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1.   INTRODUCTION

One of the most critical problems in the development of rule-based systems is that of learning.   Learning is the

main property which characterizes intelligent behavior in a system.   This is due to the belief that any intelligent

system should be able to improve its performance over time.   However, very often knowledge about real life

situations is erroneous and incomplete.   In such cases a learning mechanism can utilize feed-back and try to

improve the performance of the system.   
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For these reasons,  learning from examples has attracted the interest of many researchers in recent years.

 In the typical learning problem of this type, both positive and negative examples are available and the main goal

is to determine a Boolean expression  (that is, a set of logical rules or clauses)  which accepts all the positive

examples, while it rejects all the negative examples.   This kind of learning has been examined intensively in the

last years (see, for instance,  [1], [2], [3], [4], [5], [6], and [7]).   Typically the rule base of a system is expressed

as a Boolean function either in the conjunctive normal form (CNF) or in the disjunctive normal form (DNF)

(see, for instance, [8], [9], [10], [11], [12], [13], [14], [3], [15], and [16]).

A considerable amount of related research is today known as the PAC (Probably Approximately

Correct) learning theory (see, for instance, [7], [17], and [18]).   The central idea of the PAC model is that

successful learning of an unknown target concept should entail obtaining, with high probability, a hypothesis that

is a good approximation of the target concept (hence the term: probably approximately correct).   The error

associated with the approximation of the target concept is defined as the probability that the proposed concept

(denoted as h) and the target concept (denoted as c) will disagree on classifying a new example drawn randomly

from unclassified examples.   Later in this paper this notion of error is used frequently and is related to another

concept used extensively in this paper called accuracy rate.   The hypothesis  h  is a good approximation of the

target concept if the previous error is small (less than some quantity ,, where: 1 > , > 0).

    In the same framework of thought, a learning algorithm is then a computational procedure which takes

a sample of random positive and negative examples of the target concept c and returns a hypothesis h.   In the

literature a learning algorithm A is a PAC algorithm if for all positive numbers , and * (where: 1 > ,,* > 0),

when A runs and accesses unclassified examples then it eventually halts and outputs a concept h with probability

at least 1 - * and error at most ,  [19]. 

   Conjunctive concepts are properly PAC learnable [7].   However, the class of concepts in the form of

the disjunction of two conjunctions is not properly PAC learnable [5].   The same is also true for the class of

existential conjunctive concepts on structural instance spaces with two objects [20].   The classes of k-DNF,

k-CNF, and k-decision lists are properly PAC learnable for each fixed k [15], [21], but it is unknown whether

the classes of all DNF, or CNF functions are PAC learnable [18].   Note that the present paper deals with

Boolean functions in CNF or DNF form.  Therefore, the learning algorithms used later in this paper in

conjunction with the proposed guided learning approach are not known whether they are PAC learnable.   Also,



3

Mansour in [22] gives an nO(loglogn) algorithm for learning DNF formulas (however, not of minimal size) under

a uniform distribution using membership queries.

Besides improving the performance of an existing system, a learning mechanism can assist in creating

the initial rule base.   That is, it can assist in the knowledge acquisition phase.   By asking the human expert a

short sequence of key questions, we hope that the rules of a rule-based system can be configured accurately and

efficiently.

In the context of this paper these questions refer to the classification of examples.   That is, the human

expert is presented with a new example,  one at a time.   Then, the (also called "oracle" in the literature) expert

is asked to classify this example either as positive or as negative.   Although the rules may not be explicitly

known to the expert,  it is assumed that the expert can classify new examples correctly  (an example is positive

if it satisfies all the rules,  otherwise it is negative).   The inductive inference problem is to derive the "hidden"

rules (also called the  "hidden logic" system)  from the classifications of sampled examples. 

The problem examined in this paper is how to derive new examples.   It is assumed that two initial sets

of positive and negative examples are given.   Since these initial sets are a small sample of all the possibilities,

new examples may be required.   An effective sequence of new examples should be able to lead to the accurate

inference of the "hidden logic" system by considering relatively few new examples. 

This paper is organized as follows.   The following section describes some definitions and terminology.

The third section sets forth a rigorous problem definition.   Sections 4, 5, and 6 illustrate the proposed

methodology for deriving new examples.   Section 7 presents some computational results.   Finally, the last

section summarizes the main points and conclusions of this paper.  

2.   SOME DEFINITIONS AND TERMINOLOGY

In this section we introduce some terminology.  Let {A1, A2, A3, ..., At} be a set of t Boolean predicates

or atoms.  That is, each Ai (i=1,2,3,...,t) can be either true (denoted by 1) or false (denoted by 0). Let F be a

Boolean function over {A1, A2, A3, ..., At}.   That is, F is a mapping from {0,1}t 6 {0,1} which determines for

each combination of truth values of the arguments A1, A2, A3, ..., At of F, whether F is true or false (denoted

as 1 and 0, respectively). 

For each such Boolean function F, the positive examples are the vectors v , {0,1}t such that F(v) = 1.
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Similarly, the negative examples are the vectors v , {0,1}t such that F(v) = 0.  Hence, a vector v , {0,1}t is

either a positive or a negative example.   Equivalently, we say that a vector v,{0,1}t is accepted (or rejected)

by a Boolean function if and only if the vector v is a positive (or a negative) example of F, respectively.   In the

present paper, a set of positive examples will be denoted as E+.   Similarly, a set of negative examples will be

denoted as E—. 

