of a mass.

To maintain consistency in these evaluations and increase objectivity, we need to formalize these concepts.  Let

us first consider the two masses depicted in figure 7.  Intuitively, the first mass has deep undulations, while the

second mass has shallow undulations.  Different measures can be created to formalize this distinction.  Figure

7(a) shows two distances d1  and d2, defined between the points A  and C and between the points B and E,

respectively,  for undulation 1 (i.e., U1).  If each of them is no less than L/4, then the undulation is deep (see

also figure 7(b)).  If these distances are no more than L/12, then undulation 1 is shallow (see also figure 7(a)).

This situation indicates that formally the depth D of the undulation closely depends on the pair d1, and d2 (this

concept is not to be confused with the one of depth of lobularity which was defined in section 2).  The method

used to compute these values was considered in [6].

The values of µdeep(d1) and µdeep(d2) are computed by using the corresponding membership function

in figure 2 so that the previous two measures are transformed into a single degree of lobularity for a given

undulation.  Recall that we use the same membership functions for the length and depth of undulations.  This

is done by substituting the terms, "big" for "deep" and "small" for "shallow".  Next, we compute  min {µdeep(d1),

µdeep(d2)}, which could be considered as the degree of depth of the undulation.  That is:

    µdeep(undulation) = min{ µdeep(d1), µdeep(d2) }.

Similarly, we define the degree of shallowness of an undulation as:

    µshallow(undulation) = min{ µshallow(d1), µshallow(d2)}.

Observe that the length of undulation1 (i.e., U1) is measured as the length of the mass margin between points
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A and B (see also figure 7(a)). 

Now one can define the Degree of Lobularity (DL) of a mass as follows: 

DL(mass) = min { µsome(k),  mink$i$1 {µbig(Ui), µdeep(Ui)} }, (1)

where U1, U2,... ,Uk are undulations such that:

 min k$i$1 { µbig(Ui), µdeep(Ui) } $ 0.50.

Similarly, we define the Degree of Microlobularity (DM) of a mass with k undulations:

DM(mass) = min { µseveral(k), mink$i$1 {µsmall(Ui), µshallow(Ui)} }, (2)

where U1, U2,... ,Uk are undulations such that:

min k$i$1 { µsmall(Ui), µshallow(Ui) } $ 0.5.

     (a) (b)

Figure 7.  Masses (a) with deep and (b) shallow undulations.

For the extreme case of k = 0, we have µsome(k) = 0 and µseveral(k) = 0 (see also figure 1). Therefore,

both degrees of lobularity and microlobularity are equal to 0, i.e., the outcome corresponds to what is expected

with common sense.

There are some theoretical and experimental arguments for the general case (e.g., [5], [4], [2])

justifying formulas (1) and (2).  However, we can also use some additional arguments derived from this

mammographic problem.  A consistent computer-based breast cancer diagnostic system should refuse to diagnose

a mammogram with a significant number of doubtful features.  We can express how doubtful a given feature is

by some degree between 0 and 1, with the highest degree of doubt given at 0.50.  The values of DL and DM are

examples of such degrees.  For these uncertain (doubtful) features, a CAD system can suggest the presence of
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a particular feature, but only with some degree of reliability.  This reliability can be very low.  Also, this degree

of reliability depends on the particular values of the DL and DM.  Therefore, the formulas used to define DL

and DM become even more critical.  

This situation can be explained with a modified example from figure 3.  Assume that the first five

membership functions for undulations are equal to 1.00 and the sixth function is equal to 0.60 (i.e.,

µdeep(undulation3) = 0.60).  Then formula (1) gives us a "pessimistic" estimate, i.e., low degree of certainty for

the presence lobularity, DL=0.6.  Substituting in (1) the minimum operation  for the maximum will give us an

"optimistic" assessment, i.e.., high degree of lobularity, DL=1.00 for this case.  In the last "optimistic" estimate

we ignore and lose the warning information (i.e., the fact that  µdeep(undulation1) = 0.60).  The value 0.60

suggests that one should be cautious and study the case in great detail.  However, no warning information is lost

if we use the "pessimistic" min operation in (1) and (2).  Therefore, for critical questions regarding cancer

diagnosis, we see that the "pessimistic" strategy is the safest.  We also consider statements with a low degree

of reliability as a preliminary suggestion indicating that we need to switch the set of features to a higher level

of detail in order to fully evaluate the complexity of a given case.  Some experiments in [1] and [9] have shown

that relatively simple cases can be diagnosed within a small feature space.  For more complicated cases we need

a pathologically confirmed training sample with more features and a specifically designed diagnostic  method.

A CAD system designed as above, will have switching capabilities based on the described approach. 

4.  Conclusions

Radiologists often make relatively subjective determinations for many features related to breast cancer

diagnosis.  We have formalized some important features from the ACR breast imaging lexicon, i.e., lobulation

and microlobulation of nodules.  This formalization is the basis the next three steps: (i) extensive radiologic

validation; (ii) automatic detection of lobulation / microlobulation in a mammographic image; and (iii) similar

formalizations of the other terms from the breast imaging lexicon.  This study suggests that fuzzy logic can be

an effective tool in dealing with this kind of medical problem. 

It should also be stated here that the ACR breast imaging lexicon involves many concepts which could

be defined in a fuzzy logic approach similar to the proposed lobulation analysis.  However, as has been shown

in our previous work with breast calcifications [6], the various features presented in the lexicon pose a broad

range of problems requiring tailored solutions.  Analyzing all the concepts covered in the ACR lexicon

(approximately thirty), is outside the scope of this paper and will require a sequence of similar papers. However,

such a goal is of great importance in breast cancer diagnosis, since as it has been demonstrated that traditional

artificial intelligence and statistical methods of pattern recognition and diagnosis may be dramatically unreliable

[7].  
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The proposed fuzzy logic approach is both feasible and effective because this type of fuzzy logic

approach has been successful in many other areas (see also reference [2]).  Its application in breast cancer

diagnosis is only matter of time. The proposed fuzzy logic approach, when it is considered with the success of

the application of fuzzy logic in many other domains, has the potential of opening a new and promising direction

for effective and early breast cancer diagnosis.
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