
Model-Driven Search-Based Loop Fusion

Optimization for Handwritten Code

Extended Abstract

Ajay Panyala1, Pamela Bhattacharya2, Gerald Baumgartner1, and
J. Ramanujam3

1 Division of Computer Science and Engineering (School of EECS),
Louisiana State University, Baton Rouge, LA 70803, USA

{ajay,gb}@csc.lsu.edu
2 Department of Computer Science and Engineering,

University of California, Riverside, Riverside, CA 92521, USA
pamelabhattacharya@gmail.com

3 Div. of Electrical and Computer Engineering (School of EECS),
and Center for Computation and Technology,

Louisiana State Univ., Baton Rouge, LA 70803, USA
jxr@ece.lsu.edu

1 Introduction

A large number of scientific and engineering applications are highly data in-
tensive, operating on data sets that range from gigabytes to terabytes, thus
exceeding the physical memory of the machine. Even though the math and logic
behind the application code may be fairly straightforward, the orchestration of
data movement can be very complex.

For example, electronic structure codes, which are widely employed in quan-
tum chemistry, [13, 9], computational physics, and material science, require elab-
orate interactions between subsets of data. Instead of simply bringing data into
the physical memory once, processing it, and then overwriting it by new data,
subsets of data are repeatedly moved back and forth between a small memory
pool, limited physical memory, and a large memory pool, the unlimited disk.
The cost introduced by these data movements can have a large impact on the
overall execution time of the computation. Out-of-core algorithms that explicitly
orchestrate the movement of subsets of data within the memory-disk hierarchy
must ensure that data is processed in subsets small enough to fit in the machine’s
main memory, but large enough to minimize the cost of moving data between
disk and memory.

In previous research, we presented an approach to the automated synthesis
of out-of-core programs [2, 10] in the context of the Tensor Contraction En-
gine (TCE) program synthesis system. [1, 6, 7, 5, 4]. The TCE targets a class
of electronic structure calculations, which involve many computationally inten-
sive components expressed as tensor contractions (essentially generalized ma-



trix products involving higher-dimensional arrays). It generates efficient parallel
and/or out-of-core code from tensor contraction formulas.

While the implementation in the TCE addresses tensor contraction expres-
sions arising in quantum chemistry, the approach developed there has broader
applicability. Our search-based loop fusion optimization has been successful in
the Tensor Contraction Engine for minimizing storage or, together with a search-
based tiling optimization, for automatically generating efficient out-of-core code
from tensor contraction expressions. In this paper, we demonstrate how this ap-
proach can be generalized to handwritten code in the form of imperfectly nested
loop structures operating on arrays potentially larger than the physical mem-
ory size. This would allow translating, for example, handwritten in-core tensor
contraction code into out-of-core code. Such code structures can be found in
computational chemistry packages, such as GAMESS, [14], Gaussian, [8], and
NWChem, [15, 16], or in computational physics codes modeling electronic prop-
erties of semiconductors and metals. We present an adaptation of the loop fu-
sion algorithm to generate GPU or out-of-core code from handwritten code. The
loop fusion algorithm optimizes dense array computations by fusing producer
and consumer loops to minimize the storage requirements for intermediate ar-
rays. It undoes any fusion provided by the programmer and, using a cost model
for memory minimization, searches all loop structures for the memory-minimal
code. Then the fused loops are expanded to tile size and these tiles are used
as units of data transfers between different levels in the memory hierarchy. We
have implemented the fusion algorithm as a source-to-source translation using
the ROSE compiler framework. We demonstrate the effectiveness of this ap-
proach for multicore CPUs and GPUs using an example.

2 Problem

The combination of fusion and tiling optimizations has proven successful in the
TCE for minimizing disk to memory traffic for dense tensor computations. While
other optimizations are specific to tensor contraction expressions, these two op-
timizations can be useful for optimizing handwritten dense array computations.
The fusion and tiling optimizations can be used for different purposes. For ex-
ample, the fusion optimization by itself can be used for minimizing memory re-
quirements for intermediate results [12, 11]. Together with the tiling optimization
and with different cost models, these optimizations can be used for minimizing
disk to memory traffic [2, 10] or for space-time tradeoffs [4]. Since the problem
of making the fusion algorithm work on an abstract syntax tree is independent
of the cost model, we limit the discussion to the use of the fusion algorithm as
a stand-alone optimization for memory minimization.

