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2 Introduction

The time determining step in the development of electronic structure meth-
ods from the idea for a new algorithm (like a parallel implementation), a
new approximation (like local methods) or a new theory (like multi-reference
Coupled Cluster) to the actual application of the latter is often the compu-
tational implementation of the algebraic expressions.
Furthermore, while various ideas are implemented in different program pack-
ages the attempt to combine methods often requires large merging or recoding
efforts.
As most of the common correlated methods like Many Body Perturbation
Theory or Coupled Cluster Theory have a complicated but systematic struc-
ture an automated scheme for generating an efficient implementation from
the algebraic expressions presents an alternative to the time consuming and
error prone implementation by hand.
The basic idea of the TCE is, that any method which can be formulated as a
series of tensor contractions can be implemented automatically starting from
the algebraic expressions, converting them to working equations which are
then factorized and translated to Fortran code.

This generated code incorporates :
· use of permutational, spatial and spin symmetry
· architecture adjusted use of RAM
· parallel evaluation of tensor contractions

This guide is supposed to give a basic outline of the following points :

• How to use the code generator ?

– tools in the toolbox

– input and output files

• What does it do ?

– capabilities of the generator

– procedures of the modules

• How does the synthetic code look like ?

– tensor contractions

– use of symmetry

– interface issues
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These are the basic modules included in the TCE package :

• Algebraic Expression Engine (AEE)

– generate algebraic expressions as input for the OCE

• Graphical User Interface (GUI) to the TCE

– graphical front end to OCE and TCE modules

• Operator Contraction Engine (OCE)

– evaluate Wick’s theorem

– delete disconnected terms

• Tensor Contraction Engine (TCE)

– strength reduction of equations

– factorization of term

– generation of computer code
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2.1 Basic usage of python interface

When modules are loaded and used in the interactive mode, python has to
be started first. In the terminal, type :

user@computer> python

to start the interactive mode of python :

Python 2.1.1 (#1, Oct 25 2001, 09:53:13)

[GCC 2.95.3 20010315 (SuSE)] on linux2

Type "copyright", "credits" or "license" for more information.

>>>

the interactive mode can be quitted by pressing Ctrl-D . All modules can be
loaded by using the import command, for example

>>> import tce

will load the module tce from the corresponding tce.py file and all function-
ality inside tce will be avaliable from thereon. Another useful feature is the
”show” function that can be used on an object

>>> opject.show()

and will pretty-print its content.

2.2 Usage of the Graphical User Interface (GUI) for
the TCE

The GUI provides an easy and intuitive way of using the existing functionality
of the TCE without needing to know the commands and procedures involved.
After starting the GUI most of it is self explaining :

user@computer> python ccc.py

Everything the GUI does can be monitored in the window at the bottom of
the GUI. You will find a screenshot on the next page -
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One can immediately generate the CCSD energy equations by executing the
GUI after checking the box for the T1 and T2 operator. All that needs to
be done is clicking the ”Generate Ansatz” button through the different steps
until the Fortran code is generated.
The basic expression for an Ansatz defined in the GUI is :

〈bra| L̂ Ĥ eT̂ R̂ |ket〉

R̂, T̂ are excitation operators, R̂ is a de-excitation operator, Ĥ is the Hamil-
tonian. Here are two examples of how different methods could be defined
using the GUI :

〈D| L0
[

H eT2
]

connected
R0 |0〉 CCD doubles equations

〈0| (L1 + L2)
[

H e(T1+T2)
]

connected
R0 |S〉 singles component

of left hand EOM − CCSD

/ CCSD gradient Λ equation

The steps the GUI will execute are precisely those outlined in the OCE and
TCE sections to follow. Additionally, the GUI generates the initial algebraic
expressions for a given type of Ansatz.
Below is a list of the different options in the GUI :

• File / Help
exits the GUI and provides author information
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• Bra < 0|, < 1| ....
check the buttons at the very left and right to chose the bra and ket
state (0 = ground state, S= singly excited state etc.)

• Left and right hand operators L1, L2 ... and R1, R2 ...
EOM right and left hand eigenvectors (L0=1, R0=1 in standard CC
theory)

• Hamiltonian
One and two electron part of the Hamilton operator can be checked
here to compose the Hamiltonian.

• T-Operator T1, T2 ...
Coupled Cluster excitation operators in the exponential expansion, just
as for bra, ket, R, L, T and the Hamiltonian the last box at the bottom
can be checked to define the operators as connected.

• Generate Ansatz button
This is the main button that executes the next step to be carried out
by the code generator, the label on the button indicates the next step
the generator will carry out.

• Skip button
Skip the next step of the generator, useful for skipping the deletion of
disconnected terms in some theories.

• Clear All button
Restart function.

• Status window
In the window at the bottom of the GUI the output of the running
generator and intermediate Results will be displayed.

As the GUI executes the TCE modules the user will be prompted to save
intermediate results and what filename the final Fortran routines should have
(the extension .F will be added by the GUI).
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2.3 Usage of the Algebraic Expression Engine AEE

The AEE is intended to generate the algebraic expression from Coupled
Cluster or Many Body Perturbation Theory using only operators and their
expansions as input. It is meant to be an open ended, simple toolbox that is
easy to modify, extend and customize and can be used as an alternative to
running the GUI or writing the OCE input by hand.
The AEE will generate an input file for the OCE module. A typical line
of OCE input is a sum of operators in second quantization with a prefactor
looking like this :

1.0/1.0 Sum( g5 g6 ) f( g5 g6 ) { h1+ h2+ p4 p3 } { g5+ g6 }

All lines compose an operator sequence Ô and will be processed by the OCE
as 〈0| Ô |0〉 , so the bra and ket have to be defined through their creation and
annihilation operators and included in Ô.

