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ABSTRACT
The accurate modeling of the electronic structure of atoms and
molecules is very computationally intensive. Many models of elec-
tronic structure, such as the Coupled Cluster approach, involve col-
lections of tensor contractions. There are usually a large number
of alternative ways of implementing the tensor contractions, rep-
resenting different trade-offs between the space required for tem-
porary intermediates and the total number of arithmetic operations.
In this paper, we present an algorithm that starts with an operation-
minimal form of the computation and systematically explores the
possible space-time trade-offs to identify the form with lowest cost
that fits within a specified memory limit. Its utility is demonstrated
by applying it to a computation representative of a component in the
CCSD(T) formulation in the NWChem quantum chemistry suite
from Pacific Northwest National Laboratory.

Categories and Subject Descriptors
F.2.1 [Numerical Algorithms and Problems]: Computations on
matrices; D.3.2 [Language Classifications]: Specialized applica-
tion languages; D.3.4 [Processors]: Compilers and Optimization;
F.2.3 [Tradeoffs between Complexity Measures]; J.2 [Physical
Sciences and Engineering]: Chemistry
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1. INTRODUCTION
The development of high-performance parallel programs for sci-

entific applications is usually very time consuming. The time to de-
velop an efficient parallel program for a computational model can
be a primary limiting factor in the rate of progress of the science.
Our long term goal is to develop a program synthesis system to fa-
cilitate the development of high-performance parallel programs for
a class of scientific computations encountered in quantum chem-
istry. The domain of our focus is electronic structure calculations,
as exemplified by coupled cluster methods, where many compu-
tationally intensive components are expressible as a set of tensor
contractions. We plan to develop a synthesis system that can gener-
ate efficient parallel code for a number of target architectures from
an input specification expressed in a high-level notation.

A critical issue in implementing electronic structure models, e.g.
using coupled cluster methods, is the management of storage re-
quirements for intermediates. Significant savings in computational
cost can be achieved by computing and storing various intermedi-
ate array quantities, that are reused several times in the process of
generating the final results. However, the space requirements for
these intermediates is often extremely large, making it infeasible to
store even on disk. Indeed, multi-dimensional intermediate arrays
as large as 100 to 1000TB arise frequently in these computations.
In this case, there is no choice but to discard and recompute some
of the intermediates. Therefore the following optimization problem
is of great interest: given a set of computations expressed as a se-
quence of tensor contractions (explained later on), and a specified
limit on the amount of available storage, re-structure the compu-
tation so as to minimize the amount of redundant recomputation
required. In this paper, we present a framework that we have devel-
oped to address this problem. The space-time trade-off optimiza-
tion we consider here is part of a planned synthesis system that
incorporates a number of optimization modules.

The computational structures that we address in this paper arise
in scientific application domains that are extremely intensive and
consume significant computer resources at national supercomputer
centers. They are present in computational physics codes model-
ing electronic properties of semiconductors and metals [1, 11, 21],
and in computational chemistry codes such as ACES II, GAMESS,
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(a) Formula sequence

T1=0; T2=0; S=0
for b, c, d, e, f, l
� T1bcdf += Bbefl Dcdel
for b, c, d, f, j, k
� T2bcjk += T1bcdf Cdfjk
for a, b, c, i, j, k
� Sabij += T2bcjk Aacik

(b) Direct implementation
(unfused code)

S = 0
for b, c�
��������

T1f = 0; T2f = 0
for d, f�
��

for e, l
� T1f += Bbefl Dcdel
for j, k
� T2fjk += T1f Cdfjk

for a, i, j, k
� Sabij += T2fjk Aacik

(c) Memory-reduced implementation (fused)

Figure 1: Example illustrating use of loop fusion for memory reduction.

Gaussian, NWChem, PSI, and MOLPRO. In particular, they com-
prise the bulk of the computation with the coupled cluster approach
to the accurate description of the electronic structure of atoms and
molecules [19, 22]. Computational approaches to modeling the
structure and interactions of molecules, the electronic and optical
properties of molecules, the heats and rates of chemical reactions,
etc., are crucial to the understanding of chemical processes in real-
world systems.

