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Abstract

The Global Arrays (GA) toolkit provides a shared-
memory programming model in which data locality is
explicitly managed by the programmer. It inter-operates
with MPI and supports a variety of language bindings.
The Disk Resident Arrays (DRA) model extends the
GA programming model to secondary storage. GA and
DRA together provide a convenient programming model
that encourages locality-aware programming by the user,
while providing a high-level abstraction. High perfor-
mance depends on the appropriate distribution of disk-
resident arrays. In this paper, we discuss the addition
of layout transformation support to DRA. The implemen-
tation of an efficient parallel layout transformation al-
gorithm is done on top of existing GA/DRA functions;
thus GA/DRA is itself used in implementing the enhanced
DRA functionality. Experimental performance data is
provided that demonstrates the effectiveness of the new
layout transformation functionality.

∗Supported in part by the National Science Foundation through the
Information Technology Research program (CHE-0121676) and Pacific
Northwest National Laboratory

1 Introduction

The Global Arrays (GA) library [19] [20] provides a
shared-memory programming model in which data local-
ity is explicitly managed by the programmer. Explicit
function calls are used to transfer data between the global
address space and local storage. It is similar to distributed
shared-memory models in providing an explicit acquire-
release protocol. However, it also acknowledges that lo-
cal data access is faster than remote data access. The GA
model exposes to the programmer the hierarchical nature
of memory in modern high-performance computer sys-
tems, and by recognizing the communication overhead for
remote data transfer, it promotes data reuse and locality of
reference. Its focus is on array data types and blocked ac-
cess patterns. The GA programming model inter-operates
with the message passing model; in particular, the pro-
grammer can use full MPI functionality on both GA and
non-GA data. The library can be used in C, C++, Fortran
77, Fortran 90 and Python programs. This functionality
has proved useful in numerous significant computational
chemistry applications, such as NWChem, that comprise
over a million lines of code. [21].

The Disk Resident Arrays (DRA) model [18] extends
the GA programming model to secondary storage (Fig. 1).

1



It provides a disk-based representation of arrays, and
functions to transfer blocks of data between global arrays
and disk resident arrays. Hence, it allows programmers
to access data located on disk via a simple interface ex-
pressed in terms of arrays rather than files. The benefits
of GA (in particular, the absence of complex index calcu-
lations and the use of optimized array communication) are
extended by DRA to programs that operate on arrays that
are too large to fit in memory. DRA, along with GA, pro-
vides a unified programming model for handling different
levels of the memory hierarchy, in which the user controls
the location of data in the memory hierarchy. This has
been shown to significantly improve performance while
providing a programming model that is simpler than mes-
sage passing.

Implementations of out-of-core computations can use
disk resident arrays to implement user-controlled virtual
memory, locating on disk the arrays that are too big to fit
in aggregate physical memory, and transferring sections
of these disk resident arrays into main memory for use
in the computation. DRA functions can be used to read a
section of a disk resident array into a global array and indi-
vidual processors then use GA functions to transfer global
array components to local memory. DRA has been de-
signed to support collective transfers of large data blocks.
No attempts are made to optimize performance for small
(less than 1MB) requests.

Performance studies [18, 4] have demonstrated that
DRA is capable of achieving high performance in a vari-
ety of situations. However, high performance may depend
on appropriate choices being made for two classes of key
performance parameters:

• Library configuration parameters. These parameters
include the number of I/O nodes used, the I/O buffer
size on each I/O node, the communication mecha-
nisms used, and the underlying file system used, to-
gether with the specific file system facilities used,
such as the use of a special file mode, a special file
layout, or a particular file system policy.

• Disk array distribution parameters. These param-
eters describe various aspects of the distribution of
the array data on disks.

Application developers can provide hints that guide,
but do not direct, disk array distribution. DRA uses
these hints (which can indicate, for example, the
shape and size of a typical I/O request) as well as in-
formation about the internal I/O buffer size and file
system characteristics to choose a disk array distri-
bution.

Figure 1: Role of GA and DRA in managing the memory
hierarchy

The library configuration parameters are specified dur-
ing the compilation of the library. The array layout is
more dynamic and the appropriate parameters can vary
at runtime. In this paper, we discuss the addition of layout
transformation support to the GA/DRA framework.

We first describe an approach to efficient sequential
data layout transformation for disk resident arrays. When
we investigated the generation of a parallel implemen-
tation of the disk layout transformation algorithm, the
needed inter-processor communication pattern was found
to be quite complex. However, it was possible to use
existing GA/DRA primitives to greatly simplify the pro-
gramming of the parallel layout transformation algorithm.
Henceforth, GA and DRA will be used to refer both to the
libraries and the arrays used by them - the usage will be
clear from the context.

The paper is organized as follows. Section 2 motivates
the need for layout transformation. The layout transfor-
mation problem is defined in Section 3. The algorithm de-
sign is explained in Section 4. The considerations leading
to the parallel implementation, including load balancing
of computation, are discussed in Section 5. Experimental
results are presented in Section 6. Section 7 concludes the
paper.

2 Motivation

Many scientific and engineering applications need to op-
erate on data sets that are too large to fit in the physical
memory of the machine. Due to the extremely large seek
time relative to the per-word transfer time for disk access,
it is imperative that I/O be done using contiguous blocks
of disk resident data. To optimize performance in collec-
tive I/O operations between arrays located on disk and in
distributed main memory of parallel computers [4], I/O li-
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braries like PANDA [22, 9] and DRA [10] use a blocked
representation for disk-resident multidimensional arrays
instead of the dimension-ordered representation used typ-
ically for the representation of multidimensional arrays in
main memory. Thus, the disk-resident multidimensional
array is partitioned into a number of multidimensional
blocks or “bricks”, and the elements within a brick are
linearized using some dimension order. Such a bricked
representation of disk-resident multidimensional arrays
permits efficient access as long as the accessed regions
mostly contain full bricks.