In order to generate this first level of working equations one needs to go
through three steps

• define operators using the intrinsic AEE types

• carry out summations or expansions using the AEE functions

• store the intermediate objects in order to pass them to the OCE

Operators, their sums or commutators must be defined as ”Terms”, which is
an intrinsic object of the AEE. A ”Term” is defined as :

Term(numerator,denominator,"name of operator")

where the first two entries are the prefactor and the last entry is the name of
the operator. Defining the object t2amp as the CC T2 amplitudes (1/4 T2)
would look like this

>>> t2amp=aee.Term(1.0,4.0,["T2"])

>>> t3amp.show()

" +1.0/4.0 [’T2’] "

note that ”aee.” has to be included to indicate that ”Term” is an object
defined inside the AEE module, the ”.show()” sends the object to the function
show() that will print its content.
Let’s define all operators needed for the CCSD equations
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>>> amp1=aee.Term(1.0,["T1"])

>>> amp2=aee.Term(1.0,4.0,["T2"])

>>> one=aee.Term(1.0,1.0,["F"])

>>> two=aee.Term(1.0,4.0,["V"])

How does the AEE know what a T2 amplitude is or what F or V are ?
There is a database of operators inside the AEE which names the most
important operators with is creation and annihilation operators. These are
the supported operators :

"V" : 2e- part of H

"F" : fock matrix element

"T" : cc-amplitude of given order (T1, T2, T3, etc)

"bra" : bra state represented by operators acting on <0|

of given excitation rank (bra1, bra2, bra3, ...)

In order to construct the Hamilton operator as F+V and the CCSD ampli-
tudes as T1 + T2 the ”add” function has to be used :

>>> h=aee.Term.add(one,two)

>>> h.show()

+1.0/[’F’] []

+1.0/[’V’] []

>>> ccsdamplitudes=aee.Term.add(amp1,amp2)

>>> ccsdamplitudes.show()

+1.0/[’T1’] []

+1.0/[’T2’] []

this has been done by calling the ”add” function of the ”Term” object from
the AEE module, aee.Term.add(” ”,” ”). All Objects now become ”Sums”
which are then processed.
(The objects in the AEE are usually defined as ”Terms” and processed as
”Sums”, note that this is rather a data structure than algebraic terminology)
In order to use these operators to generate the input for the OCE a small set
of functions can be used. The functions for the object ”Sum” are :

multiply
multiplies two Sum objects :

>>> test=aee.Sum.multiply(h,h)

>>> test.show()

+1.0/1.0 [’F’, ’F’]

+1.0/4.0 [’F’, ’V’]
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+1.0/4.0 [’V’, ’F’]

+1.0/16.0 [’V’, ’V’]

add
adds two Sum objects

>>> test=aee.Sum.add(h,h)

>>> test.show()

+1.0/1.0 [’F’]

+1.0/4.0 [’V’]

+1.0/1.0 [’F’]

+1.0/4.0 [’V’]

commutator
form commutator of two Sum objects

>>> amp1=aee.Term(1.0,1.0,["T1"])

>>> amp2=aee.Term(1.0,4.0,["T2"])

>>> t1=aee.Sum([amp1])

>>> t2=aee.Sum([amp2])

>>> test=aee.Sum.commutator(t1,t2)

>>> test.show()

+1.0/4.0 [’T1’, ’T2’]

-1.0/4.0 [’T2’, ’T1’]

(Note that the Terms amp1 and amp2 have to be converted to ”Sum” objects
before the operation Sum.commutator() can be carried out !)

exponential(object,order)
evaluates exponential expansion of operator to a given order

>>> x=aee.Sum.exponential(t1,1)

>>> x.show()

+1.0/1.0 [’T1’]

>>> x=aee.Sum.exponential(t1,2)

>>> x.show()

+1.0/1.0 [’T1’]

+1.0/2.0 [’T1’, ’T1’]

bch
evaluates the Baker Campbell Hausdorff expansion to a given order

>>> ccd=aee.Sum.bch(h,t2,2)

>>> ccd.show()
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+1.0/1.0 [’F’]

+1.0/4.0 [’V’]

+1.0/4.0 [’F’, ’T2’]

+1.0/16.0 [’V’, ’T2’]

-1.0/4.0 [’T2’, ’F’]

-1.0/16.0 [’T2’, ’V’]

In order to generate the CCSD T2 equations <ab
ij |e−T ĤeT |0 >= 0 the fol-

lowing steps have to be carried out :

• make h=f+v

• make t=t1+t2,

• set up bch expansion to fourth order (terminates after fourth)

• multiply with doubly excited bra state

this looks like the following :

>>> import aee

>>> amp1=aee.Term(1.0,1.0,["T1"])

>>> amp2=aee.Term(1.0,4.0,["T2"])

>>> tccsd=aee.Term.add(amp1,amp2)

>>> one=aee.Term(1.0,1.0,["F"])

>>> two=aee.Term(1.0,4.0,["V"])

>>> h=aee.Term.add(one,two)

>>> doub=aee.Term(1.0,1.0,["bra2"])

>>> doubles=aee.Sum([doub])

>>> ccsd=aee.Sum.bch(h,tccsd,4)

>>> ccsdd=aee.Sum.multiply(doubles,ccsd)

note that the object ”doub” has to be converted to a ”Sum” again and that
the Sum.multiply is used to multiply with the bra state.
In order to give the generated expressions ”the final touch”, that is to com-
plete the objects by adding their creation and annihilation operators, the
function aee.Sum.addindicees() has to be called

>>> h.show()

+1.0/1.0 [’F’]

+1.0/4.0 [’V’]

>>> out=aee.Sum.addindicees(h)

>>> out.show()

12



+1.0/1.0 [[’ Sum’, ’g1’, ’g2’], [[’f’, [’g1’, ’g2’]]], [[’g1+’, ’g2’]]]