In the previous paragraphs, a Boolean function F is assumed to be of any form.  However, in

propositional calculus it is convenient to represent Boolean functions using the conjunctive normal form (CNF)

or the disjunctive normal form (DNF).   Peysakh in [23] describes an algorithm for converting any Boolean

expression into CNF.

A Boolean expression is in CNF form if (where aj is either Aj or Āj):

¹
N

i'1
»
Mi

j'1

aj

Similarly, a Boolean expression is in DNF if it is in the form:

»
N

i'1
¹
Mi

j'1

aj

Since the rule base of any expert system contains a finite selection of rules and any rule can be reduced to clausal

form [11], it follows that any propositional rule base can be expressed as a finite set of disjunctions (clauses in

CNF form).   Therefore, we can assume that any such system is in CNF form.

3. Problem Description.

At this point suppose that there exists a "hidden logic" system.   That is, there is a system which we

would like to infer from collections of positive and negative examples.   Although we cannot explicitly identify

the rules of the "hidden system", it is assumed that it is possible to correctly classify any new examples according

to these rules.   This can occur, for instance, by interviewing a human expert.   

To help fix ideas, suppose that the following represents the "hidden logic" system:

 ( Ā1 º Ā4 ºA6) ¸ ( Ā2 ºA8) ¸ (A2).

This system is considered to be unknown to the user.   By user we mean here the person (or another computer
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system) which wants to infer the "hidden logic" system from collections of positive and negative examples. Next,

let the following sets E+ and E— represent two collections of positive and negative examples, respectively. 

These are the examples which an expert has already classified. 

Given the above examples, we want to determine a set of clauses (i.e., a Boolean function) which correctly

classify the previous examples.

An early definition of the clause inference from examples problem was given Bongard in [24] (the

original book was published in Russian in 1967).   Some recent developments can be found in [25],  and [3]. In

[25] an algorithm which infers CNF systems from positive and negative examples is developed.   In that

approach, CNF clauses are generated in a way which attempts to minimize the number of CNF clauses that

constitute the recommended CNF system.   The strategy followed there is called the One Clause At a Time  (or

OCAT)  approach and was combined with a branch-and-bound algorithm.   A new and more efficient branch-

and-bound algorithm is described in [26].

Another related algorithm is presented in [3].   This algorithm formulates the clause inference problem

as a clause satisfiability problem.   In turn, this satisfiability problem is solved by using an interior point method

proposed by Karmakar and his associates in [27].   Furthermore, by applying the second algorithm iteratively

it is possible to determine a DNF system of minimum size (i.e., of minimum number of conjunctions). 

When the OCAT approach is applied on the previous E+ and E— sets of examples, the following CNF

system is derived  (we call it system SSAMPLE to emphasize that the rules have been derived from sampled data):

(1.1)( Ā3 ºA8) ¸ (A2).



6

In [28] it is demonstrated that any algorithm which infers a CNF (or DNF) system from examples can

also infer a DNF (or CNF) system by performing some simple transformations on the original data. Furthermore,

some ways for solving large scale clause inference problems are discussed in [29].   The proposed system (1.1)

may or may not be a good approximation of the "hidden logic" system.   Recall that any sampling process is

subject to random variation.   

Suppose that the user can supply the expert with additional examples for correct classification. Then, the

main problem examined in this paper is how to generate the next example.   One obvious approach is to

generate the next example randomly.   However, this may result in generating many examples and still not

achieving a good approximation of the unknown system.   It is obviously desirable to consider a sequence of new

examples which can lead to a good approximation of the unknown system as quickly as possible. 

When a new example is considered,  it is given to the expert for the correct classification.  Two situations

can occur.   First, the current Boolean function (which is attempting to represent the unknown "hidden logic")

classifies the new example in a manner identical with the expert (who always correctly classifies each example).

In the second case, the new example is classified in the opposite way by the expert  and the current Boolean

function.   If the current Boolean function is not yet a good approximation of the "hidden logic",  then the last

case is the most desirable scenario.   This is true, because in this case one can re-execute a clause inference

algorithm (for instance, the OCAT approach) again and, hopefully, derive a closer approximation of the unknown

system.  

If the current version of the Boolean function is an inaccurate approximation of the "hidden logic" and

one generates new examples which fail to reveal any contradictions,  then additional costs are incurred in

classifying new examples,  but  no improvement is gained.   Clearly, it is desirable to use a strategy for

determining the next example, such that any possible contradiction between the current version of the Boolean

function and the "hidden logic" will  surface early in the interviewing process.   The next section presents the

development of such a strategy.
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4.   THE PROPOSED APPROACH

Consider two sets of positive and negative examples, E+ and E—, defined on  t  atoms.   Let SSAMPLE

denote a rule base (i.e., a Boolean function) that correctly classifies the sample data, i.e. the examples in E+ are

classified as positive and the examples in  E— are classified as negative  (one such Boolean function can be

obtained via the methods described in [3], [25], [26], and recently in [30]).   When the proposed guided learning

strategy is applied, then the derived system will be denoted as SGUIDED.    Also, define SHIDDEN as the "hidden

logic" Boolean function and  S ̄ HIDDEN  as the complement of SHIDDEN.   Hence, if SHIDDEN is 

(A1 V A2) ¸ ( Ā2 V A3),

then  S ̄ HIDDEN  is

(A1 V A2) º (Ā2 V A3).