However, for some disk-resident multidimensional ar-
rays, the access patterns of successive phases (for exam-
ple, access patterns of the producer and consumer) are so
different that no choice of brick shape allows for efficient
access. An example is out-of-core 2D FFT, where the
array is accessed by columns in one phase and by rows
in the other. The multi-dimensional Fast Fourier trans-
form (FFT) [1, 2] can be implemented as a series of one-
dimensional FFTs, one along each dimension. Another
example illustrating very different access patterns is re-
lated to simulation data in three and four (including time)
dimensions. The data produced by simulation can be too
large to be handled in an in-memory fashion. For exam-
ple, the 3-D simulation of the Richtmyer-Meshkov insta-
bility in [17] generates 2048×2048×1920 data elements
per time step for 274 time steps. The production of data
occurs one time-step after another. However, examination
of the time evolution of a plane or 3D block of data re-
quires a very different access pattern than that by which
the data was generated. When the data so produced is pro-
cessed on a parallel system, the data might have to trans-
formed into a different blocked form [12].

Our primary motivation for addressing the layout trans-
formation problem arises from the domain of electronic
structure calculations using ab initio quantum chemistry
models such as Coupled Cluster models. We are devel-
oping an automatic synthesis system called the Tensor
Contraction Engine (TCE)[24], to generate efficient par-
allel programs from high level expressions, for a class of
computations expressible as tensor contractions [3, 6, 5, 7,
15, 16]. Often the tensors (essentially multi-dimensional
arrays) are too large to fit in memory and must be disk-
resident. The input tensors are typically generated by an-
other chemistry package such as NWChem [21], with a
layout quite different from that needed for efficient pro-
cessing by the TCE-generated code.

3 The Layout Transformation Prob-
lem

Internally, the data in a DRA is stored in a blocked fash-
ion. When a DRA is created, a typical request shape/size
can be specified. This is used to determine the shape of
the basic layout block or “brick”. The shape of the brick
is chosen to match the specified access shape. The size
of the brick is chosen as a compromise between two com-
peting objectives: 1) optimize disk I/O bandwidth - this
requires that the brick size be large enough to amortize
the disk seek time and 2) minimize wastage of disk I/O -
since I/O is done in units of the basic block (brick), small
bricks imply less wastage at the boundaries of the DRA
regions being read/written.

An application might have an access pattern that is very
different from the organization of the DRA on disk. This
can happen when an application uses the output of another
program, or because different phases of the same program
use different access patterns. This can be handled by cre-
ating another copy of the disk resident array to match the
new request size and transformed dimensions.

We have implemented the copy routine, referred to
as NDRA Copy, together with dimension permutation.
The routine takes as input the source and target DRA
handles and the dimension permutation to be performed.
Henceforth, the data in the DRA corresponding to the di-
mensions of blocking in the source and target arrays are
referred to as the source and target blocks respectively.

The disk array layout transformation problem we con-
sider here is a generalization of the out-of-core ma-
trix transposition problem. Out-of-core matrix transpo-
sition has been widely studied in the literature. The
algorithms perform out-of-core transposition by making
passes through the entire array a number of times. During
each pass through the array, each element of the source
array is read once and each element of the target array is
written once. Each pass consists of a series of steps in
which a portion of data from the source array is brought
into memory, permuted and written to the target out-of-
core array. Different steps in a pass operate on disjoint
sets of data. The block transposition algorithm is a single-
pass algorithm in which a 2-D tile of data is brought into
memory, transposed and written to disk. Since the differ-
ent row segments of a 2D tile are not contiguous on disk,
this could be extremely inefficient unless the tile size is
very large. Eklundh [8] proposed a multi-pass algorithm,
in which the minimum unit of I/O is a row. The number
of passes in the algorithm is proportional to the array di-
mensions. Kaushik et al. [11] reduced the number of read
operations and increased the read block size compared to
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Eklundh’s algorithm. Sun and Prasanna [23] proposed an
algorithm that minimized the total number of I/O opera-
tions, while potentially increasing the total volume of I/O.
Krishnamoorthy et al. [14] formulated these algorithms
in a tensor product notation and derived a generic algo-
rithm that attempts to minimizes the total execution time
by taking into consideration the I/O characteristics of the
system, and subsequently extended it to a multi-processor
system, in which each processor has a local disk [13] .

Most of the above approaches assume the array dimen-
sions and the memory size to be powers-of-2. This as-
sumption, coupled with the fact that the required trans-
formation is a transposition, allows different steps in the
re-blocking process to operate on disjoint sets of data. In
each step, the set of data read into memory form an in-
tegral number of write blocks, which are written out. So
no data is retained across steps during the transposition.
When arbitrary blocking, array dimensions and memory
sizes are to be handled, it may not be possible to process
and write out all the data read into memory in a given
step. Some data either needs to be discarded and re-read,
increasing the I/O cost, or needs to be retained, increasing
the memory requirement. The memory cost for retain-
ing the data unused from a step depends on the order of
traversal of dimensions, and hence is not straight forward.
The out-of-core transposition algorithms involve I/O of
blocks of data at specific strides, which is fixed for a pass.
This regularity allows accurate prediction of the I/O cost.
The in-memory permutation of data can be modeled as
a bit-permutation on the linear address space of the data
stored in disk. This provides a regular structure to the
in-memory computation. In the general case, in-memory
permutation corresponds to a series of collect operations
for combining portions of different read blocks to create
a write block. The simplicity in the cost models for the
power-of-2 transposition problem makes it amenable to
mathematical treatment as done in [14].