+1.0/4.0 [[’ Sum’, ’g1’, ’g2’, ’g3’, ’g4’], [[’v’, [’g1’, ’g2’, ’g3’, ’g4’]]], [[’g1+’, ’g2+’, ’g4’, ’g3’]]]

finally, the ”Sum” object will be written to a file using the function :

aee.Sum.writefullformula(object,"filename")

The output file will be read by the OCE, which evaluates Wick’s theorem
etc. In the CCSD example the previous two steps would read like :

>>> out=aee.Sum.addindicees(ccsdd)

>>> aee.Sum.writefullformula(out,"test")

the final example illustrates the generation of the CCD T2 equations

>>> import aee

>>> amp2=aee.Term(1.0,4.0,["T2"])

>>> tccd=aee.Sum([amp2])

>>> one=aee.Term(1.0,1.0,["F"])

>>> two=aee.Term(1.0,4.0,["V"])

>>> h=aee.Term.add(one,two)

>>> doub=aee.Term(1.0,1.0,["bra2"])

>>> doubles=aee.Sum([doub])

>>> ccd=aee.Sum.bch(h,tccd,2)

>>> ccdd=aee.Sum.multiply(doubles,ccd)

>>> ccdd.show()

+1.0/1.0 [’bra2’, ’F’]

+1.0/4.0 [’bra2’, ’V’]

+1.0/4.0 [’bra2’, ’F’, ’T2’]

+1.0/16.0 [’bra2’, ’V’, ’T2’]

-1.0/4.0 [’bra2’, ’T2’, ’F’]

-1.0/16.0 [’bra2’, ’T2’, ’V’]

>>> out=aee.Sum.addindicees(ccdd)

>>> aee.Sum.writefullformula(out,"test")

note again that some ”Term” objects have to be converted to ”Sum” objects
and that in this case the bch expansion only hast to be carried out to second
order. The output file will look like this :

1.0/1.0 Sum( g5 g6 ) f( g5 g6 ) { h1+ h2+ p4 p3 } { g5+ g6 }

1.0/4.0 Sum( g5 g6 g7 g8 ) v( g5 g6 g7 g8 ) { h1+ h2+ p4 p3 } { g5+ g6+ g8 g7 }

1.0/4.0 Sum( g5 g6 p7 p8 h9 h10 ) f( g5 g6 ) t( p7 p8 h9 h10 ) { h1+ h2+ p4 p3 } { g5+ g6 } { p7+ p8+ h10 h9 }

1.0/16.0 Sum( g5 g6 g7 g8 p9 p10 h11 h12 ) v( g5 g6 g7 g8 ) t( p9 p10 h11 h12 ) { h1+ h2+ p4 p3 } { g5+ g6+ g8 g7 } { p9+ p10+ h12 h11 }

-1.0/4.0 Sum( p5 p6 h7 h8 g9 g10 ) t( p5 p6 h7 h8 ) f( g9 g10 ) { h1+ h2+ p4 p3 } { p5+ p6+ h8 h7 } { g9+ g10 }

-1.0/16.0 Sum( p5 p6 h7 h8 g9 g10 g11 g12 ) t( p5 p6 h7 h8 ) v( g9 g10 g11 g12 ) { h1+ h2+ p4 p3 } { p5+ p6+ h8 h7 } { g9+ g10+ g12 g11 }

(note that the OCE is a little picky as far as the input format is concerned,
the OCE input file may not contain a last blank line and each line must end
with a single blank space)
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2.4 Usage of the Operator Contraction Engine

The OCE is intended to evaluate an expression in second quantization to
arrive at algebraic expressions which only contain tensor contractions. These
are the successive steps carried out by the OCE :

• read an input file in special format
(as generated by the AEE or GUI or written by hand)

• perform all contractions of the operators in second quantization
(evaluate Wick’s Theorem for an expression 〈0| operator sequence |0〉
recursively)

• delete disconnected terms if needed (CC or MBPT)

• write final tensor contractions into output file to be read by TCE

Note that the general structure of any tensor contraction looks like this :

U
y1ext,y2ext,...
x1ext,x2ext,... =

∑

xint, yint

V
yint,y1ext

xint,x1ext ∗ W
xinty2ext

yint,x2ext ∗ ...

The basic principle is that any method which can be formulated as a series
of tensor contractions can be implemented automatically starting from the
algebraic expressions. The OCE is the module that will generate the actual
working equations. These are then factorized and translated to Fortran code
by the next module, the TCE (see below).
To continue with the example above, we load the OCE into python and read
the input file given above

>>> import oce

>>> ccdd=oce.readfromfile("test")

The objects and classes that the OCE uses are the basic quantities that are
needed to describe tensor contractions :

• Operator (second quantized operator with type and index),

• Summation (summation indices),

• Amplitude (amplitude type and indices),

• Factor (coefficient and (!!) permutations)

but also two joined classes that describe the contractions :
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• OperatorSequence (sequence of normal ordered second quantized oper-
ators with factor and summation)

• ListOperatorSequences (a list of a number of operator sequences)

in order to proceed we declare a list of operator sequences

>>> ccd_t2=oce.ListOperatorSequences()

>>> ccd_t2.join(ccdd.performfullcontraction().deletedisconnected().simplify())

and pass the input through the procedures that evaluate the contractions
recursively and delete the disconnected terms. The simplify procedure will
identify and consolidate identical contractions. The output is dumped to a
file using a similar command as in the AEE :

>>> ccd_t2.writetofile("ccd_t2.out")

The output generated in this way looks like this :

[ - 1.0 ] * v ( p4 p3 h1 h2 )