Our objective is to sequentially modify and improve SGUIDED so that 

SGUIDED  --–>  SHIDDEN,

where additional examples are generated and included either in  E+ or in  E—.   If the sequence of distinct

examples generated so far is denoted as  v1, v2, v3, ..., vk, then at least when k = 2t, one must, by definition

(since all possible examples have been generated) obtain

SGUIDED  =  SHIDDEN.

The objective of our algorithm is to choose a sequence of examples so that

SGUIDED  .  SHIDDEN,

even when k is rather small (maybe only a tiny fraction of 2t).   We view the problem from a local perspective

only.   In particular, if k examples have already been generated,  then what should be the k+1st example?

The method by which we propose to select the k+1st example is based on the observation that for any

example v, either SHIDDEN or  S ̄HIDDEN  must classify the example as positive, but not both.  Denote SHIDDEN(v) =

1 if Boolean function SHIDDEN classifies the example v as positive,  and SHIDDEN(v) = 0 if it classifies it as

negative. Then, for any example v the following relation is always true 

SHIDDEN(v)  +  S ̄ HIDDEN(v)  =  1. 

Next, consider a Boolean function, SGUIDED, determined by sampling  k  examples and generating a set of clauses

which correctly classifies the  k  examples.   SGUIDED is an approximation to SHIDDEN.   The OCAT (One Clause

At a Time) procedure described in [25] and in [26] is one strategy for determining SGUIDED.    However, an
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algorithm such as OCAT could also be applied to a type of dual problem,  i.e. a problem in which the positive

examples are treated as negative and vice-versa.   Let SR-GUIDED be a Boolean function generated when the  k

examples are assigned reverse truth values.   That is, the positive examples are treated as negative  and the

negative examples as positive.   In this manner, SR-GUIDED would be an approximation to  S ̄ HIDDEN.    If, indeed

k = 2t, then

SGUIDED(v)  +  SR-GUIDED(v)  =  1,  (4.1)

for all examples v.   However, in general for k < 2t one should expect that examples will exist for which the

sum in (4.1) will be  0  or  2,  i.e. some example  v  will be classified either as negative  (sum is equal to 0) or

as positive (sum is equal to 2) by both Boolean functions.   Such an example is the key to our approach. The

existence of such an example means that exactly one of our two example generated Boolean functions (i.e.,

SGUIDED  and  SR-GUIDED) is in error.   Either SGUIDED or SR-GUIDED must be modified to correctly classify the new

example. These observations are summarized in the following theorem:

THEOREM 1:

Suppose that there exists an example v,{0,1}t such that:

SGUIDED(v)  +  SR-GUIDED(v)  =  0   or:  (4.2a)

SGUIDED(v)  +  SR-GUIDED(v)  =  2.  (4.2b)

Furthermore, suppose that the example  v  is classified by the expert as either positive or negative.  Then, one

and only one of the following situations is true: 

a) If (4.2a) holds and  v  is a positive example,  then system SGUIDED is not valid.

b) If (4.2a) holds and  v  is a negative example,  then system SR-GUIDED is not valid.

c) If (4.2b) holds and  v  is a positive example,  then system SR-GUIDED is not valid.

d) If (4.2b) holds and  v  is a negative example,  then system SGUIDED is not valid. 

Therefore, the overall strategy, starting with two Boolean functions, is to attempt to generate a sequence

of new examples  vk+1, vk+2, vk+3, ..., vm,  where each example is appropriately classified, as positive or negative,

by the expert.   Each additional example should have the property that it invalidates  either  SGUIDED  or  SR-GUIDED,

i.e. one of the two Boolean functions must be modified.   In doing so, it is expected that SGUIDED and SR-GUIDED
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become more closely aligned with SHIDDEN and  S ̄ HIDDEN, respectively. 

How does one find an example that invalidates either SGUIDED or SR-GUIDED?   Conceptually it is quite

simple.   One strategy is to formulate and solve at most two  clause satisfiability problems.   The satisfiability

(or SAT) problem is NP-complete and can be defined as follows (see,  for instance, [10] and [14]):  

Consider the m CNF clauses  C1, C2, C3, ..., Cm involving the  t  atoms A1, A2, A3, ..., At, and the Boolean

expression:      The expression is satisfiable if there exists an assignment of truthC1 ¸C2 ¸C3 ¸... ¸Cm,

values which makes the Boolean expression true.  

The clause satisfiability problem has been examined with considerable success [10], and [11].   A recent

development reported in [3] uses an interior point algorithm developed by Karmakar and his associates in [27]

with considerable success.   Also, some problem preprocessing techniques can be found in [9]. 