Consider the multi-dimensional summation shown in Figure 1(a). After al-
gebraic transformations to minimize the operation count, we might arrive at
the formula sequence shown in Figure 1(b) for computing the multi-dimensional
summation. This formula sequence is represented by the expression tree in Fig-
ure 1(c).



W [k] =
∑

i

∑
j

∑
l
(A[i, j]×B[j, k, l]× C[k, l])

(a) A multi-dimensional summation

f1[j] =
∑

i
A[i, j]

f2[j, k, l] = B[j, k, l]× C[k, l]
f3[j, k] =

∑
l
f2[j, k, l]

f4[j, k] = f1[j]× f3[j, k]
W [k] = f5[k] =

∑
j
f4[j, k]

(b) A formula sequence computing (a)
B[j, k, l] C[k, l]

�
�

❅
❅

A[i, j] ×f2

∑
i

∑
k

f1 f3

�
�

❅
❅

×f4

∑
jf5

(c) An expression tree for (b)

Fig. 1. An example multi-dimensional summation and two representations of a com-
putation.

A näıve way to implement the computation is to have a set of perfectly-nested
loops for each node in the tree. But the size of the arrays in this arrangement
could be too high for them to fit in the available memory. Hence, there is a need
to fuse the loops as a means of reducing memory usage. By fusing loops between
the producer loop and the consumer loop of an in-memory array, intermediate
results are formed and used in a pipelined fashion, and they reuse the same
reduced array space. There are many different ways to fuse the loops, which
could result in different memory usage. In this paper, we focus on the non-trivial
problem of finding a loop fusion configuration for well behaved handwritten code
that minimizes memory usage without increasing the operation count.

Our fusion algorithm [12] is a bottom-up dynamic programming algorithm
that operates on expression trees. An expression tree has the advantage that
the consumer of an intermediate array is the parent node of the producer of
that array. Furthermore, all loops are implicit, since the interior nodes in an
expression tree represent array operations. For generalizing the fusion algorithm
to abstract syntax trees with explicit loops, it is necessary to reconstruct the
producer-consumer relationship and recognize any language constructs or code
structures that cannot be optimized with the loop fusion algorithm.

3 Algorithm

Our fusion algorithm searches through possible loop fusion configurations be-
tween the producers and the consumers of intermediates. When operating on
an expression tree, the producer and the consumer of an intermediate are con-
veniently in a parent-child relationship. In handwritten code, they may be in
different loop nests. Furthermore, for handwritten code it is necessary to identify
the code fragments on which a loop fusion optimization can safely be performed.



Our memory minimization algorithm for handwritten code runs the loop fu-
sion algorithm on the dependency graph after a series of traversals of the abstract
syntax tree that prepare the abstract syntax tree for the fusion algorithm and
identify where loop fusion optimizations can safely be performed. After com-
pletion of the loop fusion algorithm, we generate a new abstract syntax tree
that represents the memory-minimal fused code. Our algorithm consists of the
following steps:

Canonicalization moves code containing side effects out of expressions.
Region identification identifies code fragments in which loop fusion

optimizations are safe.
Subscript inference computes the indices needed for intermediates in

unfused code.
Reaching definitions analysis identifies producers and consumers of

intermediate arrays.
Loop fusion optimization identifies the memory-minimal loop fusion

configuration.
Code generation constructs an abstract syntax tree for the optimal

loop fusion configuration.

4 Experimental Evaluation

For demonstrating the effectiveness of our fusion algorithm and compilation
framework, we used handwritten code for the 4-index transformation equation:

B[a, b, c, d] =
∑

s

(C1[s, d]×
∑

r

(C2[r, c]×
∑

q

(C3[q, b]×
∑

p

(C4[p, a]×A[p, q, r, s]))))

In the handwritten code, all loop bounds are compile-time constants and loops
may or may not have been fused. The experiments were performed on a quad-
core Intel Xeon machine with 12GiB of memory and with the tensor dimensions
chosen, such that the unfused code required up to 8.5GiB.