[ - 1.0 + 1.0 * P( p3 p4 h1 h2 => p3 p4 h2 h1 ) ] * Sum ( h5 ) * f ( h5 h1 ) * t ( p3 p4 h5 h2 )

[ + 1.0 - 1.0 * P( p4 p3 h2 h1 => p3 p4 h2 h1 ) ] * Sum ( p5 ) * f ( p4 p5 ) * t ( p5 p3 h2 h1 )

[ + 0.5 ] * Sum ( h5 h6 ) * t ( p3 p4 h5 h6 ) * v ( h5 h6 h1 h2 )

[ + 1.0 - 1.0 * P( p3 p4 h2 h1 => p4 p3 h2 h1 ) - 1.0 * P( p3 p4 h2 h1 => p3 p4 h1 h2 ) + 1.0 * P( p3 p4 h2 h1 => p4 p3 h1 h2 ) ]

* Sum ( h6 p5 ) * t ( p5 p3 h6 h2 ) * v ( h6 p4 h1 p5 )

[ + 0.5 ] * Sum ( p5 p6 ) * t ( p5 p6 h2 h1 ) * v ( p4 p3 p5 p6 )

[ - 0.5 + 0.5 * P( p4 p3 h2 h1 => p3 p4 h2 h1 ) ] * Sum ( h7 h8 p5 p6 ) * t ( p5 p4 h2 h1 ) * t ( p6 p3 h7 h8 ) * v ( h7 h8 p5 p6 )

[ - 0.25 ] * Sum ( h7 h8 p5 p6 ) * t ( p5 p6 h2 h1 ) * t ( p3 p4 h7 h8 ) * v ( h7 h8 p5 p6 )

[ - 0.5 + 0.5 * P( p3 p4 h1 h2 => p3 p4 h2 h1 ) ] * Sum ( h5 h8 p6 p7 ) * t ( p3 p4 h5 h1 ) * t ( p6 p7 h8 h2 ) * v ( h5 h8 p6 p7 )

[ - 1.0 + 1.0 * P( p4 p3 h1 h2 => p3 p4 h1 h2 ) ] * Sum ( h6 h8 p5 p7 ) * t ( p5 p4 h6 h1 ) * t ( p7 p3 h8 h2 ) * v ( h6 h8 p5 p7 )

Note that all second quantized operators are resolved and the permutational
symmetry for the contractions has been introduced. The factors are expressed
as :

[factor for given contraction +

factors for permuted contraction

* P( indices of given contraction => indices of permuted contraction ) ]

for example :

[ - 0.5 + 0.5 * P( p4 p3 h2 h1 => p3 p4 h2 h1 ) ]

This output can directly be used as input for the TCE

15



2.5 Usage of the Tensor Contraction Engine

The TCEmodule incorporates a lot of functionality, everything that is needed
to turn the raw set of tensor contractions into computer code :

• read the OCE output

• factorize (breakdown) the separate tensor contractions creating inter-
mediates

• factorize the complete list of tensor contractions creating an operation
tree

• conversion of the operation tree to Fortran

In the first step the TCE module is loaded into python and the output from
the OCE is read

>>> import tce

>>> ccdt=tce.readfromfile("ccd_t2.out")

There is one thing to note when discussing the factorization of the tensor
contractions. A large number of tensor contractions leads to and exponen-
tial growth in the number of possible factorizations. This inhibits doing an
exhaustive search (trying all possibilities, that is). The solution used here
is to generate a non optimal factorization with minimal scaling of overall
computational effort by factorizing every contraction by itself. More optimal
schemes of finding efficient factorizations would use Simulated Annealing or
Genetic Algorithms and are currently under development.

Let’s continue with our example :
Next, the different contractions are processed, and the best breakdown of the
for each one is found separately :

>>> cddt=cddt.breakdown()

The output of this procedure might look like this :

... canonicalizing permutation operator expressions

[ - 1.0 ] * v ( p4 p3 h1 h2 )

... there are 1 ways of breaking down the sequence into elementary tensor contractions

... the best breakdown is [1] with operation cost=N0 O0 V0, memory cost=N0 O0 V0

... canonicalizing permutation operator expressions

[ - 1.0 + 1.0 * P( h1 h2 p3 p4 => h2 h1 p3 p4 ) ] * Sum ( h5 ) * f ( h5 h1 ) * t ( p3 p4 h5 h2 )

... there are 2 ways of breaking down the sequence into elementary tensor contractions

... the best breakdown is [1, 2] with operation cost=N0 O3 V2, memory cost=N0 O2 V2

... the suggested decomposition of the permutation operator is valid

... canonicalizing permutation operator expressions

[ + 1.0 - 1.0 * P( h1 h2 p3 p4 => h1 h2 p4 p3 ) ] * Sum ( p5 ) * f ( p4 p5 ) * t ( p5 p3 h2 h1 )

... there are 2 ways of breaking down the sequence into elementary tensor contractions

... the best breakdown is [1, 2] with operation cost=N0 O2 V3, memory cost=N0 O2

... the suggested decomposition of the permutation operator is valid
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which nicely shows that the terms are factorized separately following the
scheme :

• canonicalize the indices according to internal standard

• find the factorization with the lowest scaling in operation cost by ex-
haustive search for that specific term

• create and check the permutational symmetry of the resulting contrac-
tion

Each contraction has been broken down like this :

i0 ( p3 p4 h1 h2 ) + = [ - 0.5 + 0.5 * P( h1 h2 p3 p4 => h1 h2 p4 p3 ) ]

* Sum ( p5 ) * i1 ( p3 p5 ) * t ( p4 p5 h1 h2 )

i1 ( p3 p5 ) + = [ - 1.0 ] * Sum ( p6 h7 h8 ) * t ( p3 p6 h7 h8 ) * v ( h7 h8 p5 p6 )

...

...

