
Automated Operation Minimization of Tensor
Contraction Expressions in Electronic Structure

Calculations

Albert Hartono,1 Alexander Sibiryakov,1 Marcel Nooijen,3 Gerald Baumgartner,4

David E. Bernholdt,6 So Hirata,7 Chi-Chung Lam,1 Russell M. Pitzer,2

J. Ramanujam,5 and P. Sadayappan1

1 Dept. of Computer Science and Engineering
2 Dept. of Chemistry

The Ohio State University, Columbus, OH, 43210 USA
3 Dept. of Chemistry, University of Waterloo, Waterloo, Ontario N2L BG1, Canada

4 Dept. of Computer Science
5 Dept. of Electrical and Computer Engineering

Louisiana State University, Baton Rouge, LA 70803 USA
6 Computer Sci. & Math. Div., Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA

7 Quantum Theory Project, University of Florida, Gainesville, FL 32611 USA

Abstract. Complex tensor contraction expressions arise in accurate electronic struc-
ture models in quantum chemistry, such as the Coupled Cluster method. Transfor-
mations using algebraic properties of commutativity and associativity can be used
to significantly decrease the number of arithmetic operations required for evalua-
tion of these expressions, but the optimization problem is NP-hard. Operation mini-
mization is an important optimization step for the Tensor Contraction Engine, a tool
being developed for the automatic transformation of high-level tensor contraction
expressions into efficient programs. In this paper, we develop an effective heuristic
approach to the operation minimization problem, and demonstrate its effectiveness
on tensor contraction expressions for coupled cluster equations.

1 Introduction

Currently, manual development of accurate quantum chemistry models is very tedious
and takes an expert several months to years to develop and debug. The Tensor Contrac-
tion Engine (TCE) [2, 1] is a tool that is being developed to reduce the development time
to hours/days, by having the chemist specify the computation in a high-level form, from
which an efficient parallel program is automatically synthesized. This should enable the
rapid synthesis of high-performance implementations of sophisticated ab-initio quantum
chemistry models, including models that are too tedious for manual development by quan-
tum chemists. An important first step in the synthesis process of the TCE is that of alge-
braic manipulation of the input tensor contraction expressions, to find an equivalent form
with minimized operation count.

We illustrate the operation minimization problem using simple examples. Consider
the following tensor contraction expression involving three tensors t, f and s, with a and
c representing virtual orbital indices with range V , and i and j representing occupied
orbital indices with range O. Computed as a single nested loop computation, the number
of multiply-accumulate operations needed would be O2V 2.

(1) ra
i += ∑c,k tc

i f k
c sa

k , (cost O2V 2)
However, by performing a two-step computation with an intermediate I, it is possible

to compute the result using 2OV 2 operations:

(2) Ia
c = ∑k f k

c sa
k , (cost OV 2)

(3) ra
i += ∑c tc

i Ia
c , (cost OV 2)

Another possibility using O2V computations, which is more efficient when V > O (as
is usually the case), is shown below:

(4) Ik
i = ∑c tc

i f k
c , (cost O2V)

(5) ra
i += ∑k Ik

i sa
k , (cost O2V)

The above example illustrates the problem of single-term optimization, also called
strength reduction: find the best sequence of two-tensor contractions to achieve a multi-
tensor contraction. Different orders of contraction can result in very different operation
costs; for the above example, if the ratio of V/O were 10, there is an order of magnitude
difference in the number of arithmetic operations for the two choices.

For more complex expressions with several tensors to be contracted, the number of
possible ways of forming intermediates is exponential in the number of tensors. The
single-term optimization problem is a generalization of the well known matrix-chain mul-
tiplication problem, but while the latter has a simple polynomial time dynamic program-
ming solution, the former problem has been shown to be NP-complete [8].

Let us next consider an expression with two terms:
(6) rab

i j += ∑c,d tc
i sd

j v
ab
cd +∑c,d ucd

i j vab
cd , (cost 2O2V 4)

If each term were individually optimized via strength reduction, we would have:
(7) Iab

id = ∑c tc
i vab

cd , (cost OV 4)

(8) rab
i j += ∑d sd

j I
ab
id +∑c,d ucd

i j vab
cd , (cost O2V 3 +O2V 4)

However, a better approach to reducing the overall operation cost would be as follows:
(9) Icd

i j = tc
i sd

j +ucd
i j , (cost O2V 2)

(10) rab
i j += ∑c,d Icd

i j vab
cd , (cost O2V 4)