In the next section, we detail our approach to solving
the generalized re-blocking problem.

4 Algorithm Design

The disk array layout transformation problem is modeled
as an I/O optimization problem. The total I/O cost is to
be minimized, subject to the amount of physical memory
available. The cost model and the algorithm to obtain the
multi-pass solution are explained in this section. In the en-
suing discussion, we shall consider an n-dimensional ma-
trix of dimensions < d1, . . . , dn >. The matrix is blocked
in brick shape < s1, . . . , sn >. The target matrix has the
same ordering of dimensions as the source but is blocked

using bricks of shape < t1, . . . , tn >. The source and tar-
get bricks are assumed to be of size that is large enough
for efficient access from/to disk. DRA typically uses a
brick size of around 1 Mbyte. Reads from the source disk
array are assumed to be in units of the source brick, and
writes to the target disk array are done in units of the target
brick.

4.1 Solution Approach

If feasible, a single-pass solution (in which each element
is read and written exactly once) would provide the mini-
mum I/O cost. But the memory requirement for a single-
pass solution might exceed the physical memory avail-
able. In this case, we either need to choose a multi-pass
solution or perform redundant I/O in one pass. In this sub-
section, we present the intuition behind the design of our
algorithm. We begin with a basic single-pass algorithm
and determine its I/O and memory cost. We then incre-
mentally improve the single-pass algorithm to lower the
memory requirement and/or the I/O cost. The multi-pass
solution is discussed in a subsequent sub-section.

Consider the region < 0 − LCM(s1, t1), . . . , 0 −
LCM(sn, tn) >. This region contains an integral num-
ber of source and target blocks along all the dimensions.
Thus the data in the source matrix from this region maps
onto complete blocks in the target matrix. This region
can be processed independent of other such blocks, with-
out any redundant I/O. We shall refer to such regions as
LCM blocks. If the amount of physical memory were large
enough to hold an LCM block, then a single-pass solution
is clearly possible - read in source blocks contained in an
LCM block into memory, construct the target blocks cor-
responding to the data in memory, and write them into the
target array. The I/O cost is defined as the I/O required per
element of the source array. This algorithm has the min-
imum I/O cost of one read and one write per element of
the source array. Assuming the read and write operations
are equivalent the I/O cost is two units per element.

The memory cost is the size of the LCM block. Since
arbitrary re-blocking needs to be supported, the source
and target block sizes could have arbitrary dimensions
(provided their total size corresponds to a reasonable
block size for I/O on the target file system). Hence the
LCM block can be arbitrarily large and might not fit in
physical memory. We can improve the single-pass algo-
rithm to handle this scenario without increasing the I/O
cost. Instead of reading entire LCM blocks into mem-
ory, the algorithm reads in a set of blocks of data from
the source matrix and writes out those target blocks that
can be completely constructed from the data available in
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memory. Any data in memory that cannot be used to con-
struct a complete target block is retained in memory. Any
source block in an LCM block contributes to target blocks
within the same LCM block. Hence no data needs to be
retained across LCM blocks. The algorithm processes all
the data in one LCM block before processing any other
LCM block. The algorithm requires enough memory to
retain unused data and read in additional data for process-
ing. The additional data read into memory for processing
must be enough to write at least one target block to disk.
This is referred to as the Max block and corresponds to <
M1, . . . ,Mn > where Maxi = d(max (si, ti)/si)e ∗ si.
The algorithm traverses each LCM block along each of
the dimensions and processes data in units of the Max
block. The buffer to store the unused data is partitioned
into one buffer per dimension. Unused data from a Max
block along a dimension needs to be retained until the ad-
jacent Max block along that dimension is processed. Thus
the amount of unused data to be retained depends on the
order of traversal of dimensions. Along the dimension tra-
versed first, only data unused from the last processed Max
block needs to be stored. Other dimensions require more
data to be retained. A static memory cost model is used, in
which the sizes of buffers used to store data is determined
before the transformation begins. The maximum memory
required to perform the transformation is the sum of the
size of the Max block and the sizes of the buffers.

MemCost =
∑n

i=1 bsizei +
∏n

i=1 Maxi

where bsizei represents the size of buffer to store unused
data along the i-th dimension.

Let < T1, . . . , Tn > be the order of traversal of di-
mensions. The unused data along a dimension (say Ti)
is an n-dimensional region. For a given dimension i, the
size of this region along dimension j can be as much as
LCM(sTj

, tTj
) for j < i, but is bounded above by MaxTj

for j > i. Hence, the size of the buffer to store the unused
data along a dimension Ti is bounded by

bsizeTi
=

∏n
j=1 Sj

Sj =







LCM(sTj
, tTj

) if j < i
UTj

if j = i
MaxTj

if j > i

where Ui be the maximum unused data that needs to be
stored along dimension i. Since Ui must be smaller than
both si and ti, and for every si elements along dimension
i brought into memory, at least gcd(si, ti) elements must
be written out, we have

Ui = min(si, ti) − gcd(si, ti)

As can be seen from the above formulae, the sizes of the
unused buffers is proportional to the LCM block dimen-
sions. This could lead to situations in which the memory
requirement still exceeds the available memory. In this
case, there are two options to be considered. A multi-pass
solution could be determined, which is discussed later, or
a single-pass solution that performs redundant read of data
can be designed.