Next, all contractions are factorized together by identifying common inter-
mediates in the procedure :

>>> ccd=ccdt.fullyfactorize()

Now the operation tree for the CCD-T2 looks like this :

i0 ( p3 p4 h1 h2 ) + = [ + 1.0 ] * v ( p3 p4 h1 h2 )

i0 ( p3 p4 h1 h2 ) + = [ - 1.0 + 1.0 * P( h1 h2 p3 p4 => h2 h1 p3 p4 ) ] * Sum ( h5 ) * t ( p3 p4 h1 h5 ) * i1 ( h5 h2 )

i1 ( h5 h1 ) + = [ + 1.0 ] * f ( h5 h1 )

i1 ( h5 h1 ) + = [ + 0.5 ] * Sum ( p6 p7 h8 ) * t ( p6 p7 h1 h8 ) * v ( h5 h8 p6 p7 )

i0 ( p3 p4 h1 h2 ) + = [ + 1.0 - 1.0 * P( h1 h2 p3 p4 => h1 h2 p4 p3 ) ] * Sum ( p5 ) * t ( p3 p5 h1 h2 ) * i1 ( p4 p5 )

i1 ( p3 p5 ) + = [ + 1.0 ] * f ( p3 p5 )

i1 ( p3 p5 ) + = [ - 0.5 ] * Sum ( p6 h7 h8 ) * t ( p3 p6 h7 h8 ) * v ( h7 h8 p5 p6 )

i0 ( p3 p4 h1 h2 ) + = [ - 0.5 ] * Sum ( h9 h7 ) * t ( p3 p4 h7 h9 ) * i1 ( h7 h9 h1 h2 )

i1 ( h7 h9 h1 h2 ) + = [ - 1.0 ] * v ( h7 h9 h1 h2 )

i1 ( h7 h9 h1 h2 ) + = [ - 0.5 ] * Sum ( p5 p6 ) * t ( p5 p6 h1 h2 ) * v ( h7 h9 p5 p6 )

i0 ( p3 p4 h1 h2 ) + = [ - 1.0 + 1.0 * P( h1 h2 p3 p4 => h2 h1 p3 p4 ) + 1.0 * P( h1 h2 p3 p4 => h1 h2 p4 p3 )

- 1.0 * P( h1 h2 p3 p4 => h2 h1 p4 p3 ) ] * Sum ( p5 h6 ) * t ( p3 p5 h1 h6 ) * i1 ( h6 p4 h2 p5 )

i1 ( h6 p3 h1 p5 ) + = [ + 1.0 ] * v ( h6 p3 h1 p5 )

i1 ( h6 p3 h1 p5 ) + = [ - 0.5 ] * Sum ( p7 h8 ) * t ( p3 p7 h1 h8 ) * v ( h6 h8 p5 p7 )

i0 ( p3 p4 h1 h2 ) + = [ + 0.5 ] * Sum ( p5 p6 ) * t ( p5 p6 h1 h2 ) * v ( p3 p4 p5 p6 )

This operation tree is the outline of the final algorithm. All that remains to
be done is to turn this outline into Fortran code. For this purpose, different
procedures are available :

• fortran90

• fortran77

• tex

While the fortran77 and fortran90 functions will generate Fortran90 or For-
tran77 code, the tex feature shows how convenient the usage of the generator
can be, even parts of the documentation can be generated :
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>>> tce.writetofile(ccd.tex(),"test.tex")

will dump something like this to the file test.tex :

χp3p4

h1h2
=

χp3p4

h1h2
+ vp3p4

h1h2

χp3p4

h1h2
= χp3p4

h1h2
−
(

+1− P h1h2p3p4

h2h1p3p4

)

tp3p4

h1h5
ξh5

h2

ξh5

h1
= ξh5

h1
+ fh5

h1

ξh5

h1
= ξh5

h1
+
1

2
tp6p7

h1h8
vh5h8

p6p7

χp3p4

h1h2
= χp3p4

h1h2
+
(

+1− P h1h2p4p3

h1h2p3p4

)

tp3p5

h1h2
ξp4
p5

ξp3
p5
= ξp3

p5
+ f p3

p5

ξp3
p5
= ξp3

p5
−
1

2
tp3p6

h7h8
vh7h8

p5p6

χp3p4

h1h2
= χp3p4

h1h2
−
1

2
tp3p4

h7h9
ξh7h9

h1h2

ξh7h9

h1h2
= ξh7h9

h1h2
− vh7h9

h1h2

ξh7h9

h1h2
= ξh7h9

h1h2
−
1

2
tp5p6

h1h2
vh7h9

p5p6

χp3p4

h1h2
= χp3p4

h1h2
−
(

+1− P h1h2p3p4

h2h1p3p4
− P h1h2p4p3

h1h2p3p4
+ P h1h2p4p3

h2h1p3p4

)

tp3p5

h1h6
ξh6p4

h2p5

ξh6p3

h1p5
= ξh6p3

h1p5
+ vh6p3

h1p5

ξh6p3

h1p5
= ξh6p3

h1p5
−
1

2
tp3p7

h1h8
vh6h8

p5p7

χp3p4

h1h2
= χp3p4

h1h2
+
1

2
tp5p6

h1h2
vp3p4

p5p6

To create a Fortran subroutine that can be interfaced to a program package
the following command can be used :

>> ccd.fortran77("ccd_t2").writetofile("ccd_t2_tce")

which will dump the file ccd t2 tce.F containing a subroutine called ccd t2
with several calls to contraction routines.
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3 Structure of the generated code

The generated Fortran code is always one main subroutine, which includes
all the contraction routines. It is called with the amplitudes, integrals, Fock
matrix, and the residual as arguments. Every tensor is passed with file handle
(or a starting address in memory) and an offset array which determines the
start address of a specific tile (see below) in the file.
Every contraction is done in a separate subroutine and the files/memory
and offset arrays for the intermediate quantities are created/allocated and
deleted/de-allocated in the main routine.
A schematic representation of the main routine looks like this :

SUBROUTINE ccsd_t2(file_handle_t1,offset_array_t1 ...... )

C header :

C $Id: ccsd_t2.F,v 1.8 2002/12/01 21:37:29 sohirata Exp $

C This is a Fortran77 program generated by Tensor Contraction Engine v.1.0

C comments describing all contractions in this routine

C ....