The paper is organized as follows. In the next section, we elab-
orate on the computational context of interest, the pertinent opti-
mization issues and an overview of the overall synthesis system
that is under development. Section 3 elaborates on the problem us-
ing a concrete example that is abstracted from a computationally
intensive calculation in the NWChem [10] system. Section 4 pro-
vides a high-level description of the solution approach. Sections 5
and 6 present details of the approach to solve the space-time trade-
off problem. Section 7 presents results from the application of the
new algorithm to the example abstracted from NWChem. Conclu-
sions are provided in Section 9.

2. THE COMPUTATIONAL CONTEXT
In the class of computations considered, the final result to be

computed can be expressed in terms of tensor contractions, essen-
tially a collection of multi-dimensional summations of the product
of several input arrays. Due to commutativity, associativity, and
distributivity, there are many different ways to compute the final
result, and they could differ widely in the number of floating point
operations required. Consider the following expression:
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If this expression is directly translated to code (with ten nested
loops, for indices � � �), the total number of arithmetic operations
required will be � � ��� if the range of each index � � � is � .
Instead, the same expression can be rewritten by use of associative
and distributive laws as the following:
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This corresponds to the formula sequence shown in Fig. 1(a) and
can be directly translated into code as shown in Fig. 1(b). This
form only requires � ��� operations. However, additional space
is required to store temporary arrays �� and ��. Often, the space
requirements for the temporary arrays poses a serious problem. For
this example, abstracted from a quantum chemistry model, the ar-
ray extents along indices � � � are the largest, while the extents
along indices � � � are the smallest. Therefore, the size of tempo-
rary array �� would dominate the total memory requirement.

The operation minimization problem encountered here is a gen-
eralization of the well known matrix-chain multiplication problem,
where a linear chain of matrices to be multiplied is given, e.g.
ABCD, and the optimal order of pair-wise multiplications is sought,
i.e. ((AB)C)D versus (AB)(CD) etc. In contrast to this, for compu-
tations expressed as sets of matrix contractions, although the final
realization of the computation is in terms of a sequence of matrix-
matrix products, there is additional freedom in choosing the pair-
wise products. For the above example, instead of forcing a sin-
gle chain order, e.g. ABCD, other orders are possible, such as the
BCDA order shown for the operation-reduced form above.

We have previously shown that the problem of determining the
operator tree with minimal operation count is NP-complete, and
have developed a pruning search procedure [17, 18] that is very
efficient in practice. For the above example, although the latter
form is far more economical in terms of the number of arithmetic
operations, its implementation will require the use of temporary
intermediate arrays to hold the partial results of the parenthesized
array subexpressions. Sometimes, the sizes of intermediate arrays
needed for the “operation-minimal” form are too large to even fit
on disk.

A systematic way to explore ways of reducing the memory re-
quirement for the computation is to view it in terms of potential
loop fusions. Loop fusion merges loop nests with common outer
loops into larger imperfectly nested loops. When one loop nest
produces an intermediate array which is consumed by another loop
nest, fusing the two loop nests allows the dimension correspond-
ing to the fused loop to be eliminated in the array. This results in
a smaller intermediate array and thus reduces the memory require-
ments. For the example considered, the application of fusion is
illustrated in Fig. 1(c). By use of loop fusion, for this example it
can be seen that �� can actually be reduced to a scalar and �� to
a 2-dimensional array, without changing the number of arithmetic
operations.

For a computation comprising of a number of nested loops, there
will generally be a number of fusion choices, that are not all mu-
tually compatible. This is because different fusion choices could
require different loops to be made the outermost. In prior work, we
addressed the problem of finding the choice of fusions for a given
operator tree that minimized the total space required for all arrays
after fusion [14, 16, 15].