This code is then optimized by our loop fusion algorithm, such that the
storage requirements for intermediate tensors are minimized. This results in
increased temporal locality between producer and consumer, but causes poor
temporal locality within a contraction because of the elimination of entire ten-
sor dimensions. Dimensions that were eliminated were then manually expanded
to tiles to improve temporal locality within a contraction while staying within
the memory limit. The inner-most loop nests, which now represent the tensor
contraction on a tile, were then manually replaced by index permutation and
matrix multiplication library calls. We generated versions of the code for single-
core, multi-core, and GPU architectures.

We compared the performance of the code resulting from our optimiza-
tion approach with code produced using polyhedral model optimization. For
single-core and multi-core code, we compared against code generated by Pluto,
Version 0.9.0-36-g5fb218a [3]. For GPUs, we compared against PPCG, Version



c7179a0 [17]. As input to these tools we used both unfused and fused code. In all
cases, the code generated by our optimization approach outperformed the code
generated by the polyhedral model optimizers by at least a factor of two.

Acknowledgments This work was supported in part by the National Science
Foundation under grants CNS-0509467, CCF-0541409, OCI-0926687, and CNS-
1059417.

References

1. G. Baumgartner, A. Auer, D. Bernholdt, A. Bibireata, V. Choppella, D. Cociorva,
X. Gao, R. Harrison, S. Hirata, S. Krishnamoorthy, S. Krishnan, C. Lam, Q. Lu,
M. Nooijen, R. Pitzer, J. Ramanujam, P. Sadayappan, and A. Sibiryakov. Synthesis
of high-performance parallel programs for a class of ab initio quantum chemistry
models. Proceedings of the IEEE, 93(2):276–292, February 2005.

2. A. Bibireata, S. Krishnan, D. Cociorva, G. Baumgartner, C. Lam, P. Sadayappan,
J. Ramanujam, D. Bernholdt, and V. Choppella. Memory-constrained data locality
optimization for tensor contractions. In Proceedings of the 16th Workshop on
Languages and Compilers for Parallel Computing, College Station, Texas, October
2003.

3. U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan. A practical
automatic polyhedral parallelizer and locality optimizer. In Proceedings of the 2008
ACM SIGPLAN conference on Programming language design and implementation,
PLDI ’08, pages 101–113, New York, NY, USA, 2008. ACM.

4. D. Cociorva, G. Baumgartner, C. Lam, P. Sadayappan, J. Ramanujam, M. Nooi-
jen, D. Bernholdt, and R. Harrison. Space-time trade-off optimization for a class
of electronic structure calculations. In Proceedings of the ACM SIGPLAN 2002
Conference on Programming Language Design and Implementation (PLDI), pages
177–186, June 2002.

5. D. Cociorva, X. Gao, S. Krishnan, G. Baumgartner, C. Lam, P. Sadayappan, and
J. Ramanujam. Global communication optimization for tensor contraction expres-
sions under memory constraints. In Proceedings of Seventeenth International Par-
allel and Distributed Processing Symposium (IPDPS ’03), page 37b, Nice, France,
Apr. 2003. IEEE Computer Society Press.

6. X. Gao, S. Krishnamoorthy, S. Sahoo, C. Lam, G. Baumgartner, J. Ramanu-
jam, and P. Sadayappan. Efficient search-space pruning for integrated fusion and
tiling transformations. Concurrency and Computation: Practice and Experience,
19(18):2425–2443, December 2007.

7. X. Gao, S. Sahoo, Q. Lu, G. Baumgartner, C. Lam, J. Ramanujam, and P. Sa-
dayappan. Performance modeling and optimization of parallel out-of-core tensor
contractions. In Proceedings of the ACM SIGPLAN 2005 Symposium on Principles
and Practice of Parallel Programming, pages 266–276, Chicago, IL, June 2005.