Thus it can be seen that single-term optimization (strength reduction) is not an optimal
strategy. We have to look at the expression in the global context to determine the optimal
evaluation. Evaluation of the binary terms in an expression constitute an intrinsic cost to
evaluating the tensor product. Little can be done (except for instances of factorization of
the form AC+BC → (A+B)C) to reduce the cost of the binary terms. However, the cost of
evaluating terms that are ternary or higher can be greatly reduced by combining them with
the binary terms that have to be evaluated anyway. In the present example, the additional
cost of evaluating the ternary term is reduced from OV 4 +O2V 3 to O2V 2. The expensive
O2V 4 multiplication that would be counted in single term optimization disappears as the
multiplication has to be done anyway in the binary term.

The goal of operation minimization is to find an optimal or near-optimal factoriza-
tion of the input tensor contraction expression to evaluate the ternary+ terms, given the
presence of the binary terms that carry an intrinsic basic cost. In this paper, we develop
algorithms for operation minimization. The solution presented in this paper is an exten-
sion of the techniques first reported in [11]. The conceptually simplest approach is to
use an exhaustive search algorithm that is guaranteed to determine the optimal factoriza-
tion. However, its runtime grows exponentially with the number of terms in the tensor
contraction expression, making it infeasible for use on the more complex coupled clus-
ter equations. We then develop heuristic search strategies for the operation minimization
problem. The best algorithm is found to be a random-descent heuristic, which is then
used to explore the generated solutions for a range of values of V/O. The results validate
the effectiveness of the use of an automated approach to generating operation-minimal
factorizations for large tensor contraction expressions.

2 Related Work

Compilers use common subexpression elimination to reduce the number of arithmetic op-
erations [4]. However they do not consider algebraic properties such as associativity and
distributivity. Computer algebra systems typically contain factorization algorithms, e.g.,
for finding roots of polynomials [3]. Similarly, an algorithm based on factor graphs can
be used to factor functions of many variables into products of local functions [6]. How-
ever, the emphasis of these approaches is mainly on symbolic manipulation instead of on
minimizing operation counts based on index range information. Winograd [13] addressed
the general problem of evaluating multiple expressions that share common variables using
the minimum number of arithmetic operations. Miller [9] suggested several analytical and
numerical techniques for reducing the operation count in computational electromagnetic
applications.

The work presented in this paper builds upon methods developed in a recent thesis
by Sibiryakov [11]. The problem of strength reduction for arbitrary tensor contraction
expressions was addressed in [8, 7]. We are not aware of other work that has addressed
in a general manner the operation minimization problem that we consider in this paper.
In developing efficient implementations of electronic structure methods such as the cou-
pled cluster methods [10, 12], quantum chemists have used domain heuristics for strength
reduction and factorization for specific kinds of tensor contraction expressions, but have
not developed approaches to solve the operation minimization problem for arbitrary ten-
sor contraction expressions.

3 Operation Minimization Algorithms

In this section, we outline several algorithms for the operation minimization problem. Due
to space limitations, pseudo-code and details are omitted, but may be found in [5].

3.1 Exhaustive Search

We first describe an exhaustive search algorithm that systematically evaluates all possible
factorizations of the input tensor contraction expression to determine the form with lowest
operation count. This search is implemented recursively using memoization, which is
equivalent to a dynamic programming approach implemented in a top-down manner.

Considering a particular tensor as a factor, exhaustive search enumerates all possible
factorizations, which grows exponentially. If a factor appears in n terms of the tensor
contraction expression, the number of possible factorizations with respect to that factor
is 2n − n. For instance, all possible factorizations of an expression AB + AC + AD are
AB+AC +AD, A(B+C)+AD, A(B+D)+AC, A(C +D)+AB, and A(B+C +D).

As in standard dynamic programming, a storage table is maintained with solutions for
subexpressions; hence, we need not re-evaluate subexpressions that have been previously
considered. Matching two equivalent expressions requires generating canonical forms of
both expressions. If a canonical form of a subexpression is found as a key in the storage
table, the corresponding entry value, which is the optimal solution of the subexpression, is
fetched and replicated. The indices of replica may differ from the original subexpression;
thus, renaming indices of the replica is required.

The exhaustive search algorithm is guaranteed to find the operation-minimal factor-
ization of the input expression, but since its time complexity grows exponentially with
the number of terms, it may be impractical to use in optimizing expressions with a large
number of terms. We therefore also implemented several heuristic search strategies for
operation minimization.