However, for many of the computational structures within the
coupled cluster component of the NWChem software suite, we find
instances where the minimal memory required after optimal loop
fusion is still too large. In such situations, in order to create an
executable implementation, it is essential to trade space for time,
by only storing lower dimensional slices of the largest arrays, and
recomputing the slices as needed. This is the compiler optimization
problem we address in this paper. We extend the use of a previously
proposed concept of a fusion graphand develop an algorithm that



explores a space of alternative space-time trade-offs to determine
the bestset of lower-dimensional arrays that fit within a specified
space limit, so that the additional recomputation cost is minimized.

The problem addressed in this paper is one of several optimiza-
tion issues in the context of a larger effort to develop a tool for
the automatic synthesis of high-performance parallel code from a
high-level specification for a class of quantum chemistry calcula-
tions. The system being developed has several components:
Algebraic Transformations: It takes high-level input from the
user in the form of tensor expressions (essentially sum-of-products
array expressions) and synthesizes an output computation sequence.
The Algebraic Transformations module uses the properties of com-
mutativity and associativity of addition and multiplication and the
distributivity of multiplication over addition. It searches for all pos-
sible ways of applying these properties to an input sum-of-products
expression, and determines a combination that results in an equiv-
alent form of the computation with minimal operation cost.
Memory Minimization: The operation-minimal computation se-
quence synthesized by the Algebraic Transformation module might
require an excessive amount of memory due to the large temporary
intermediate arrays involved. The Memory Minimization module
attempts to perform loop fusion transformations to reduce the mem-
ory requirements. This is done without any change to the number
of arithmetic operations.
Space-Time Transformation: If the Memory Minimization mod-
ule is unable to reduce memory requirements of the computation
sequence below the available disk capacity on the system, the com-
putation will be infeasible unless a successful space-time trade-off
is performed. This is the issue we address in this paper. If no satis-
factory transformation is found, feedback is provided to the Mem-
ory Minimization module, causing it to seek a different solution.
If the Space-Time Transformation module is successful in bringing
down the memory requirement below the disk capacity, the Data
Locality Optimization module is invoked.
Data Locality Optimization: If the space requirement exceeds
physical memory capacity, portions of the arrays must be moved
between disk and main memory as needed, in a way that maximizes
reuse of elements in memory. The same considerations are involved
in effectively minimizing cache misses — blocks of data must be
moved between physical memory and the limited space available
in the cache. These issues have been addressed elsewhere [4, 3].
Data Distribution and Partitioning: This module determines how
to best partition the arrays among the processors of a parallel sys-
tem. We assume a data-parallel model, where each operation in
the operation sequence is distributed across the entire parallel ma-
chine. The arrays are to be disjointly partitioned between the phys-
ical memories of the processors. The goal is to determine the array
distribution that minimizes inter-processor communication cost. In
practice, we find that the parallelization considerations are closely
coupled with the memory minimization considerations.

In the next section we use an example from quantum chemistry
to further elaborate on the space-time trade-off optimization ad-
dressed in this paper.

3. ELABORATION OF THE PROBLEM
One of the most computationally intensive components of many

quantum chemistry packages is the CCSD(T) scheme. It is a cou-
pled cluster approximation that includes all single and double ex-
citations from the Hartree-Fock wave function plus a perturbative
estimate for the connectedtriple excitations. For molecules well
described by a Hartree-Fock wave function, the CCSD(T) method
predicts bond energies, ionization potentials, and electron affinities
to an accuracy of approximately ����kcal/mol, bond lengths accu-

for a, e, c, f�
for i, j�
Xaecf += Tijae Tijcf

for c, e, b, k�
T1cebk = f�(c, e, b, k)

for a, f, b, k�
T2afbk = f�(a, f, b, k)

for c, e, a, f�
for b, k�
Yceaf += T1cebk T2afbk

for c, e, a, f�
E += Xaecf Yceaf

array space time
X � � � ���

T1 � �� ���
��

T2 � �� ���
��

Y � � � ��
E 1 � �

Figure 2: Unfused operation-minimal form.

rate to������� ��� and vibrational frequencies accurate to��	
��.
This level of accuracy is adequate to answer many of the questions
that arise in studies of complex chemical systems.