8. J. Foresman and A. Frisch. Exploring Chemistry with Electronic Structure Methods:
A Guide to Using Gaussian. Gaussian, Inc., 2 edition, 1996.

9. J. M. L. Martin. In P. v. R. Schleyer, P. R. Schreiner, N. L. Allinger, T. Clark, J.
Gasteiger, P. Kollman, H. F. Schaefer III (Eds.). . Encyclopedia of Computational
Chemistry, 1:115–128, 1998.



10. S. Krishnan, S. Krishnamoorthy, G. Baumgartner, D. Cociorva, P. S. C. Lam,
J. Ramanujam, D. Bernholdt, and V. Choppella. Data locality optimization for
synthesis of efficient out-of-core algorithms. In Proceedings of the the Intl. Conf. on
High Performance Computing, volume 2913 of Lecture Notes in Computer Science,
pages 406–417, Hyderabad, India, December 2003. Springer-Verlag.

11. C. Lam. Performance Optimization of a Class of Loops Implementing Multi-
Dimensional Integrals. PhD thesis, The Ohio State University, Columbus, OH,
August 1999.

12. C. Lam, D. Cociorva, G. Baumgartner, and P. Sadayappan. Optimization of mem-
ory usage requirement for a class of loops implementing multi-dimensional inte-
grals. In Proceedings of the Twelfth Workshop on Languages and Compilers for
Parallel Computing, pages 350–364, San Diego, CA, 1999.

13. T. J. Lee and G. E. Scuseria. Achieving chemical accuracy with coupled clus-
ter theory. In S. R. Langhoff, editor, Quantum Mechanical Electronic Structure
Calculations with Chemical Accuracy, pages 47–109. Kluwer Academic, 1997.

14. M. Schmidt, K. Baldridge, J. Boatz, S. Elbert, M. Gordon, J. Jensen, S. Koseki,
N. Matsunaga, K. Nguyen, S. Su, T. Windus, M. Dupuis, and J. Montgomery.
General Atomic and Molecular Electronic Structure System (GAMESS). Journal
on Computational Chemistry, 14:1347–1363, 1993.

15. T. P. Straatsma, E. Aprà, T. L. Windus, E. J. Bylaska, W. de Jong, S. Hi-
rata, M. Valiev, M. Hackler, L. Pollack, R. Harrison, M. Dupuis, D. M. A.
Smith, J. Nieplocha, V. Tipparaju, M. Krishnan, A. A. Auer, E. Brown, G. Cis-
neros, G. Fann, H. Früchtl, J. Garza, K. Hirao, R. Kendall, J. Nichols, K. Tse-
mekham, K. Wolinski, J. Anchell, D. Bernholdt, P. Borowski, T. Clark, D. Clerc,
H. Dachsel, M. Deegan, K. Dyall, D. Elwood, E. Glendening, M. Gutowski, A. Hess,
J. Jaffee, B. Johnson, J. Ju, R. Kobayashi, R. Kutteh, Z. Lin, R. Littlefield,
X. Long, B. Meng, T. Nakajima, S. Niu, M. Rosing, G. Sandrone, M. Stave,
H. Taylor, G. Thomas, J. van Lenthe, A. Wong, and Z. Zhang. NWChem, A
Computational Chemistry Package for Parallel Computers, Version 4.6. Pacific
Northwest National Laboratory, Richland, Washington 99352–0999, USA, 2004.
http://www.emsl.pnl.gov/docs/nwchem/.

16. M. Valiev, E. Bylaska, N. Govind, K. Kowalski, T. Straatsma, H. V. Dam, D. Wang,
J. Nieplocha, E. Apra, T. Windus, and W. de Jong. Nwchem: A comprehensive
and scalable open-source solution for large scale molecular simulations. Computer
Physics Communications, 181(9):1477 – 1489, 2010.

17. S. Verdoolaege, J. C. Juega, A. Cohen, J. I. Gómez, C. Tenllado, and F. Catthoor.
Polyhedral Parallel Code Generation for CUDA. ACM Transactions on Architec-
ture and Code Optimization, 9(4), 2013. Selected for presentation at the HiPEAC
2013 Conf.