3.2 Time-Limited Exhaustive Search with Tier-Based Partitioning
By imposing a time limit, we can avoid an indefinitely long search time that often occurs
in exhaustive search. Each time exhaustive search exceeds the specified time limit, we
suspend the search and store the result of the partially executed exhaustive search. After-
ward the original expression is divided into two smaller groups each with half the original
group’s terms. These two subsets of terms can be individually factorized using the same
time-limited exhaustive search and the partially factored terms can then be recombined.
The cost of the combined expression is compared with the result of the timed exhaustive
search that was previously interrupted. The result with the minimum operation count is
returned. The splitting process is continued till each group of terms is successfully factor-
ized within the time limit.

Prior to each splitting, it is essential to sort the expression terms in a decreasing order
of term cost (as determined by single-term optimization), allowing higher-ordered terms
to be placed and optimized in the same group after the splitting.

In the worst case, a splitting can occur whenever a time-limited exhaustive search
is applied. We can view these recursive splittings as a binary tree in which each node
represents one exhaustive search. The maximum number of nodes in such a binary tree
will be ∑log2N

i=0 (N
2i)≈ 2N, where N indicates the number of terms in the original expression.

Therefore, the time complexity of time-limited exhaustive search is O(T N), where T
is the given time limit. For generating experimental results in this paper, the time limit
used for exhaustive search was set to ten minutes. In addition, very similar results were
also obtained with a shorter time limit of ten seconds, demonstrating the efficacy of the
algorithm in finding a reasonable solution quickly.

We evaluated another approach to partitioning based on tier groups. Two terms are
placed into the same tier group if they have the same number of tensors. The terms in
the input expression are first partitioned into tier groups. Optimizing and combining tier
groups is done incrementally. Suppose we have groups at tier 2, tier 3, and tier 4. We first
optimize tier 2 with timed exhaustive search. The optimized tier 2 terms are then grouped
together with the unoptimized tier 3 terms and then optimized with timed exhaustive
search. Then this result is grouped with the unoptimized tier 4 terms and then optimized
again with timed exhaustive search.

3.3 Direct Descent Search
Direct descent is a greedy algorithm that chooses the best local factorization at every step.
All pairs of terms that can be combined using the distributive property of multiplication
over addition are considered, and the transformation that provides the greatest reduction
in operation count is chosen. For a particular factor, if the number of factorizable terms in
the expression is n the total number of possible two-term factorizations is n(n−1)/2. At
every step, all possible two-term factorizations are evaluated and the best one is chosen;
this process is repeated until no more factorization is possible. Based on the number of
factorizations considered at each step, the runtime complexity of direct descent obviously
grows polynomially with the degree of terms in the input expression.

3.4 Random Descent Search
Random descent search is a modified version of direct descent search that attempts to
avoid some local minima by making random choices for two-term factorization at the
initial steps. These random moves are then followed by direct descent moves. Through
experimentation, it was found best to make the number of random moves to be one fourth
of the total number of terms in the input expressions. Using too many random factoriza-
tions at the initial steps was found to give poorer results; too few random factorizations at

the initial steps did not contribute a significant improvement. In order to further minimize
the operation count, we first execute a direct descent search and store its factorization re-
sult; after that, one hundred attempts of random descent are repeated. The best result from
these one hundred tries is compared with the result of direct descent that was initially ex-
ecuted. The result with the minimum operation count is returned.

4 Experimental Results

We have implemented the algorithms for searching a formula with minimum number of
operations as described previously. They were tested on complex tensor contraction ex-
pressions that appear in the “coupled cluster” family of quantum chemical methods. We
used the coupled cluster equations including just single and double excitations (CCSD)
and also single, double, and triple excitations (CCSDT) as representatives of the many dif-
ferent computational chemistry methods based on tensor contraction expressions. These
methods involve coupled equations which determine the single excitation amplitudes (re-
ferred to here the “T1” equation), double excitation amplitudes (T2), and in the case of
CCSDT, triple excitations (T3).

Table 1 shows the number of terms in each of the equations, along with the number
of arithmetic operations of evaluating the equation. The number of arithmetic operations
depends upon O and V , which vary depending on the molecule and desired quality of
the simulation, but a typical range is 1 ≤ V/O ≤ 100. To provide concrete comparisons,
we set O to 10 and V to 100, giving the numerical values in Table 1. This is representa-
tive of calculations of modest size that could be done on a workstation and will be used
throughout this paper unless otherwise noted.