As a motivating example for the problem addressed, we discuss
a component of the CCSD(T) calculation. The following represen-
tative equation arises in the Laplace factorized expression for linear
triples perturbation correction.
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where the� and � intermediates are of the form���
�� 	 ��	� 
��
	�

and ���
�� 	 �	� � ������ � ���, respectively.
Integrals with two vertical bars have been antisymmetrized and

may be expressed as: ���� � ��� 	 ��� � ��� � ��� � ����,
where integrals with one vertical bar are of the form ��� � ��� 	� �

���������r����s��r�s�����r����s� and are quite expensive
to compute (requiring on the order of 1000 arithmetic operations).
Electrons may have either up or down (or alpha/beta) spin. Down
spin is denoted here with an over bar. The indices �� �� �� �� 
� �
refer to occupied orbitals), of number O between 30 and 100. The
indices �� �� 	� �� �� � refer to unoccupied orbitals of number V be-
tween 1000 and 5000. The integrals are written in the molecular or-
bital basis, but must be computed in the underlying atom-centered
Gaussian basis, and transformed to the molecular orbital basis. We
omit these details in our discussion here.

A3A is one of many contributions to the energy, and among the
most expensive, scaling as���� ���Here, we assume that we have
already computed the amplitudes ��	� , and they must be read as nec-
essary, and contracted to form a block of�� The integrals �	� � ���
must be recomputed as necessary, contracted to form a block of �
corresponding to �� and the two contracted to form the scalar con-
tribution to the energy.

Figure 2 shows pseudo-code for the computation of one of the
energy components � for ���. Temporary arrays �� and �� are
used to store the integrals of form ��� � ���, where the functions
�� and �� represent the integral calculations. The intermediate
quantities ����� are computed by contracting over (i.e., summing
over products of) input array � , while the intermediate quantities
����� are obtained by contracting over �� and ��. The final result
is a single scalar quantity�, that is obtained by adding together the
���� �� pair-wise products ���������� .

The cost of computing each integral ��, �� is represented by
 � , and in practice is of the order of hundreds or a few thousand
arithmetic operations. The pseudo-code form shown in Fig. 2 is
computationally very efficient in minimizing the number of expen-
sive integral function evaluations �� and ��, and maximizing the



for a, e, c, f�
for i, j�
Xaecf += Tijae Tijcf

for a, f�
for c, e, b, k�
T1cebk = f�(c,e,b,k)

for c, e�
for a, f, b, k�
T2afbk = f�(a,f,b,k)

for c, e, a, f�
for b, k�
Yceaf += T1cebk T2afbk

for c, e, a, f�
E += Xaecf Yceaf

�

for a, e, c, f	







�

for i, j�
X += Tijae Tijcf

for b, k	
� T1 = f�(c,e,b,k)

T2 = f�(a,f,b,k)
Y += T1 T2

E += X Y

array space time
X 1 � ���

T1 1 ���
��

T2 1 ���
��

Y 1 � ��
E 1 � �

Figure 3: Use of redundant computation to allow full fusion.

for a�, e�, c�, f�	
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for a, e, c, f�
for i, j�
Xaecf += Tijae Tijcf

for b, k	





�

for c, e�
T1ce = f�(c,e,b,k)

for a, f�
T2af = f�(a,f,b,k)

for c, e, a, f�
Yceaf += T1ce T2af

for c, e, a, f�
E += Xaecf Yceaf

array space time
X �� � ���

T1 �� ���
�����

T2 �� ���
�����

Y �� � ��
E 1 � �

Figure 4: Use of tiling and partial fusion to reduce recomputa-
tion cost.