C i0 ( p3 p4 h1 h2 ) + = -1.0 * P( 2 ) * Sum ( p5 ) * t ( p5 h1 ) * i1 ( p3 p4 h2 p5 )

C i1 ( p3 p4 h1 p5 ) + = 1.0 * v ( p3 p4 h1 p5 )

C i1 ( p3 p4 h1 p5 ) + = -0.5 * Sum ( p6 ) * t ( p6 h1 ) * v ( p3 p4 p5 p6 )

C ....

C variables used in this routine :

IMPLICIT NONE

#include "global.fh"

#include "mafdecls.fh"

#include "util.fh"

#include "tce.fh"

INTEGER d_i0

INTEGER k_i0_offset

INTEGER d_v2

INTEGER k_v2_offset

....

C call to contraction routine with intermediates

C create offset array with addresses of blocks (mem alloc done inside)

CALL OFFSET_ccsd_t2_3_1(d_i1,l_i1_offset,k_i1_offset,size_i1)

C create the intermediate file

CALL TCE_FILENAME(’ccsd_t2_3_1_i2’,filename)
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CALL CREATEFILE(filename,d_i1,size_i1)

C do the contraction v -> i1

CALL ccsd_t2_3_1(d_v2,k_v2_offset,d_i1,k_i1_offset)

C second contraction v2 * t1 -> i0

CALL ccsd_t2_3_2(d_t1,k_t1_offset,d_v2,k_v2_offset,d_i1,k_i1_offse

&t)

C communicate result

CALL RECONCILEFILE(d_i1,size_i1)

C consume i1 * t1 -> i0

CALL ccsd_t2_3(d_t1,k_t1_offset,d_i1,k_i1_offset,d_i0,k_i0_offset)

C delete i1 file and de-allocate offset array

CALL DELETEFILE(d_i1)

IF (.not.MA_POP_STACK(l_i1_offset)) CALL ERRQUIT(’ccsd_t2’,-1)

....

(note that in contrast to the example above the generator does not comment
the code except for the basic description of the contractions, and there are no
blank lines included)

The actual work is done in the contraction routines shown above. The
features of these include various ideas to overcome common bottlenecks of
electronic structure theory codes.
The basic principle in all contractions is the tiling of all tensors that are
processed in the TCE generated code :

stored with spin
and symmetry
information

b

a

not stored

Tab
(ij)
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The tiling of a tensor can be described as follows. The hole and particle
indices i and a are split into partitions, indicated as ip and ap :

| maximum partition size |

i p = 1 i p = 2 i p 5= i p = 6 i p 8=i p 3= i p 7=

all indices i

1 12 24 28 32 50 58 76

i p 4=

In the example above ip = 2 refers to the occupied orbitals 12 to 23 (likewise
for the virtual orbitals). A tiled multidimensional tensor X(a, b, ... , i, j, ...)
is indicated as X(ap, bp, ... ip, jp, ...) . In the picture of the T (i, j, a, b) array
on the previous page, these are the grey and white squares. A tile refers to
a dense block of the tensor where the indices are given by a ε ap, b ε bp etc.
Each of these rectangular blocks of amplitudes can be accessed as a (in this
case) 4 dimensional array.
A partition of an index range is always associated with its spatial and spin
symmetry information. The structure in the example above stems from :

Γ Γ Γ
1 2 3

all indices

with symmetry

all indices

(h or p for example)

Γ Γ Γ
1 2 3

all indices

α β α αβ β

Γ Γ Γ
1 2 3

all indices

with symmetry and spin

α β α αβ β

and splitting of blocks to fit into memory

| maximum partition size |

with symmetry and spin
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For antisymmetric tensors like T (a < b, i < j) only the tiles of the diag-
onal and upper diagonal part are stored T (ap < bp, ip < jp) ( grey tiles in
T (i, j, a, b) picture ).
For the diagonal tiles this means that elements are stored twice which is
accounted for in the TCE generated code. This structure at hand, many
problems in electronic structure codes can be addressed :

• Memory bottleneck : Full tensors might be too big to keep in mem-
ory. To avoid keeping full tensors in memory all index ranges are parti-
tioned. The partition sizes can be adjusted such that a tile will always
fit into memory.

• Exploit spatial, spin and permutational symmetry : Every in-
dex partition of a quantity is stored with a set of properties like spin
and spatial symmetry. In every contraction if-statements avoid con-
tracting zero tiles. The right loop structure is generated regarding
permutational symmetry.

• Resorting of tensors : The dense rectangular form of the tiles makes
it easy to resort indices as they are needed in the DGEMM calls of the
contractions.