The two satisfiability problems of interest in this paper are as follows:   Determine an example v̄

which results in a truth value TRUE for

 (4.3)S̄SAMPLE(v̄) ¸ S̄R&SAMPLE(v̄),

or:

 (4.4)SSAMPLE(v̄) ¸ SR&SAMPLE(v̄)

If (4.3) is TRUE  (i.e., satisfied),  then   is evaluated as negative by both systems (Boolean functions),  andv̄

if (4.4) is TRUE,  then  is evaluated as positive by both systems.   Observe that relations (4.3) and (4.4)v̄

are equivalent to relations (4.2a) and (4.2b), respectively.

If an example is found which satisfies either (4.3) or (4.4),  then one of the two Boolean functions is

modified and the same process is repeated.   To illustrate, suppose  satisfies (4.4) and the expert classifiesv̄

the example  as positive  (TRUE).   In this case  SR-GUIDED does not classify  correctly and thus it mustv̄ v̄

be updated.   If the expert classifies    as negative (FALSE),   then the example invalidates SGUIDED and thusv̄

SGUIDED must be updated.   If the example  satisfies (4.3), a similar analysis prevails.   (Note that if we findv̄

an example  which satisfies (4.3),  then there is no need to also search for an example which satisfies (4.4).)v̄

 If no example can be found to satisfy (4.3),  then we search to find an example which satisfies (4.4). 
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But,  suppose that there are no examples which satisfy (4.3) or (4.4).   Does this mean that 

SGUIDED  /  SHIDDEN ?

Unfortunately, the answer is no.   As a trivial demonstration of why this is true,  consider the case in which

SHIDDEN  =  (A1 V A2).   Next, consider the input examples to be defined as follows:  E+ = [1 0]  and E— = [0

0].   Then, OCAT returns SGUIDED = A1, and SR-GUIDED = .   Clearly, although neither relation (4.3) norĀ1

(4.4) is satisfied in this case SGUIDED is different than SHIDDEN.   In cases like this we revert to a random search

process.   Examples are randomly generated,  say vk+1, vk+2, vk+3, ..., vm.   The expert appropriately classifies

vk+1 (as positive or as negative) and one evaluates

SGUIDED(vk+1) (4.5)

and

SR-GUIDED(vk+1), (4.6)

for consistency.   That is,  if vk+1 is positive then (4.5) should be true and (4.6) false,  and if vk+1 is negative then

the converse must be true.   This raises the question of a termination criterion.   How long should one generate

new examples?   

Clearly, there are two factors that one needs to take under consideration.   One is the cost of generating

and classifying new examples.   The second factor is the desired accuracy.   In general, one expects that the

more examples one uses to infer a set of clauses,  the more accurate the inferred system should be.    Therefore,

it is recommended that if no inconsistency is determined for some large value of  m (which value depends on the

cost of classifying new examples),  the process is terminated and SGUIDED is our approximation to the "hidden

logic".   The proposed strategy is depicted in Figure 1,  and will also be illustrated in the example described in

section 6.
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Figure 1.   Flowchart of the Proposed Strategy for Guided Learning.
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A confidence interval on the probability that the derived system SGUIDED will disagree with the "hidden

logic" can be found as follows:   Suppose that SGUIDED has just been redefined when the i-th example was

presented (that is, i = *E+* + *E—*).   Let the number of disagreements between SGUIDED and SHIDDEN be r. 

Apparently, these disagreements are among the remaining 2t - i (where t is the number of atoms) unclassified

examples.   A reasonable model of total ignorance of the outcomes (i.e., the way the remaining examples are

classified) of the remaining steps is that all permutations of these outcomes are equally  likely. The probability,

denoted as Qr(x), of  x  or more additional steps without a disagreement is then:

2t
&i&r

x

2t
&i

x

'
(2t

&i&x)...(2t
&i&x&r%1)

(2t
&i)...(2t

&i&r%1)
'
(2t

&i&r)...(2t
&i&r&x%1)

(2t
&i)...(2t

&i&x%1)
.

Note that this probability, besides of the values of x and r, also depends on i.

Given x, then find the greatest r such that Qr(x) $ " (where " might be 0.05 to correspond to a 5% level

of significance or a 95% level of confidence).   This is (under the random permutation model) an upper

confidence bound on r.   Observe that the previous model did not consider any pattern of agreements in the i

examples already classified by the "hidden logic".   Therefore, it is possible to derive tighter bounds, when all

issues are considered.

5.   NUMBER OF CANDIDATE SOLUTIONS

An important issue related to this problem is to determine the number of all possible distinct systems

which satisfy the requirements of two sets of examples  E+ and  E—.   Two systems, defined on  t  atoms,  are

called distinct if they are not equivalent.   That is, if they classify the examples in  {0,1}t  differently.   Suppose

that *E+* + *E—*  <  2t.   Then, the number of distinct systems which satisfy the requirements of the current

positive and negative examples is equal to the number of all possible ways that the remaining examples can

be divided into positive and negative examples.   

Let  L  denote the number of the remaining examples.   That is,  L  =  2t - (*E+* + *E—*). Since each

row of the truth table for the L unclassified examples can be independently filled with 0 or 1, the answer to the
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previous question is 2L.   Therefore, the following lemma 1 is true:

LEMMA 1:

Suppose that  E+ and E—  are the sets with the positive and negative examples, respectively.   Then  K, the

number of distinct systems which satisfy the requirements of these examples,  is given by the following formula:

 K = 2L,   where  L  =  2t - (*E+* + *E—*).