reuse of the stored integrals in �� and �� (each element of �� and
�� is used ��� �� times). However, it is impractical due to the
huge memory requirement. With� 	 ��� and � 	 ����, the size
of ��, �� is������� bytes and the size of� , � is������� bytes.
By fusing together pairs of producer-consumer loops in the compu-
tation, reductions in the needed array sizes may be sought, since the
fusion of a loop with common index in the pair of loops allows the
elimination of that dimension of the intermediate array. It can be
seen that the loop that produces� (with indices �� �� 	� � ), the loop
that produces � (with indices 	� �� �� � ) and the loop that consumes
� and � to produce� (with indices 	� �� �� � ) can all be fully fused
together, permitting the elimination of all explicit indices in� and
� to reduce them to scalars. However, the loops producing ��
(with indices 	� �� �� �) and �� (with indices �� �� �� �) cannot also
be directly fused with the other three loops because their indices do
not match.

Figure 3 shows how reduction of space for �� and �� can be
achieved by introduction of redundant loops around their producer
loops — add loops with the missing indices �� � for �� and 	� � for
��. Now all five of the loops have common indices �� �� 	� � that
can be fused, permitting elimination of those indices from all tem-
poraries. Further, by fusing together the producer loops for �� and
�� with their consumer loop that produces � , the �� � indices can
also be eliminated from �� and ��. Dramatic reduction of mem-
ory space is achieved, reducing all temporaries ��� ��� � and � to
scalars. However, the space savings come at the price of significant
increase in computation. Now, no reuse is achieved of the quantities
derived from the expensive integral calculations �� and ��. Since
 � is of the order of 1000 in practice, the integral calculations now
dominate the total compute time, increasing the operation count by
three orders of magnitude over the unfused form in Fig. 2.

A desirable solution would be somewhere in between the un-
fused structure of Fig. 2 (with maximal memory requirement and
maximal reuse) and the fully fused structure of Fig. 3 (with min-
imal memory requirement and minimal reuse). This is shown in
Fig. 4, where tiling and partial fusion of the loops is employed.
The loops with indices �� �� 	� � are tiled by splitting each of those
indices into a pair of indices. The indices with a superscript  repre-
sent the tiling loops and the unsuperscripted indices now stand for
intra-tile loops with a range of!, the block size used for tiling. For
each tile ���� ��� 	�� � ��, blocks of �� and �� of size !� are com-
puted and used to form!� product contributions to the appropriate
components of � , which are stored in an array of size !�.

As the tile size ! is increased, the cost of function computation
for ��� �� decreases by factor !�, due to the reuse enabled. How-
ever, the size of the needed temporary array for � increases as !�

(the space needed for� can actually be reduced back to a scalar by
fusing its producer loop with the loop producing E, but � ’s space
requirement cannot be decreased). When !� becomes larger than
the size of physical memory, expensive paging in and out of disk
will be required for � . Further, there are diminishing returns on
reuse of �� and �� after !� becomes comparable to  � , since
the loop producing � now becomes the dominant one. So we can
expect that as ! is increased, performance will improve and then
level off and then deteriorate. The optimum value of ! will clearly
depend on the cost of access at the various levels of the memory
hierarchy.

The computation considered here is just one component of the
��� term, which in turn is only one of very many terms that must
be computed. Although developers of quantum chemistry codes
naturally recognize and perform some of these optimizations, a col-
lective analysis of all these computations to determine their optimal
implementation is beyond the scope of manual effort. While recent
developments in optimizing compiler research have resulted in sig-
nificant strides in data locality optimization, we are unaware of any
existing work that addresses the kind of space-time trade-off opti-
mization required in the context we consider.

4. SOLUTION APPROACH: THE FUSION
GRAPH

The operation-minimization procedure discussed above usually
results in the creation of intermediate temporary arrays. Sometimes
these intermediate arrays that help in reducing the number of arith-
metic operations create a problem with the memory capacity re-
quired.