To summarize, the basic principle is the partitioning of index ranges and the
resulting tiling of the tensors, which is designed regarding permutational,
spatial and spin symmetry. The tile size is determined by the memory avail-
able, spin and spatial symmetry information of the tiles are contained in a
set of functions.
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The general structure of any tensor contraction routine that is generated by
the tce will look like this (note that below block is used as equivalent to tile):

loop over target_tiles

if (spin_target_tiles okay) then

if (symmetry_target_tiles okay) then

distribute task to nodes

loop over contraction_tiles

if(spin_contraction_tiles okay) then

if (symmetry_target_tiles okay) then

assign_memory(tensor1)

get_block(tensor1)

resort_block(tensor1)

assign_memory(tensor1)

get_block(tensor2)

resort_block(tensor2)

assign_memory(target)

call dgemm(tensor1,tensor2,target)

resort_block(target)

add_block(target)

endif

endif

end loop contraction_tiles

end distributed process

endif

endif

end loop target_tiles
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4 CCSD example

Coupled Cluster Equations :

|ΨCC〉 = eT̂ |Ψ0〉

Ĥ eT̂ |Ψ0〉 = E eT̂ |Ψ0〉

Amplitude Equations :

〈Ψ| e−T̂ ĤeT̂ |Ψ0〉 = 0

Truncation of the Cluster operator T̂ for CCSD:

T̂ = T̂1 + T̂2

T̂2 Amplitude Equations :

〈

Ψab
ij

∣

∣ e−T̂ ĤeT̂ |Ψ0〉 = 0

First step : list all terms contributing to the CCSD T̂2 equations in second
quantization using OCE syntax :

• write input by hand

• use AEE

• use GUI
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4.1 OCE input syntax

One line for every contribution :

1.0/4.0 Sum( g5 g6 g7 g8 )

v( g5 g6 g7 g8 )

{ h1+ h2+ p4 p3 } { g5+ g6+ g8 g7 }

1.0/4.0 Sum( g5 g6 g7 g8 p9 h10 )

v( g5 g6 g7 g8 ) t( p9 h10 )

{ h1+ h2+ p4 p3 } { g5+ g6+ g8 g7 } { p9+ h10 }

1.0/4.0 Sum( g5 g6 p7 p8 h9 h10 )

f( g5 g6 ) t( p7 p8 h9 h10 )

{ h1+ h2+ p4 p3 } { g5+ g6 } { p7+ p8+ h10 h9 }

1.0/16.0 Sum( g5 g6 g7 g8 p9 p10 h11 h12 )

v( g5 g6 g7 g8 ) t( p9 p10 h11 h12 )

{ h1+ h2+ p4 p3 } { g5+ g6+ g8 g7 } { p9+ p10+ h12 h11 }

1.0/8.0 Sum( g5 g6 g7 g8 p9 h10 p11 h12 )

v( g5 g6 g7 g8 ) t( p9 h10 ) t( p11 h12 )

{ h1+ h2+ p4 p3 } { g5+ g6+ g8 g7 } { p9+ h10 } { p11+ h12 }

1.0/4.0 Sum( g5 g6 p7 h8 p9 p10 h11 h12 )

f( g5 g6 ) t( p7 h8 ) t( p9 p10 h11 h12 )

{ h1+ h2+ p4 p3 } { g5+ g6 } { p7+ h8 } { p9+ p10+ h12 h11 }

1.0/16.0 Sum( g5 g6 g7 g8 p9 h10 p11 p12 h13 h14 )

v( g5 g6 g7 g8 ) t( p9 h10 ) t( p11 p12 h13 h14 )

{ h1+ h2+ p4 p3 } { g5+ g6+ g8 g7 } { p9+ h10 } { p11+ p12+ h14 h13 }

1.0/128.0 Sum( g5 g6 g7 g8 p9 p10 h11 h12 p13 p14 h15 h16 )

v( g5 g6 g7 g8 ) t( p9 p10 h11 h12 ) t( p13 p14 h15 h16 )

{ h1+ h2+ p4 p3 } { g5+ g6+ g8 g7 } { p9+ p10+ h12 h11 } { p13+ p14+ h16 h15 }

1.0/24.0 Sum( g5 g6 g7 g8 p9 h10 p11 h12 p13 h14 )

v( g5 g6 g7 g8 ) t( p9 h10 ) t( p11 h12 ) t( p13 h14 )

{ h1+ h2+ p4 p3 } { g5+ g6+ g8 g7 } { p9+ h10 } { p11+ h12 } { p13+ h14 }

1.0/32.0 Sum( g5 g6 g7 g8 p9 h10 p11 h12 p13 p14 h15 h16 )

v( g5 g6 g7 g8 ) t( p9 h10 ) t( p11 h12 ) t( p13 p14 h15 h16 )

{ h1+ h2+ p4 p3 } { g5+ g6+ g8 g7 } { p9+ h10 } { p11+ h12 } { p13+ p14+ h16 h15 }

1.0/96.0 Sum( g5 g6 g7 g8 p9 h10 p11 h12 p13 h14 p15 h16 )

v( g5 g6 g7 g8 ) t( p9 h10 ) t( p11 h12 ) t( p13 h14 ) t( p15 h16 )

{ h1+ h2+ p4 p3 } { g5+ g6+ g8 g7 } { p9+ h10 } { p11+ h12 } { p13+ h14 } { p15+ h16 }

(note that in the real input file every contribution above is a single line of
input, there must be no blank lines in between)
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4.2 CCSD python script

# AEE input generation for ccsd t2 equations

import aee

amp1=aee.Term(1.0,1.0,["T1"])

amp2=aee.Term(1.0,4.0,["T2"])

tccsd=aee.Term.add(amp1,amp2)

tccsd.show()

one=aee.Term(1.0,1.0,["F"])

two=aee.Term(1.0,4.0,["V"])

h=aee.Term.add(one,two)

h.show()

ccsd=aee.Sum.bch(h,tccsd,5)

ccsd.show()

doub=aee.Term(1.0,1.0,["bra2"])

doubles=aee.Sum([doub])

ccsdd=aee.Sum.multiply(doubles,ccsd)

ccsdd.show()

out=aee.Sum.addindicees(ccsdd)

out.show()

aee.Sum.writefullformula(out,"ccsd_t2_aee.out")

import oce

#alternative input file :