The above number K is extremely large even for small values of t.   This value K is the size of the hypothesis

space and is used in the next section to quantify the space complexity of a learning algorithm.   In the next

section these ideas are further illustrated via an example.

6.   AN ILLUSTRATIVE EXAMPLE

Consider the two collections of positive and negative examples which were given in the third section.

Recall that it was assumed that the system SHIDDEN (i.e., the "hidden logic" system) is as follows:

 ( Ā1 º Ā4 ºA6) ¸ ( Ā2 ºA8) ¸ (A2).

In this illustrative example,  we use the OCAT approach ([25], [26]) in order to derive a CNF system from the

given examples.   When the OCAT approach is applied on the (E+, E—) sets of examples, the following system

(Boolean function in CNF), SGUIDED, is derived:

 ( Ā3 ºA8) ¸ (A2).

From lemma 1 it follows that the total number of systems which satisfy the requirements of these

examples (and hence, are candidates to be the "hidden logic") is  2246.   This is an  astronomically  large number.

 The value 246 in the previous expression is derived from: 246 = 28 - (3 + 7).   Next, consider the system

which is derived when the positive examples are treated as negative and the negative examples as positive. 

When the OCAT approach is applied on the  (E—, E+) data,  then the following system (Boolean function in

CNF), SR-GUIDED, is derived:
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  ( Ā2 º Ā8).

The next issue to investigate is to see whether there is an example which satisfies relation (4.2a) or (4.2b).

Observe that the new example (i.e., still unclassified)  (0 1 0 1 1 0 1 0)  is classified as positive by both systems.

 That is, this example makes (4.2b) to be true.   This example can be determined by finding a feasible solution

of the clause satisfiability problem formed when the two systems SGUIDED and SR-GUIDED are taken together.   That
is, the satisfiability problem is:

SSAMPLE ¸ SR&SAMPLE

or :

(( Ā3 ºA8) ¸ (A2)) ¸ ( Ā2 º Ā8) = 

( Ā3 ºA8) ¸(A2) ¸( Ā2 º Ā8).

Following theorem 1,  either the system SGUIDED or the system SR-GUIDED  will  be revised and updated.

Now suppose that the expert classifies the new example as a negative example.   Hence, it follows that system

SGUIDED  is invalid.   

Next, this new example is added to the current collection of the negative examples and the OCAT

approach is reapplied on the updated input data.   The new (i.e., updated)  version of the system SGUIDED is as

follows:

 (A8) (̧A2).

Since the new example did not reveal any inaccuracies for system SR-GUIDED,  this system needs no modification

at this time.    Observe that the new version of the system SGUIDED and the current version of the system SR-GUIDED

classify all example in {0,1}8 in exactly the opposite manner (i.e., they are the complement of each other).

Therefore, no new examples can be determined as above.    As indicated earlier, this does not necessarily imply

that the current version of the system SGUIDED is equivalent to the "hidden logic" system, SHIDDEN.   In situations

like the above, it is proposed that the next example be generated randomly.   Figure 1 summarizes the main steps

of the proposed guided learning strategy. 

At this point it is interesting to make some additional observations.   In this illustrative example the

structure of the "hidden logic" system is known.   Therefore, it is possible to estimate how closely the proposed

system (i.e., system SGUIDED) approximates the "hidden logic" system SHIDDEN.   To accomplish this task in this
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illustrative example,  all the remaining 246 (= 28 - (3+7)) unclassified examples have been evaluated by SGUIDED

and SHIDDEN and compared.   The 246 examples, as evaluated by SGUIDED and SHIDDEN, agree 84% of the time.

Hence, if a new example is chosen at random, there is 84% chance that SGUIDED will correctly classify it.

Furthermore, when the updated version of the system SGUIDED  is compared with the "hidden logic" system

SHIDDEN  they agree 97% of the time. 

It should also be stated here that when a new example is considered and system SGUIDED is updated, the

new system is not always a closer approximation of the "hidden logic".   It is sometimes possible that the

updated system to be a worse approximation of the "hidden logic".   Hence, convergence in terms of this

measure of performance is not necessarily uniform.

   The size of the hypothesis space is influential in determining the sample complexity of a learning

algorithm.   That is, the number of examples needed to accurately approximate a target concept.  The presence

of bias in the selection of a hypothesis from the hypothesis space can be beneficial in reducing the sample

complexity of a learning algorithm [31], [32].   Usually the amount of bias in the hypothesis space H is measured

in terms of the Vapnik-Chervonenkis dimension, denoted as VCdim(H) [33], [34].   A well known theoretical

result regarding the VCdim(H) is due to [33] and states that the sample complexity is at most:

1

g( & g)
(2VCdim(H)ln

6

g
% ln

2

*
).

This is better than some other bounds given in [36].   However, the previous bound is still an overestimate [18].