For a computation comprising of a number of nested loops, there
will generally be a number of fusion choices, that are not all mu-
tually compatible. This is because different fusion choices could
require different loops to be made the outermost. A data structure
that we call a �"��#� $���% can be used to facilitate enumeration
of all possible compatible fusion configurations for a given compu-
tation tree.

Figure 5 shows the fusion graph for the unfused form of the com-
putation from Fig. 2. Corresponding to each node in a computation
tree, the fusion graph has a set of vertices corresponding to the
loop indices of the node of the computation tree. In Fig. 5, we
do not show the operator tree corresponding to the computation,
but directly illustrate the fusion graph. The potential for fusion of
a common loop among a producer-consumer pair of loop nests is
indicated in the fusion graph through a dashed �#����� �"��#�
edge connecting the corresponding vertices. Leaf nodes in the fu-
sion graph correspond to input arrays or primitive function evalua-
tions and do not represent a loop nest. The edges from the leaves
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Figure 5: Fusion graph for unfused operation-minimal form of
loop in Figure 2.

to their parents are shown as dotted edges and do not affect the fu-
sion possibilities. If a pair of loop nests is fused using one or more
common loops, it is captured in the fusion graph by changing the
dashed potential-fusion edges to continuous fusion edges. If more
than two loop nests are fused together, a chain of fusion edges re-
sults, called a fusion chain. The scope of a fusion chainis the set
of nodes it spans. The fusion graph allows us to characterize the
condition for feasibility of a particular combination of fusions: the
scope of any two fusion chains in a fusion graph must either be
disjoint or a subset/superset of each other. Scopes of fusion chains
do not partially overlap because loops do not (i.e., loops must be
either separate or nested).

The fusion graph in Fig. 5 can be used to determine the fusion
possibilities. On the left side of the graph, the edges corresponding
to ��� �� 	� �� can all be made fusion edges, suggesting that com-
plete fusion is possible for the loop nests producing and consum-
ing � , reducing it to a scalar. Similarly, on the right side of the
graph, the edges corresponding to �	� �� �� �� can also be made fu-
sion edges, reducing � to a scalar. Further, by creating fusion edges
for indices �	� ��, the producer loop for �� can be fully fused with
the � loop that consumes it. However, now the producer loop for
�� cannot be fused since the addition of any fusion edge (say for
index �) will result in partially overlapping fusion chains for � and
�	� ��.

The fully fused version from Fig. 3 can be represented graphi-
cally as shown in Fig. 6(a). Additional vertices have been added
for indices �	� �� and ��� �� respectively at the nodes correspond-
ing to the producer loops for �� and ��. Now, complete fusion
chains can be created without any partial overlap in the scopes of
the fusion chains. From the figure, it can be seen that in fact the
redundant computation need only be added to one of �� or �� to
achieve complete fusion — for example, removing the additional
vertices for ��� �� at �� does not violate the non-partial-overlap
condition for fusion.

The fusion graph was used to develop an algorithm [16, 14] to
determine the combination of fusions that minimizes the total stor-
age required for all the temporary intermediate arrays. A bottom-up
dynamic programming approach was used, that maintains a set of
pareto-optimal fusion configurations at each node, merging solu-
tions from children nodes to generate the optimal configurations at
a parent. The two metrics used are the total memory required un-
der the subtree rooted at the node, and the constraints imposed by a
configuration on fusion further up the tree. A configuration is infe-
rior to another if it is “more or equally constraining” with respect
to further fusions than the other, and uses no less memory. At the
root of the tree, the configuration with lowest memory requirement
is chosen.

Although the complexity of the algorithm is exponential in the
number of index variables and the number of solutions could in
theory grow exponentially with the size of the expression tree, the
number of index variables in practical applications is small enough
and there is indication that the pruning is effective in keeping the
size of the solution set at each node small.