We propose a single-pass algorithm that differs from
the discussion above in one respect. Instead of travers-
ing an entire LCM block, a smaller template is chosen.
No unused data is stored across templates. A template is
an integral number of write blocks along all dimensions.
There is no redundant read within a template. But unlike
LCM blocks, templates might have source blocks on their
boundaries that straddle across two templates. This re-
sults in redundant reads across templates, increasing the
I/O cost. The memory cost is reduced and is given by:

MemCost =
∑n

i=1 bsizei +
∏n

i=1 Maxi

bsizeTi
=

∏n
j=1 Sj

Sj =







templTj
if j < i

UTj
if j = i

MaxTj
if j > i

where templi represents the size of the template along the
i-th dimension.

For a two-dimensional array, the memory cost due to
the unused buffers is U1 ∗ Max2 + LCM(s1, t1) ∗ U2 if
dimension 1 is traversed first; otherwise, it is U2∗Max1+
LCM(s2, t2)∗U1. In an n-dimensional array, the traversal
order is determined by sorting the dimensions by compar-
ing these expressions.

The minimum template size corresponds to a target
block. In this case, the memory requirement is reduced
to a Max block. Thus the necessary condition for the ex-
istence of a single-pass solution is that the Max block fit
in memory.

The I/O cost is multiplicative along the dimensions.
Within an LCM block, the number of source blocks that
need to be reread is the number of templates minus one,
which is (LCM(si, ti) − templi) − 1. Therefore, the I/O
cost of re-blocking is given by templi is

IOCost =
∏n

i=1 IOCosti

IOCosti =
(si∗(

LCM(si,ti)−templ
i

templ
i

)+LCM(si,ti))

LCM(si,ti)

In reality, the LCM along a dimension might be larger
than the length of the array along the dimension, in which
case we replace the LCM by the array dimension. Note
that the array dimensions are not considered while de-
termining Ui. Hence, Ui does not provide an exact es-
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timate, but only an upper bound on the memory require-
ment. Note that though the I/O cost for the single-pass
solution is increased, the total I/O cost could be reduced
due to a decrease in the number of passes.

4.2 Template Determination for Single-pass
Solution

Both the I/O cost and the memory cost are affected by
the choice of the template. In this section, we discuss
the algorithm used to determine the template sizes. The
template is a set of write blocks along all the dimensions.
It can range in size from one write block, to an LCM
block. For re-blocking an n-dimensional array, the tem-
plate needs to be determined from an n-dimensional solu-
tion space. A template is a feasible solution if its process-
ing does not require more memory than available. The al-
gorithm exploits the characteristics of the solution space
and the optimization function.

Consider a template A. An enclosing template is de-
fined as a template that is at least as large as the given
template in all the dimensions. Let B be an enclosing
template of A. From the memory cost equations, it can
be seen that the memory required to process A cannot
exceed that required to process B. Conversely, process-
ing B requires at least as much memory as processing A.
This implies that once a template has been determined to
require more memory than available (an infeasible solu-
tion), no enclosing templates needs to be considered. This
relation separates the solution space into a feasible and an
infeasible solution space (where the surface of separation
approximates to a hyperbola when n = 2).

The I/O cost has a similar characterization. The I/O
cost equation shows that decreasing the template size
along any dimension increases the I/O cost. Thus the I/O
cost of template A is at least as much as that of template
B. This implies that when searching through the solution
space, no template that is enclosed by a feasible template
needs to be considered. Thus the optimal solution resides
on the surface separating the feasible and infeasible solu-
tion spaces.

Our algorithm to determine the template for a single-
pass solution involves three phases. The algorithm begins
with the LCM block as the template and tests for feasibil-
ity. If an LCM block is the feasible solution, it is chosen
as the template. Otherwise, a solution is chosen that is
just feasible, i.e. , increasing the template size along any
dimension violates the memory constraint. This is a solu-
tion on the boundary between the feasible and infeasible
solution spaces and hence is a candidate solution. From
this solution, we perform a steepest descent to arrive at a

local minimum in the search space. Note that other opti-
mization algorithms that can optimize on a surface can be
used. The algorithm used is shown in Fig.3.

4.3 Multi-pass Solution Determination

When a single-pass solution does not exist or is too expen-
sive, a multi-pass solution is chosen by determining inter-
mediate block sizes. An intermediate disk-based array is
used to store the intermediate results. Hence, additional
disk space equal to the size of the arrays is required. The
multi-pass solution proceeds as repeated execution of the
single-pass algorithm, for the source and target block sizes
determined for that pass. The source block size of the first
pass is the block size of the source array. The target block
size of the last pass if the block size of the target array.
The skew between the source and target block sizes de-
creases as the multi-pass solution proceeds from one pass
to the next. The intermediate block size are chosen to ef-
fect the maximum re-blocking possible with the available
memory.

A simple heuristic is used to determine the intermedi-
ate tile sizes for the multi-pass solution. Two candidate
intermediate block sizes are considered. The first candi-
date intermediate block size is the geometric mean of the
source and target block sizes. This block size is “equidis-
tant” from the source and target block sizes. This can be
an effective intermediate block size of for solutions with
an even number of passes. The second intermediate block
size is, in fact, a pair of block sizes. Let si and ti be the
source and target block sizes along dimension i. The inter-
mediate block sizes chosen are s

2/3
i ∗ t

1/3
i and s

1/3
i ∗ t

2/3
i .

This pair of intermediate block sizes can be effective for
solutions with an odd number of passes. These two op-
tions allow a more refined search for intermediate block
sizes. Without the second choice, any solution that re-
quires an odd number of passes, each transforming to an
intermediate block “equidistant” from the previous one,
might be harder to achieve. Higher order intermediates
were not considered as solutions with a larger number of
passes seldom occur in practice and can be handled by a
combination of these choices.