The proposed strategy makes no assumption regarding the hypothesis space.   In the computational

experiments reported in this paper, the OCAT approach was used to infer a Boolean function from positive and

negative examples.   The OCAT approach has a tendency to return CNF (or DNF) functions with very few terms

(i.e., disjunctions or conjunctions, respectively).    Therefore, when the OCAT approach is combined with the

proposed guided learning strategy, only then the hypothesis space is biased in favor of functions with small

representations.   That is, the proposed guided learning strategy makes no assumption regarding the hypothesis

space.   However, the behavior of the proposed strategy can be influenced by the nature of the algorithm used

to infer the Boolean function.   Why inferring functions with a few terms is desirable,  is best explained in [25]
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and [3].

The OCAT and SAT approaches are NP-complete (for more details see [25] and [3], respectively).  The

present paper does not deal with the problem of inferring a Boolean function from collections of examples.

Instead, it examines the problem of what should be next example to be considered if one wishes to correctly infer

a "hidden logic" by using a short sequence of new examples.

In this paper we do not limit the form of the target Boolean function.   The OCAT and SAT approaches

used to illustrate the function of the proposed guided learning strategy, do not restrict themselves in deriving

k-CNF or k-DNF functions.   If the restriction to derive a k-CNF or k-DNF function is imposed, then the

developments are exactly the same as with the unrestricted case.

The present guided learning problem mentions the issue whether one can infer a Boolean function when

a new example is considered.   Obviously, a brutal force way is to solve the function inference problem from

the beginning.   A more efficient way is to try to devise an incremental approach in inferring a function when

only one new example is introduced and the OCAT or the SAT approaches are  used.   For instance, this is the

case in [37] where an incremental approach to the original ID3 algorithm [6] is described.   Although this is an

interesting issue, it is out of the scope of this paper. 

7.   SOME COMPUTATIONAL RESULTS

A number of computer experiments was conducted in order to investigate the effectiveness of the

proposed strategy  compared with random input learning (that is, when new examples are generated randomly).

These experiments were approached in a manner similar to the illustrative example of the previous section.  At

first, a "hidden logic" was generated.   The "hidden logic" systems considered in this paper are based on the

systems described in [3], and [26].   The only difference is that now the logical OR and AND operators are

interchanged.   In this way we deal with CNF systems instead the DNF systems defined in [3].   

The systems with id names: (see also Table I): 8A, 8B, 8C,8D, and 8E are defined on 8 atoms.

Similarly,  systems 16A, 16B, 16C, 16D, and 16E are defined on 16 atoms.   Finally, systems 32A, 32C, and

32D are defined on 32 atoms.   Systems 32B and 32E (described in [3]) were not considered due to excessive

CPU requirements in obtaining computational results. 
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Each system was tested on 20 sequences of generating examples.   For each such sequence initially ten

examples are randomly generated and classified as either positive or negative by the expert (i.e., the "hidden

logic").   Each example was a vector with t elements (t is the number of atoms).   Each element was either 0 or

1 with probability 0.50.   After an example was generated this way, it was classified by the "hidden logic" as

either positive or negative.  

Next, the OCAT algorithm was implemented to generate an initial version of SGUIDED.   What followed

was the iterative generation of additional examples by the two different methods; GUIDED and RANDOM. Let

SRANDOM be the Boolean function generated from the initial examples and the sequence of additional examples

which were generated randomly  (and SGUIDED is the Boolean function generated from the GUIDED input).   In

general, random examples in these experiments were generated as described above.   In this way, after a

sufficient number of random examples is classified by the "hidden logic", the collection of the negative examples

would be a representative sample of the total population of the negative examples of the "hidden logic".   The

same issue is also true regarding the positive examples.   Therefore, the computational experiments made no

assumption regarding the distribution of the examples and the proposed guided learning strategy applies to any

arbitrary distribution of the examples.   After each pair of new examples was generated (one from GUIDED and

one from RANDOM),  the updated SGUIDED and SRANDOM systems were tested for convergence to SHIDDEN.   

Convergence of SGUIDED (or SRANDOM) was assumed to have occurred if  10,000 randomly generated

examples were classified correctly by SGUIDED (or SRANDOM).   This is admittedly an approximation,  but our real

interest is comparing the relative speed of convergence of SGUIDED and SRANDOM with SHIDDEN.   The comparison

is simply how many additional examples are needed to correctly classify a random set of 10,000 observations.

Overall, the GUIDED strategy required on the average about 42% fewer examples than the RANDOM

strategy for the entire set of 13 problems.   The results for the individual problems are provided in Table I. Note

for instance, that for problem 8A, the GUIDED strategy required on the average 34.85 examples to converge

to a system equivalent to system 8A (used as the "hidden logic").   The same number under the RANDOM

strategy is 59.55.   Table I also presents the MIN, MAX, and standard deviations of the gathered observations.

Figures 2.a - 2.d depict analytical results of the performance of the two strategies for four of the previous

systems (selected randomly).   These plots are in agreement with the summary results presented on Table I. 

It is also evident that strategy GUIDED outperformed, in almost all cases, the RANDOM strategy.
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Table I. 
Some Computational Results Under RANDOM and GUIDED Learning

Number of Examples under RANDOM Number of Examples under GUIDED

System ID  MIN Average MAX St.Dev.  MIN Average MAX St.Dev.