The fusion graph framework addresses a memory minimization
problem, without changing the operation count. If we applied it to
the fusion graph of Fig. 2, the bottom-up dynamic programming al-
gorithm would evaluate a number of potential fusion combinations
and find that fusion could be used to reduce the sizes of arrays �
and � and convert them to scalars. It would also be able to reduce
the size of one of the two temporary arrays �� or ��, but would be
unable to reduce the other at all. Although three of four temporary
arrays would be dramatically reduced in size, the size of the sin-
gle remaining temporary array (of size ��� ���) would make the
problem unexecutable on most systems due to disk storage limits.

An enhancement of the model to capture a wider range of space-
time trade-offs was already seen in Fig. 6(a), where additional ver-
tices were added to the fusion graph to introduce redundant recom-
putation to the producer loops for �� and �� and thereby enable
a greater degree of fusion. As discussed earlier, the fully fused
version of the loops results in excellent memory savings but adds
excessive recomputation costs. A combination of fusion and tiling
is needed to achieve a good balance between recomputation and
memory usage. Figure 6(b) shows how the possibility of tiling can
be introduced into the fusion graph. For each loop of a loop nest
that is to be tiled, the corresponding vertex in the fusion graph is
replaced by a pair of vertices — one to represent the outer tiling
loop and another to denote the intra-tile loop. By a choice of fusion
configuration that only involves the tiling loops, a combination of
fusion and tiling can be represented. This framework can be used to
explore a range of space-time trade-offs. However, the search space
is significantly larger than that for the memory minimization prob-
lem discussed in the previous sub-section, requiring that selective
search strategies be developed.

In this paper, we develop a two-step search strategy for explo-
ration of the space-time trade-off:

� Search among all possible ways of introducing redundant
loop indices in the fusion graph to reduce memory require-
ments, and determine the optimal set of lower dimensional
intermediate arrays for various total memory limits. In this
step, the use of tiling for partial reduction of array extents is
not considered. However, among all possible combinations
of lower dimensional arrays for intermediates, the combina-
tion that minimizes recomputation cost is determined, for a
specified memory limit. The range from zero to the actual
memory limit is split into subranges within which the op-
timal combination of lower dimensional arrays remains the
same.

� Because the first step only considers complete fusion of loops,
each array dimension is either fully eliminated or left intact,
i.e. partial reduction of array extents is not performed. The
objective of the second step is to allow for such arrays. Start-
ing from each of the optimal combinations of lower dimen-
sional intermediate arrays derived in the first step, possible
ways of using tiling to partially expand arrays along previ-
ously compressed dimensions are explored. The goal is to
further reduce recomputation cost by partially expanding ar-
rays to fully utilize the available memory
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Figure 6: Fusion graphs showing redundant compution and tiling.

5. DIMENSION REDUCTION FOR INTER-
MEDIATE ARRAYS

In the first step of the space-time trade-off algorithm we search
among all possible combinations of redundant computations and
loop fusions. The search is structured as a dynamic programming
algorithm with pruning.

The input to this algorithm is an expression tree representing the
operation-minimal computational structure of the input formula.
Expression tree nodes are of four types:

� array references �[�] with index vector �,

� function calls �(�) with argument vector �,

� summation quantifiers sum(�,) with summation indices �
and subtree , and

� binary operators bin(#,�,�) with operator # (+, -, or *)
and subtrees � and �.

For each tree node &, let indices(v)be the set of loop indices needed
for evaluating &, and let fusible(v)be the set of indices that can be
fused with the parent (indices other than summation indices). An
index � is a redundant index for node & if � is not an index of &
but of some ancestor node of &. E.g., in Fig. 5 indices � and � are
redundant indices for ��. Let redundant(v)be the set of redundant
indices for &.

Introducing a redundant loop index � to a node & can allow ad-
ditional fusion between & and its parent, which reduces the dimen-
sion of the intermediate array holding the result of &, in exchange
for recomputing & in every iteration of the � loop. The space-time
trade-off algorithm computes for every combination of redundant
indices the loop fusion structure that results in the least amount of
total memory.