Once the intermediate block(s) are determined, the
multi-pass solution is determined recursively for trans-
forming from source to intermediate, and intermediate to
target block sizes. In the case of two intermediate blocks,
the transformation between the intermediate blocks is de-
termined as well. The algorithm for determining the
multi-pass solution is shown in Fig. 4.

Consider an instance of the matrix re-blocking prob-
lem in which the source and target arrays are blocked as
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Input: (1) Source and target block sizes
[s] and [t],

(2) Template size [templ]
Output: (1) Total memory cost

(2) Dimension traversal order [T]
1) foreach dimension i
2) L[i] = LCM(s[i], t[i])
3) U[i] = min(s[i], t[i]) - gcd(s[i], t[i])
4) M[i] = ceil(max(s[i], t[i])/s[i])*s[i]
5) Sort dimensions into array T such that

forall i<j =>
U[T[i]]*M[T[j]] + L[T[i]]*U[T[j]]
< U[T[j]]*M[T[i]]+L[T[j]]*U[T[i]]

6) memCost=0
7) foreach dimension i
8) pdt=U[T[i]]
9) foreach j<i
10) pdt *= L[T[j]]
11) foreach j>i
12) pdt *= M[T[j]]
13) memCost += pdt

Figure 2: Pseudo-code to determine the memory cost for
a given template size

< 32, 9 > and < 5, 16 >, respectively. The array dimen-
sions are much larger than the blocking and hence are not
considered. The Max block is < 32, 16 > and the unused
data along each dimension is bounded by < 4, 8 >. The
solution to the re-blocking problem depends on the mem-
ory available. An LCM block contains LCM(s1, t1) ∗
LCM(s2, t2)=23040 elements. When enough memory is
available to hold an LCM block, the re-blocking can be
performed by reading in an entire LCM block and writ-
ing out the target blocks. But if the memory can hold
U2 ∗ Max1 + LCM(s2, t2) ∗ U1 + Max1 ∗ Max2=1344
elements, it is sufficient to hold all unused data when an
LCM block is processed. The second dimension is tra-
versed first in the re-blocking procedure. If the memory
available is lesser, say enough to hold just 900 elements,
a single-pass solution with a template size of < 120, 6 >
elements is used for the re-blocking. When the memory
size is 800, a two-pass solution with an intermediate tile
size of < 12, 12 > is determined. The template for the
first pass is < 96, 12 >, and that for the second pass is
< 60, 48 >.

5 Implementation

A pseudo-code for the sequential implementation, using
file I/O, is shown in Fig. 7. The number of passes and the
intermediate block sizes for each pass are first determined
using the multi-pass solution algorithm in Fig. 4. The tar-
get DRA and an additional temporary file are used to store

Input: Source and target block sizes
[s] and [t],

Output: Template size for single-pass solution,
if it exists.

Routines:
MemCost(templ) - Memory cost for processing

the given template
DiskCost(templ) - I/O cost for processing

the given template
MemExceeded(templ) - returns true if the

template is infeasible

1) Initialize template to LCM block
2) Reduce template size along along all

dimensions equally, in units of write
block size, until it is feasible.

3) If no feasible template is found
return "No solution exists"

4) Adjust the template size so that increasing
the template size along any dimension
makes it infeasible.

5) Repeat the following steps
6) Among adjacent template sizes choose the

one that has the maximum rate of decrease
in I/O cost to increase in memory cost.

7) Determine a feasible template that leads
to the least increase in disk I/O cost
from the chosen template.

8) If the feasible solution found has lesser
I/O cost than the current template,
choose that as the current template.
Otherwise return the current template
as the solution.

Figure 3: Algorithm to determine template size for a
single-pass solution.

Input: Source and target block sizes
[s] and [t],

Output: Sequence of intermediate block
sizes [seqB],
order of traversal of dimensions
for each pass,
I/O cost

1) Determine the cost (a) of
single-pass solution

2) foreach dimension i
3) B1[i] = floor(sqrt(s[i]*t[i]))
4) B2[i] = (s[i]ˆ(2/3)*t[i]ˆ(1/3))
5) B3[i] = (s[i]ˆ(1/3)*t[i]ˆ(2/3))
6) Determine the cost (b) of multi-pass

solutions for re-blocking from
s to B1 and B1 to t recursively.

7) Determine the cost (c) of multi-pass
solutions for re-blocking from s to B1,
B1 to B2 and B2 to t recursively.

8) If no multi-pass solution exists
return "no solution exists"

9) Choose the solution with minimum
I/O cost from (a), (b) and (c) and
determine the output appropriately.

Figure 4: Pseudo-code to determine a multi-pass solution
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the intermediate data. The input file in the first pass is the
one corresponding to the source DRA. The input and out-
put files for each pass are chosen in such a way that the
output file in the last pass is the file corresponding to the
target DRA. The computation proceeds in a sequence of
passes. The buffers to hold the unused data and the Max
block are initialized. In each pass, the templates are pro-
cessed one after another. The data corresponding to each
template is traversed in units of Max block, in the pre-
determined order. In each step, a Max block is read into
memory, complete write blocks are constructed and writ-
ten into the output file. Reading a Max block from disk
involves a sequence of I/O operations one for each brick
in the Max block. If the Max block contains any unused
data corresponding to the current template, it is stored in
the unused buffers. If the Max block is only partially
present in the current template (i.e. some of it corresponds
to write blocks in another template), the data not relevant
to the current template is discarded. Construction of the
complete write blocks involves determining the regions of
the read blocks to be combined, locating the regions from
the buffers, and patching the data onto a temporary buffer.
The data in the temporary buffer is then written to disk.