In order to focus on the effects of the optimization algorithms, we eliminate the bi-
nary terms from the input equations and consider only the ternary and higher terms, as
described in the introduction. The optimal cost of the binary terms of each equation can
be seen in the last column of Table 1.

Table 2 illustrates the results obtained by optimizing the five equations with the algo-
rithms described previously. Exhaustive search results are shown only for the T1 equations

Table 1. Characteristics of the fully unfactorized input equations used in this experiment

Equation Number Operation count Operation count (with single Operation count
of terms (no optimization) term optimization only) of optimal binary terms

CCSD T1 14 1.78 ·1010 3.11 ·108 2.24 ·108

CCSD T2 31 4.90 ·1013 3.58 ·1010 2.27 ·1010

CCSDT T1 15 2.08 ·1010 2.31 ·109 2.22 ·109

CCSDT T2 37 6.13 ·1013 3.00 ·1011 2.45 ·1011

CCSDT T3 47 9.34 ·1016 3.26 ·1013 2.26 ·1013

Table 2. The operation counts of expressions optimized by different algorithms

Ternary+ operation count
Equation Single Term Exhaustive Timed Exhaustive with Direct Descent Random Descent

Tier-Based Partitioning
CCSD T1 8.65 ·107 4.73 ·107 4.73 ·107 4.73 ·107 4.73 ·107

CCSD T2 1.31 ·1010 – 5.18 ·109 5.33 ·109 5.14 ·109

CCSDT T1 8.65 ·107 4.73 ·107 4.73 ·107 4.73 ·107 4.73 ·107

CCSDT T2 5.52 ·1010 – 5.57 ·109 5.57 ·109 5.37 ·109

CCSDT T3 9.94 ·1012 – 9.80 ·1011 9.17 ·1011 9.17 ·1011

Table 3. Ternary+ operation count for CCSD T2

Optimized Actual V/O
for V/O 1 2 3 5 10 100

2 7.41 ·106 4.52 ·107 1.46 ·108 7.20 ·108 7.47 ·109 4.41 ·1013

5 1.05 ·107 5.88 ·107 1.73 ·108 7.08 ·108 5.14 ·109 4.67 ·1012

10 1.07 ·107 5.95 ·107 1.74 ·108 7.13 ·108 5.15 ·109 4.67 ·1012

Opt. V/O Leading terms of cost function in symbolic form
2 2O3V 3 +2O4V 2 +4OV 4 +10O2V 3 +10O3V 2 +6O4V + . . .

5 4O3V 3 +4O4V 2 +6O2V 3 +8O3V 2 +6O4V + . . .

10 4O3V 3 +4O4V 2 +6O2V 3 +8O3V 2 +6O4V + . . .

Table 4. Ternary+ operation count for CCSDT T2

Optimized Actual V/O
for V/O 1 2 3 5 10 100

2 7.85 ·106 4.77 ·107 1.54 ·108 7.52 ·108 7.70 ·109 4.43 ·1013

5 9.88 ·106 5.89 ·107 1.78 ·108 7.55 ·108 5.63 ·109 5.28 ·1012

10 1.09 ·107 6.13 ·107 1.80 ·108 7.40 ·108 5.37 ·109 4.88 ·1012

Opt. V/O Leading terms of cost function in symbolic form
2 2O3V 3 +2O4V 2 +4OV 4 +12O2V 3 +12O3V 2 +6O4V + . . .

5 4O3V 3 +2O4V 2 +12O2V 3 +16O3V 2 +6O4V + . . .

10 4O3V 3 +4O4V 2 +8O2V 3 +10O3V 2 +6O4V + . . .

Table 5. Percentage of ternary+ operation count

V/O 1 2 3 5 10 100
%ternary+ (CCSD) 51.72 42.50 36.98 30.47 18.47 2.26
%ternary+ (CCSDT) 18.94 13.57 10.45 7.08 3.87 0.33

because they are the only ones small enough for this approach to be feasible. All heuristic
algorithms find the optimal factorization in small cases (i.e., the T1 equations), and in the
other cases produce very similar results, which have less than one percent differences. The
direct descent results illustrate its tendency to get stuck in local minima and not find an
optimal factorization. Random descent sometimes offers improvement and consistently
performs the best of all of the algorithms described.