# ccsdd=oce.readfromfile("ccsd_t2.in")

ccsdd=oce.readfromfile("ccsd_t2_aee.out")

ccsd_t2a=oce.ListOperatorSequences()

ccsd_t2a.join(ccsdd.performfullcontraction())

ccsd_t2=oce.ListOperatorSequences()

ccsd_t2.join(ccsd_t2a.deletedisconnected().simplify())

ccsd_t2.writetofile("ccsd_t2_oce.out")

import tce

ccsd=tce.readfromfile("ccsd_t2_oce.out")

ccsd=ccsd.breakdown()

ccsd=ccsd.fullyfactorize()

ccsd.fortran77("ccsd_t2").writetofile("ccsd_t2_tce")
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4.3 OCE procedures

readfromfile
read equations into OCE

[ + 0.25 ] * Sum ( g5 g6 g7 g8 ) * v ( g5 g6 g7 g8 )

* <0|{ h1+ h2+ p4 p3 } { g5+ g6+ g8 g7 }|0>

[ + 1.0 ] * Sum ( g5 g6 p7 h8 ) * f ( g5 g6 ) * t ( p7 h8 )

* <0|{ h1+ h2+ p4 p3 } { g5+ g6 } { p7+ h8 }|0>

↓
performfullcontraction

perform contractions according to Wick’s theorem

[ + 1.0 ] * v ( p3 p4 h1 h2 )

[ - 1.0 ] * f ( p4 h1 ) * t ( p3 h2 )

[ + 1.0 ] * f ( p3 h1 ) * t ( p4 h2 )

[ + 1.0 ] * f ( p4 h2 ) * t ( p3 h1 )

[ - 1.0 ] * f ( p3 h2 ) * t ( p4 h1 )

↓
deletedisconnected

delete disconnected terms for MBPT/CC
(can be skipped !)

[’[ + 1.0 ] * v ( p3 p4 h1 h2 )’]

↓
writetofile

dump to outputfile to be read by TCE
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4.4 TCE procedures

readfromfile
read equations into TCE

[ + 1/2 - 1/2 * P( p4 p3 h1 h2 => p3 p4 h1 h2 ) ] * Sum ( h5 h6 )

* t ( p4 h5 ) * t ( p3 h6 ) * v ( h6 h5 h1 h2 )

[ + 1/2 - 1/2 * P( p4 p3 h2 h1 => p3 p4 h2 h1 ) - 1/2 * P( p4 p3 h2 h1 => p4 p3 h1 h2 )

+ 1/2 * P( p4 p3 h2 h1 => p3 p4 h1 h2 ) ] * Sum ( h5 h6 p7 )

* t ( p4 h5 ) * t ( p3 h6 ) * t ( p7 h2 ) * v ( h6 h5 h1 p7 )

↓
breakdown

strength reduction, term by term

i0 ( p3 p4 h1 h2 ) + = [ + 1/2 - 1/2 * P( h1 h2 p3 p4 => h1 h2 p4 p3 ) ] * Sum ( h5 )

* i1 ( h5 p3 h1 h2 ) * t ( p4 h5 )

i1 ( h5 p3 h1 h2 ) + = [ - 1 ] * Sum ( h6 )

* v ( h5 h6 h1 h2 ) * t ( p3 h6 )

i0 ( p3 p4 h1 h2 ) + = [ + 1/2 - 1/2 * P( h1 h2 p3 p4 => h1 h2 p4 p3 ) ] * Sum ( h5 )

* i1 ( h5 p3 h1 h2 ) * t ( p4 h5 )

i1 ( h5 p3 h1 h2 ) + = [ + 1 ] * Sum ( h6 )

* i2 ( h5 h6 h1 h2 ) * t ( p3 h6 )

i2 ( h5 h6 h1 h2 ) + = [ - 1 + 1 * P( h1 h2 p3 p4 => h2 h1 p3 p4 ) ] * Sum ( p7 )

* v ( h5 h6 h1 p7 ) * t ( p7 h2 )

↓
fullyfactorize

do global factorization by joining terms with common intermediates, obtain
operation tree

i0 ( p3 p4 h1 h2 ) + = [ - 1/2 + 1/2 * P( h1 h2 p3 p4 => h1 h2 p4 p3 ) ]

* Sum ( h5 ) * t ( p3 h5 ) * i1 ( h5 p4 h1 h2 )

i1 ( h5 p3 h1 h2 ) + = [ - 1 ] * Sum ( h6 ) * t ( p3 h6 ) * i2 ( h5 h6 h1 h2 )

i2 ( h5 h6 h1 h2 ) + = [ + 1 ] * v ( h5 h6 h1 h2 )

i2 ( h5 h6 h1 h2 ) + = [ - 1 + 1 * P( h1 h2 p3 p4 => h2 h1 p3 p4 ) ]

* Sum ( p7 ) * t ( p7 h1 ) * v ( h5 h6 h2 p7 )

↓
fortran77,writetofile

generate Fortran77 code from operation tree
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5 TCE related www links

TCE group home page (members, projects, references) :
http://www.cis.ohio-state.edu/ gb/TCE/
report on TCE :

http://www.e4engineering.com/item.asp?id=49806

NWChem home page :
http://www.emsl.pnl.gov/docs/nwchem/nwchem.html

Global Arrays home page :
http://www.emsl.pnl.gov/docs/global/

Python interpreted, interactive, object-oriented programming language :
http://www.python.org
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6 Python literature

Making Use of Python, Rashi Gupta
John Wiley & Sons; 1st edition (June 15, 2002)
ISBN: 0471219754

Learning Python, David Ascher, Mark Lutz
O’Reilly & Associates; 2nd edition (December 2003)

ISBN: 0596002815
Python in a Nutshell, Alex Martelli
O’Reilly & Associates; 1st edition (March 2003)
ISBN: 0596001886
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