5.1 Implementation Choices

We needed a parallel implementation that can handle the
different forms of disk arrays, in particular arrays on local
disks and on a shared file system. Various alternatives
in obtaining a parallel implementation of the algorithm
were considered. The alternatives differed in the the level
of abstraction utilized and the granularity of parallelism
exploited.

At the coarsest level of parallelism, each template
can be processed independently and hence can be as-
signed to a different process. Each process handles the
next available template, which is determined at runtime.
This provides automatic load-balancing. Since the pro-
cesses operate on disjoint sets of data, a low-level ab-
straction is required. GA/DRA requires a collective op-
eration to perform I/O on the disk array, which is not
suitable for template-level parallelism. The absence of
one-sided access to the data on the remote disk necessi-
tates co-ordination of the computation amongst the dif-
ferent processors. This requires a more sophisticated
load-balancing scheme, than the process-next-template
scheme.

Another significant drawback of utilizing template-
level parallelism is that orchestration of the computation
amongst all the processors can utilize the global memory
for processing. This can potentially reduce the number of

passes, by allowing a greater component of the transfor-
mation to be done in each pass. Thus, it is advantageous
to have all the processes co-operate in transforming each
template. Parallelism in the form of distributed ownership
of the bricks by the I/O processes, those that perform I/O,
is exploited. We redefine the Max block in each step to
be enough complete write blocks can be constructed to
utilize all the available I/O processors.

The co-ordination amongst the processes can be
achieved either using MPI and file I/O or using GA/DRA.
Using MPI and file I/O provides greater flexibility and
predictability to the computation. This could allow tuning
the implementation to the specific environment. Alterna-
tively, GA/DRA abstracts away the complexity in dealing
with file offsets, packing and unpacking of data and mes-
sage passing. That GA allows the use of message passing,
in particular MPI method calls, on both GA and non-GA
data in a GA/DRA program allows for incremental tuning
of the implementation. A GA/DRA implementation can
be further tuned using MPI and file I/O if such tuning can
improve performance. When the tuning does not improve
performance, a more maintainable code is available. The
lessons learnt from the tuning process can help in making
further improvements to the GA/DRA model.

To illustrate the incremental tuning in the GA/DRA
model, let us consider two possible optimizations. The
GA/DRA implementation reads data from a disk array
into a global array in memory. The data is processed in the
global array and written back into DRA. The data could
be read into local memory, copy into GA and then write
from GA to a DRA. This could reduce the communica-
tion overhead or schedule communication in an intelligent
manner. Alternatively, data can be read from a DRA into
a GA and each processor can copy the data onto its local
memory and write to the block it handles.

One attendant disadvantage of using GA/DRA for the
operation is the increased disk space requirement. At
any point in the computation, space is required for the
source and target arrays of the current pass and the ulti-
mate source and target arrays of the transformation. The
input array is assumed to be read-only. The output array
is unused until the last pass, and can potentially be uti-
lized. But accessing the space allocated to the target array
via the DRA induces a blocking that is usually incompat-
ible with the blocking of the intermediate data. Operat-
ing at the file I/O level, one can bypass the blocked view
and directly access the space. A simple extension to the
GA/DRA framework, in which multiple disk arrays can
use the same file (analogous to the union type in C) could
be provided to allow different blocking views to the same
data space on disk.
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Another optimization is possible when operating at the
file I/O level. Instead of operating on the entire array on
a pass before proceeding to the next pass, each template
can be processed through all the passes and written into
the final array before processing the next template. Thus
additional space for only two templates is required (the
space on the output array is not useful in this case as it is
used during the transformation and might not have enough
contiguous free space to store the intermediates). With the
GA/DRA model, using this optimization would involve
creating and using DRAs the size of a template.

Thus, the GA/DRA model supports incremental devel-
opment and tuning by not precluding the use of lower-
level programming models.

5.2 Parallel Implementation

The parallel implementation is similar to the sequential
implementation, whose pseudo-code is shown in Fig. 7.
The Max block and the unused buffers are global arrays.
Each Max block is read in directly using the DRA inter-
face. As illustrated in Fig. 5, the GA corresponding to
the Max block is allocated additional space, i.e. dimen-
sion i of the GA is of size (Max[i]+U[i]). The patching
of the data from the unused buffers is done in the addi-
tional space allocated in the GA, such that the complete
write blocks form an n-dimensional rectangular region.
Thus, the construction of the complete write blocks is
done in-place, eliminating the movement cost of the data
in the intersection between the Max block and the com-
plete write blocks, which do not need to go through the
unused buffers. The complete write blocks are then writ-
ten to disk. The GA/DRA abstraction greatly simplifies
the implementation by allowing direct translation of most
of the algorithm statements into invocation of DRA meth-
ods.

5.3 Load Balancing

In the parallel implementation, more than one processor
co-operates in performing the transformation. The basic
unit of I/O, the Max block, is increased in size to allow
all the processors to actively participate in the transfor-
mation. In the algorithm, the Max block is defined as the
set of read blocks that guarantees that at least one com-
plete write block can be written out in each step. With P
I/O processors, the Max block is defined to be the set of
read blocks that guarantee that P complete write blocks
can be written out in each step.