To examine the behavior of the random descent search in more detail, we examined
the effect of varying the V/O ratio. Changing this ratio will change the actual costs of
each term and may even change the optimal factorization. Tables 3 and 4 illustrates these
effects. Operation counts are shown for V/O ratios ranging from 1 to 10, for factorizations
of the CCSD T2 and CCSDT T2 equations that have been optimized explicitly for V/O
ratios of 2, 5, and 10. This is representative of how the results of this optimization are
likely to be used in practice: code will be automatically generated for selected values of
V/O spanning the range of interest, and at runtime, the best available version will be
selected based on the actual V and O for the molecule under study. The results clearly
illustrate the value of tailoring the factorization to the V/O of interest. For example, using
the factorization that is optimal for V/O = 2 for a calculation in which V/O = 100 yields
an operation count that is an order of magnitude larger than in the more optimal case using
the algorithm optimized for V/O = 10. Conversely, using an algorithm optimized for the
large V/O = 10 ratio is clearly not optimal if V/O is small, e.g. 1. In Table 3 the symbolic

operation count is given for the CCSD T2 equation for the various factorization solutions.
For the larger V/O ratios of 5 and 10, no terms are used that scale as V 4 or OV 4, as are
present (and underlined) in the factorization scheme optimized for V/O = 2. Instead the
algorithm prefers to use more terms that scale as O3V 3 (four instead of two), and there is
an interesting tradeoff between terms that formally scale as N5 vs. N6, where N indicates
O or V .

Similar conclusions can be drawn from Table 4. Comparing the optimized algorithms
for V/O = 2 and V/O = 10 for various values of actual V/O ratios we clearly see that
for small V/O values, the V/O = 10 solution is about 30% more costly than the V/O = 2
solution, while at the other end of the spectrum the V/O = 10 solution is about an order
of magnitude more efficient. Similar tradeoffs as in case of the CCSD T2 equations are at
work to determine the best overall factorization scheme, depending on the actual V and O
values.

The present computer optimized factorization can be contrasted with current (hand-
written) implementations of coupled cluster methods. In traditional implementations, fac-
torization is considered only at a symbolic level, trying to reduce the V exponent first,
then the O exponent, then the factor in front of the cost term; typically, little attention is
paid to terms beyond the highest order (in the sum of the O and V exponents). This ap-
proach doesn’t fully consider the ratio of V/O, and the possibility that terms considered
lower order might result in an operation count comparable to higher order terms with a
different balance of O and V exponents. The equation parts of Tables 3 and 4 illustrates
this idea, with the symbolic costs of the different factorizations found for different V/O
ratios. Comparing, for example, the costs of the CCSD T2 equation factored for V/O = 2
and V/O = 5, we observe that N6 terms have higher coefficients in V/O = 5 than in
V/O = 2, while the OV 4 term has been entirely eliminated from V/O = 5. The larger
V space means that it is more cost-effective to evaluate more N6 terms with a lower V
exponent than the N5 term OV 4. A similar cross-over occurs in the CCSDT T2 equations
between V/O = 2 and V/O = 5. Moreover, changes in term coefficients take place in
the CCSDT T2 equations where V/O = 5 and V/O = 10. In the V/O = 10 equation the
coefficient of the O4V 2 term is higher than that in the V/O = 5 equation, while it is vice
versa for the O2V 3 term. This is an important result because it runs counter to the intuition
(and accepted practice) of most quantum chemists. Let us note that it is not only the ratio
V/O which determines the optimal factorization, but also their individual sizes as there is
a trade-off between overall N5 and N6 terms in achieving optimal performance.

Interestingly, the random descent algorithm not necessarily finds the optimal factor-
ization. This can be seen from Table 4 where the algorithm optimized for V/O = 10
performs better for the actual V/O = 5 ratio than the algorithm that was explicitly opti-
mized for this case. This shows that there is still some room for improvement.

To put these results, obtained for the ternary and higher terms only, in proper perspec-
tive, Table 5 shows the percentage of the total computational cost due to the ternary and
higher terms as a function of the V/O ratio. It is seen that the ternary+ cost is a sizable
fraction of the overall calculation for lower V/O ratios, but it can rapidly become a rather
small fraction of the overall cost if V/O is large, in particular for CCSDT. In such cases
single term optimization might suffice. However it must be noted that these percentages
do not tell the entire story. On modern hierarchical memory systems, the binary terms can
typically be implemented with significantly greater efficiency than the ternary+ terms, so
that a simple operation count underestimates their importance to the overall computation.
Further, the present optimization scheme for factorization is quite generally applicable,
and the efficiency gains can be expected to be very relevant for computational schemes

that are not dominated by the binary terms. The factorization of more complicated, yet
efficient theoretical models in quantum chemistry will be explored in our future work.