     8A 29 59.55 104 18.85 18 34.85 70 11.02

     8B 18 89.30 194 53.60 15 50.90 153 37.09

     8C 19 62.50 125 31.69 20 35.60 65 12.46

     8D 23 48.40 114 23.95 18 42.80 207 40.95

     8E 10 12.90 19 3.04 10 12.30 24 3.26

    16A 85 167.70 305 48.90 36 67.95 125 22.19

    16B 57 90.00 201 32.86 45 68.20 86 11.57

    16C 74 132.20 274 49.20 53 83.45 114 17.24

    16D 81 134.85 202 35.55 48 88.85 171 32.94

    16E 90 165.70 286 46.70 84 118.90 176 26.80

    32A 53 105.85 158 30.88 48 77.40 146 25.81

    32C 122 339.10 510 130.10 93 115.65 151 17.35

    32D 57 122.70 228 43.09 60 95.55 142 25.91

Figure 2.a.  
Results When "Hidden Logic" is System 8A.
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Figure 2.b.   Results When "Hidden Logic" is System 16A.

Figure 2.c.   Results When "Hidden Logic" is System 32C.
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Figure 2.d.  
Results When "Hidden Logic" is System 32D.

Figure 3 depicts what occurs as a single sequence of examples was generated for system 8B.  This is a

rather representative scenario.   Note how SGUIDED uniformly dominates SRANDOM.   The bottom curve indicates

how SGUIDED and SR-GUIDED become complements.   As it can be seen from this figure,  both strategies start from

the same point  (recall that initially there are 10 random examples).    However, with the guided input strategy

the inferred system reaches 100% accuracy much sooner (i.e., after 16 new examples, while with random input

it takes 61 new examples). 

Given a set of data, the derived system SGUIDED and a new example, the new proposed system may or may

not be more accurate than its previous version.   This depends on two factors:  (1) on what is the approach used

to infer the proposed system and (2) on the particular data.  This is best described in the following illustrative

example.   
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Figure 3. Comparisons between systems SHIDDEN, SGUIDED, and SR-GUIDED  when new examples are

considered  ( system SHIDDEN is:   ).( Ā1 º Ā4 ºA6) ¸ ( Ā2 ºA8) ¸ (A2)

Suppose that the target function is:  (i.e, system 8B).   Let the two(A6ºĀ1ºĀ4) ¸(A8ºĀ2) ¸(A2)

sets of positive and negative examples be as follows:
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1 1 0 0 1 1 0 0

1 0 0 1 1 1 0 1

0 0 1 0 1 0 0 0

1 0 0 0 1 0 1 1

1 0 0 0 0 0 0 0

1 0 1 0 0 1 0 0

0 0 1 0 0 0 0 0

1 0 1 0 1 1 0 1

0 1 1 1 0 1 1 0

1 0 1 1 1 1 0 1

1 1 0 1 0 0 0 1

When OCAT is used on the previous data, then SGUIDED is:   and SR-(A2) ¸(A8) ¸(A3ºA6ºA7)

GUIDED is: When system SGUIDED is compared with the "hidden logic"(A1ºĀ2ºĀ8) ¸(A5ºĀ2ºĀ3ºĀ8).

system, then the derived accuracy is  0.95.   Let (1 1 0 1 0 0 1 1) be the next example to consider.  

It can easily be observed that this example is classified identically (e.g., as positive) by both the previous
two systems.   Next, this example is also classified by the "hidden logic", and a contradiction between the
proposed system and the "hidden logic" is revealed.   Therefore, the set of negative examples is augmented by
that example, and the OCAT approach is used again to derive the new version os system SGUIDED.  The updated
system is:  

   (A2) ¸(Ā4ºĀ7) ¸(A3ºĀ1).

The corresponding  accuracy rate is  0.77,   which is  smaller  than of the accuracy of the  previous

proposed system (although more examples are used as input).   A similar situation is also depicted in Figure 3.

In this figure the curve which corresponds to the guided strategy illustrates this phenomenon.   Note that when

the number of examples is 19, there is a valley in this curve.   
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Table II.

Computational Results when the Breast Cancer Data are Used

% of Data Used

for Training

with RANDOM Input with GUIDED Input

No. of

Rules

Accuracy

Rate

No. of

Rules

Accuracy

Rate

10 1.6 0.88 1.63 0.87 

15 2.06 0.88 2.26 0.91 

20 2.42 0.89 3.09 0.92 

25 2.72 0.9 3.91 0.94 

30 3.12 0.9 4.43 0.95 

35 3.4 0.9 5.29 0.97 

40 3.74 0.9 5.94 0.97 

45 4.06 0.9 6.77 0.98 

50 4.44 0.9 7.23 0.98 

55 4.9 0.9 7.74 0.99 

60 5.4 0.9 8.11 0.99 

65 5.84 0.91 8.11 0.99 

70 6.24 0.91 8.14 0.99 

75 6.92 0.91 8.17 0.99 

80 7.68 0.91 8.34 0.99 

85 7.88 0.91 8.6 0.99 

90 8.56 0.91 8.77 0.99 

95 8.88 0.92 8.83 0.99 

It should be stated here that in these experiments no satisfiability formulation was used in the GUIDED

strategy in order to accomplish the task of finding the next example.   Instead, randomly generated examples

were used to find an example which would be classified identically by the two systems SGUIDED and SR-GUIDED. This

was done for the sake of simplicity in order to keep CPU requirements low. 