This set of read blocks can be chosen in a number of
ways. To balance the load among the I/O processors, the
P write blocks written out in each step should each be

Complete write blocksMax block

Max[2]U[2]

Max[1]

U[1]
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Figure 5: In-place construction of complete write blocks
in the parallel implementation. The Max block, data
from unused buffers and the constructed write blocks are
shown. Note that the regions overlap.

handled by a different I/O processor. This allows for a
balanced distribution of the I/O load, with all I/O proces-
sors actively performing I/O in each step.

A Max block that results in a load-balanced schedule
can be determined by determining an n-dimensional rect-
angular region of P write blocks, each handled by a differ-
ent I/O processor. The read blocks that cover this region
form the Max block.

A Max block that covers P consecutive write blocks
along the fastest varying dimension form a simple load
balanced schedule. However, such a scheme does not take
advantage of the flexibility available in choosing the Max
block so as to contribute to a global optimal solution. For
example, the above scheme would not perform well if the
target blocking had a very different orientation. A simple
heuristic would be to choose a Max block that aligns with
the target block.

In the algorithm design, the Max block was defined
first, and other parameters such as memory cost were de-
fined in terms of the Max block. A choice in the Max
block determination affects other costs and hence the op-
timal solution.

Here, we discuss an algorithm to enumerate all possible
load balanced Max blocks. Currently, the implementation
chooses any load balanced block. Generation of an opti-
mal solution together with the Max block is not dealt with
in this paper.

The algorithm is shown in Fig. 6. It is based on the ob-
servation that the round-robin distribution enables parti-
tioning of the entire array into load-balanced Max blocks
of the same size and shape. If a partition results in the
Max block at the origin of the array being load-balanced,
all the Max blocks in the partition are guaranteed to be
load balanced.

The algorithm can be viewed as a factorization of P to
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be assigned to different dimensions. The factor assigned
to a dimension is the number of write blocks along that
dimension to be covered by the Max block.

The algorithm represents the array size indirectly us-
ing an offset vector. An offset vector is an n-dimensional
vector, in which the i-th element represents the number of
distance between two write blocks along that dimension
in a linearization of the array into write blocks. For exam-
ple, for a 10×10 array, blocked using 3×3 tiles, the offset
vector is (1, 4). The offset is always one along the fastest
varying dimension. Along the next dimension, it is the
number of blocks in all lower dimensions, which is four
here. In the algorithm the offset is represented modulo the
number of I/O processors. Thus, with two I/O processors
the offset vector in the above example would be (1, 0). In
this form, the offset vector also represents the I/O proces-
sors that handle the blocks adjacent to the block at origin,
along each dimension.

The offset along a dimension can be used to determine
the number of different I/O processors that handle blocks,
if one traverses the array along that dimension. In the
above example, if the blocks are identified using a row-
column pair, all blocks along the column (0, ∗) are han-
dled by I/O processor zero. In fact, an offset of zero along
a dimension offset of zero along a dimension implies that
all blocks along that dimension are handled by the same
I/O processor.

A factor of more than one is assigned to a dimension
only if the corresponding blocks chosen are handled by
different I/O processors. All dimensions with non-zero
offsets are chosen as candidates and are added to the set
D. Then the routine GenRecursively is invoked that recur-
sively determines all feasible load balanced Max blocks.
The routine recursively factorizes P and assigns factors to
dimensions along the way.

If P has been completely factorized and an invocation
of the routine GenRecursively finds P to be one, the fac-
torization in factor[] is a load balanced Max block. If not,
the routine expands the search along each dimension, by
attempting to assign a factor to each dimension and then
backtracking to determine more possible solutions.

The possible assignment of a factor to a dimension
is determined by gcd(P, offset[i]). The gcd determines
the number of different I/O processors that handle blocks
along that dimension. If the gcd is 1, it means all the
I/O processors own blocks along that dimension. For
larger gcds the number of I/O processors is correspond-
ingly lower. The number of I/O processors along a dimen-
sion i is given by f = P/gcd(P, offset[i]). Also, along a
dimension, all I/O processors own a block before any I/O
processor owns a second block. Hence f can be assigned

Input: Blocking and array dimensions.
The number of I/O processors P.

Output: All feasible parallel Max blocks

GenMaxBlocks:
1) D = {}
2) Compute offsets into ‘‘offset’’ array
3) foreach dimension i
4) factor[i] = 1
5) if offset[i] > 0
4) D = D + {i}
5) GenRecursively(P, factor[], offset[], D)

GenRecursively(P, factor[], offset[], D):
1) if P = 1
2) /**factor[] has a valid parallel

Max block**/
3) print factor[]
4) return
5) for each dimension i in D
6) if gcd(P, offset[i]) < P
7) f = P / gcd(P, offset[i])
8) if |D| > 1 or f = P
9) factor[i] = f
10) GenRecursively

(P/f, factor[], offset[], D-{i})
11) factor[i] = 1

Figure 6: Pseudo-code to enumerate all parallel Max
blocks

as a factor to that dimension. The algorithm uses these
observations to enumerate the load balanced Max blocks.

6 Experimental Results

The implementation was evaluated on an Itanium 2 cluster
at the Ohio Supercomputer Center (OSC) and the Mpp2
cluster at the Molecular Sciences Computing Facility in
the Pacific Northwest National Laboratory (PNNL). The
configuration of the systems is shown in Table 1. Initially
the data is stored in row-major order on disk. We var-
ied the data access pattern and measured three costs. The
skewed access cost was first measured for each access pat-
tern. The skewed access cost is the cost of accessing all
the elements in the array using the specified access pat-
tern, with the data stored in row-major layout. The skew
refers to the misalignment between the access pattern and
the layout of data on disk.