5 Conclusions
In this paper we presented heuristic and exhaustive search algorithms for operation min-
imization of complex tensor expressions occurring for example in quantum chemistry.
It has been demonstrated that optimal factorization depends on the precise sizes of the
index ranges of the tensors involved, and therefore very different computer implemen-
tations will be optimal for different size problems. We found that the random descent
algorithm works best, although this search algorithm can be expensive for complicated
cases. The time-limited exhaustive search with tier-based partitioning algorithm is often a
cost-effective alternative; in addition, we believe this can provide a suitable starting point
that can be subject to further optimizations.

Acknowledgments This work has been supported in part by the U.S. National Science
Foundation, the Laboratory Directed Research and Development Program of Oak Ridge
National Laboratory (ORNL), and by a Discovery grant from the Natural Sciences and
Engineering Research Council of Canada. ORNL is managed by UT-Battelle, LLC for
the US Dept. of Energy under contract DE-AC-05-00OR22725.

References
1. G. Baumgartner, A. Auer, D. Bernholdt, A. Bibireata, V. Choppella, D. Cociorva, X. Gao,

R. Harrison, S. Hirata, S. Krishnamoorthy, S. Krishnan, C. Lam, Q. Lu, M. Nooijen, R. Pitzer,
J. Ramanujam, P. Sadayappan, and A. Sibiryakov. Synthesis of high-performance parallel pro-
grams for a class of ab initio quantum chemistry models. Proceedings of the IEEE, 93(2):276–
292, February 2005.

2. G. Baumgartner, D.E. Bernholdt, D. Cociorva, R. Harrison, S. Hirata, C. Lam, M. Nooijen,
R. Pitzer, J. Ramanujam, and P. Sadayappan. A high-level approach to synthesis of high-
performance codes for quantum chemistry. In Proc. of Supercomputing 2002, November 2002.

3. B. Buchberger, G. Collins, and R. Loos, editors. Computer Algebra: Symbolic and Algebraic
Computation. Springer-Verlag, New York, 1983.

4. C.N. Fischer and R.J. LeBlanc Jr. Crafting a Compiler. Benjamin/Cummings, 1991.
5. A. Hartono, A. Sibiryakov, M. Nooijen, G. Baumgartner, D. Bernholdt, S. Hirata, C. Lam,

R. Pitzer, J. Ramanujam, and P. Sadayappan. Automated operation minimization of tensor
contraction expressions in electronic structure calculations. Technical Report OSU-CISRC-
2/05-TR10, Computer Science and Engineering Department, The Ohio State University, 2005.

6. F. Kschischang, B. Frey, and H. Loeliger. Factor graphs and the sum-product algorithm. IEEE
Transactions on Information Theory, 47(2):498–519, February 2001.

7. C. Lam. Performance Optimization of a Class of Loops Implementing Multi-Dimensional In-
tegrals. PhD thesis, The Ohio State University, Columbus, OH, August 1999.

8. C. Lam, P. Sadayappan, and R. Wenger. On optimizing a class of multi-dimensional loops with
reductions for parallel execution. Parallel Processing Letters, 7(2):157–168, 1997.

9. E.K. Miller. Solving bigger problems by decreasing the operation count and increasing com-
putation bandwidth. Proceedings of the IEEE, 79(10):1493–1504, October 1991.

10. G.E. Scuseria, C.L. Janssen, and H.F. Schaefer III. An efficient reformulation of the closed-
shell coupled cluster single and double excitation (CCSD) equations. The Journal of Chemical
Physics, 89(12):7382–7387, 1988.

11. A. Sibiryakov. Operation Optimization of Tensor Contraction Expression. Master’s thesis, The
Ohio State University, Columbus, OH, August 2004.

12. J.F. Stanton, J. Gauss, J.D. Watts, and R.J. Bartlett. A direct product decomposition approach
for symmetry exploitation in many-body methods. I. Energy calculations. The Journal of
Chemical Physics, 94(6):4334–4345, 1991.

13. S. Winograd. Arithmetic Complexity of Computations. Society for Industrial and Applied
Mathematics, Philadelphia, PA, 1980.