As it can be seen from the results in Table I, the guided input strategy was superior to random input

strategy  almost all the time.   Only in the cases of systems 8E and 32E this was not the case.   As it was

anticipated, most of the time, the guided input learning strategy required considerably less examples in order to

correctly infer a "hidden logic".
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Figure 4.a.  Results when the Breast Cancer Data are Used (the focus is on the Number of Rules).

Figure 4.b.   Results when the Breast Cancer Data are Used  (the focus is on the Accuracy Rates).
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Professor Mangassarian from the University of Wisconsin and his associates have extensively used in

their pattern recognition studies (see, for instance, [38]) a database with observations regarding nine cytological

characteristics of breast tumors.   Information for each tumor is derived by analyzing biological material

extracted by using fine needle aspirates (FNAs).   Each tumor was also classified as benign or malignant.   At

the time we performed our experiments were 421 cases, of which 224 were benign while the remaining 197 were

malignant. These data are also available to the general public by anonymous "ftp" from the Machine Learning

Database Repository at the University of California at Irvin, Department of Computer Science.   

 We transferred the data into the equivalent binary data and performed a series of computational

experiments as follows.   At first a 10% random collection of the original data was considered.   Next, we

generated the next example by using random input and also by using guided input (in two independent scenarios

as before).   That is, we applied an experimental procedure as with the previous experiments.   However, now

there is no "hidden logic" available, and thus we compared the accuracy of the derived systems in terms of how

well they classified the remaining of the data (which were used as the testing data).   For each experiment we

used 50 random replications of it.   The results of these tests are summarized in Table II and are also depicted

in Figures 4.a and 4.b.   In these results both the number of derived rules and the accuracy rates were recorded.

As it can be easily verified from these results, once again the proposed guided strategy significantly outperformed

the random input strategy.  In these experiments as Boolean function inference algorithm we used the randomized

heuristic described in [30] which is also based on the OCAT approach (as it best described in [25] and [26]).

As a final comment it should be stated here that the accuracy rates in Figure 4.b did not necessarily reach the

100% value as the percent of the training data increased, because we were not comparing the inferred systems

with a "hidden logic" but with the way they classified the remaining of the available data. 

An interesting issue is to try to determine a way to conclude whether SGUIDED is a close approximation

to SHIDDEN.   Intuitively, one expects that the closer the two systems SGUIDED and SHIDDEN become,  the more apart

the two systems SGUIDED and SR-GUIDED should become.   One measure of the "closeness" of the two systems

SGUIDED and SHIDDEN  is determined by the percentage of 10,000 randomly generated examples which are classified

identically by both systems.  

This situation can be seen in Figure 3.   Observe that in Figure 3 the systems SGUIDED and SHIDDEN become

very close to each other (the top curve converges to value 1.00)  when the bottom curve (which indicates the

closeness of the systems SGUIDED and SR-GUIDED) approaches the value 0.00.    This is a rather representative case

and other experiments demonstrated similar behavior.   
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   This observation suggests the following empirical test for system validation.   Suppose that one has

generated a number of examples and has specified the two systems SGUIDED and SR-GUIDED.   Then, by using a

sample of  10,000  randomly generated examples,  the two systems SGUIDED and SR-GUIDED are compared in how

often they agree in classifying these examples.   If they agree very little (i.e., the approximation rate is very low),

then it is very likely that the system SGUIDED is a good approximation of the corresponding "hidden logic". 

However, if the approximation rate is very high,  then it is rather unlikely that the system SGUIDED is an accurate

approximation of the "hidden logic". 

8.  CONCLUDING REMARKS

This paper discusses the development of a strategy for guided learning of Boolean functions from

examples.   The proposed method is based on the comparison of two Boolean functions (rule bases).  The first

function is the one derived from the positive and negative examples.  The second function is derived by treating

the positive examples as negative and the negative examples as positive.   If it is possible to find a new example

which is classified identically by both systems,  then this example is considered next in the learning process. If

no such example can be found, then the next example is generated randomly.

 The computational results in this paper suggest that most of the time it is possible to find an example

which is classified identically by both systems.   In this way, the new example reveals that one of the two

systems is inaccurate.   Furthermore, the same computational results reveal that, on the average, the proposed

strategy is significantly more effective than random learning.   That is, most of the time in our computational

experiments it was possible to infer a "hidden logic" much faster when the new examples were generated

according to the proposed strategy,  than when the examples were generated randomly. 

  An interesting issue for future research would be to expand the proposed methodology to more general

situations.   The present paper focused on the case dealing with propositional logic.   There is no reason why

the proposed methodology cannot be expanded to cover more general cases.  From the previous discussions it

follows that this methodology can be applied when it is possible to derive the two systems SGUIDED and SR-GUIDED.

Then, by determining as the next example an example which is classified identically by the two systems,  the

convergence of the proposed hypothesis to the target concept could be expedited.  Clearly, more work is needed

in this critical area of machine learning research.
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