We then measured the cost of transforming the data lay-
out to match the access pattern. This is referred to as the
conversion cost. Finally, the cost of accessing the ele-
ments in the transformed array is measured. The access
pattern is now fully aligned with the data layout and this
cost if referred to as the the aligned access cost.
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Input: Source and target DRAs
[d_s] and [d_t],

Output: d_t contains the data in d_s.

1) Determine the multi-pass solution.
2) Create a file as an intermediate. Use

space in d_t as the other intermediate.
4) foreach pass
5) Determine source and target files for

this pass (so that the target in
the last pass is d_t)

7) Allocate memory for unused buffers along
each dimension, the buffer to contain
the Max block, and a write block.

7) foreach template t
8) while Max blocks remain to be processed
9) Read the next Max block into memory

from the source.
10) Construct complete write blocks from

Max block and unused buffers.
12) Write the constructed complete

write blocks to target.
13) If Max block contains unused data

corresponding to current template,
store it into unused buffers.

16) Delete the temporary file

Figure 7: Pseudo-code for sequential implementation of
the layout transformation algorithm

Table 2 shows the costs for a 32768 × 32768 array of
doubles, on the Itanium 2 cluster. The costs were mea-
sured on one and two nodes, where one processor was
used per node. The costs for a 65536 × 65536 array
on four nodes is shown in Table 3. The results for 1, 2
and 4 processors (one per node) on the Mpp2 cluster for
a 65536 × 65536 array is shown in Table 4. Each row
in these tables represents a different access pattern being
evaluated. The array is accessed in row-major order in
units whose size/shape is specified. With P processors,
each access corresponds to a read of P such blocks. The
size of a block for all the access patterns was 1MB, the
size internally chosen by DRA for a brick.

It can be observed that when the access pattern is
closely aligned with the data layout on disk, the skewed
access cost is higher than the aligned access cost, but not
high enough to warrant layout transformation. If the trans-
formed array needs to be accessed multiple times, then
the layout transformation cost might be amortized by the
lower aligned access cost. As the skew increases, the
skewed access cost gets so high as to warrant a layout
transformation even if the array is to be accessed just once
after the transformation. As expected, the aligned access
cost is similar for all block sizes. The layout transforma-
tion cost does not vary significantly with the transforma-

Itanium 2 cluster Mpp2 cluster
(OSC) (PNNL)

Processor Dual Itanium 2 Dual Itanium 2
(900 MHz) (1.5 GHz)

Memory 4GB 8GB
Local disk 80GB 430 GB

Interconnect Myrinet 2000 Quadrics
Messaging GM Elan-4

Layer

Table 1: Configuration of systems on which the imple-
mentation was evaluated.

tion performed. This is because I/O is performed in units
of an efficient block size determined by DRA. Thus the
I/O cost does not vary between transformations unless the
number of passes varies. We observe that all the transfor-
mations were performed in one pass.

7 Conclusions

In this paper we proposed a new approach to efficient
transformation of the blocked layout of multidimensional
disk-resident arrays. The number of passes in the layout
transformation is determined based on the specific trans-
formation, such that the overall I/O cost is minimized.
The proposed approach was implemented as a new copy
primitive within the DRA I/O library. Experimental re-
sults demonstrated the benefit of the layout transformation
primitive.

The layout transformation implementation illustrated
the convenience and incremental development enabled by
the GA/DRA framework. The programming model al-
lows for quick development using high-level constructs
followed by tuning depending on the expected gains.
We plan to further investigate the implementation using
GA/DRA and the performance gains obtainable by go-
ing below the GA abstraction layer. We believe that the
lessons learned can help improve the GA/DRA frame-
work.
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Access and transformation cost (seconds)
Access Pattern #procs = 1 #procs = 2

Row Column Skewed Conv. Aligned Skewed Conv. Aligned
(#els) (#els) access cost access access cost access

4 32768 176 359 172 97 241 90
8 16384 179 343 178 88 191 88

16 8192 182 345 175 91 173 91
32 4096 196 357 180 105 188 92
64 2048 249 368 181 129 190 93
128 1024 340 372 179 172 202 94
256 512 517 371 183 266 173 93
512 256 861 372 181 434 165 92

1024 128 1580 377 183 749 163 94
2048 64 2994 384 184 1393 167 93
4096 32 5760 373 180 2697 170 95

Table 2: Access and transformation cost (in seconds) for a 32768 × 32768 array stored in row-major order, on the
Itanium 2 cluster.

Access Pattern Access and transformation cost
(seconds) (#procs=4)

Row Column Skewed Conv. Aligned
(#els) (#els) access cost access

8 16384 207 733 212
16 8192 238 644 229
32 4096 300 743 230
64 2048 419 723 230
128 1024 650 623 230
256 512 1110 538 230
512 256 2030 466 230

Table 3: Access and transformation cost (in seconds) for a 65536 × 65536 array stored in row-major order, on the
Itanium 2 cluster.

Access and transformation cost (seconds)
Access Pattern #procs = 1 #procs = 2 #procs = 4

Row Column Skewed Conv. Aligned Skewed Conv. Aligned Skewed Conv. Aligned
(#els) (#els) access cost access access cost access access cost access

8 16384 155 370 221 137 249 71 54 186 49
16 8192 209 420 229 177 224 72 83 138 63
32 4096 298 428 292 321 241 69 95 133 54
64 2048 436 423 298 521 265 71 129 116 58

128 1024 734 469 304 973 287 68 194 128 62
256 512 1315 453 307 1938 252 71 322 144 54
512 256 2473 446 316 3648 276 64 579 149 56

Table 4: Access and transformation cost (in seconds) for a 65536 × 65536 array stored in row-major order, on the
Mpp2 cluster.
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