In a bottom-up traversal, we compute a set of solutions for each
node &. Each solution consists of a nestingof the loops at &, the
memory cost 
	, the recomputation cost �	, and pointers to the
solutions of the subtrees from which this solution was obtained.
A nesting is a sequence of index sets that represents constraints
on the loop structure for computing &. E.g., the nesting ���� ��
indicates that the loops � and � can be arbitrarily permuted, while
� must be nested inside of � and �. A solution �� is inferior to
solution � if its nesting is more constraining than that of � (e.g.,
��� �� �� is more constraining than ���� ��), and if its memory cost
and recomputation cost are both higher than those of �. The set of
solutions for a node is recursively computed as follows:

� Suppose & is an array reference of the form �[�]. The set
of possible loops around the array node is fusible(t)� pow-
erset(redundant(t)) with no constraints on the order of the

loops. For the purpose of space-time trade-offs, we do not
model the cost of reading arrays from disk. Therefore, we
form a solution for each of these nestings with zero memory
and recomputation costs.

� Suppose & is of the form �(�). Similar as for array refer-
ences, we form a set of solutions for all possible nestings.
For each nesting %, we initialize the memory cost to the stor-
age needed for holding the result of �(�) if all the indices in
% are fused with the parent. The recomputation cost is ini-
tialized to the number of times � must be recomputed for all
redundant indices in % times the cost of a function call.

� Suppose & is of the form sum(�,). For each solution � for
subtree , we initialize a solution �� for the summation node
by adding one to the memory cost (for the scalar holding the
result of the summation assuming full fusion with the par-
ent) and by adding the recomputation cost for the summation
node to that of the subtree. We then remove the summation
indices � from the nesting in ��. All indices that are con-
strained to be nested inside the summation indices must be
removed as well since they cannot be fused with the parent
anymore. Removing a non-summation index � from the nest-
ing results in an increase in memory since the � dimension of
the resulting array must be stored. Finally, inferior solutions
are pruned from the set of solutions for &.

� Suppose & is of the form bin(#,�,�). Since the subtrees
� and � might not have all the indices of & (indices(v)is the
union of indices(l)and indices(r)), we first need to compute
all the possible ways in which the solutions for � and � might
be fused with &. For each solution � for a subtree, we com-
pute the set of all prefixes of the nesting of � (e.g., for the
nesting ���� ��, the prefix ��� represents the loop structure in
which only � is fused with &). For all the nestings obtained
in this way we construct new solutions for the subtrees by in-
creasing the memory cost by the array dimensions that now
need to be stored. Then, for all pairs of solutions �� and
�� for � and �, respectively, we merge the constraints on the
loop structure from the nestings of �� and ��. If �� and ��
have compatible nestings, we obtain a merged nesting for &.
E.g., for the nestings ���� ��� and ��� ��� for the subtrees, we
would obtain the nesting ��� �� �� �� for &. Finally, we con-
struct solutions for & out of the merged nestings by adding
the memory and recomputation costs for & to the costs for
the subtrees and then prune inferior solutions.

The result of the above algorithm is a set of solution trees for
the original expression tree. A solution tree contains a nesting and



E = 0
for c

for b,e,k
T1[b,e,k] = f1(c,e,b,k)

for a,f
for e

Y[e] = 0
for b,k

T2 = f2(a,f,b,k)
for e
Y[e] += T2 * T1[b,e,k]

for e
X = 0
for i,j
X += T[i,j,a,e] * T[i,j,c,f]

E += Y[e] * X
return E

Figure 7: Pseudo-code for the solution with the lowest recom-
putation cost after the first step of the algorithm, subject to a
memory limit of ���� words. The array sizes are �	 	 �� 	
�� 	 � 	 ��� and �� 	 �� 	 �� 	 �� 	 �� 	 � 	 ����.
The redundant evaluation of ����� �� �� �� is performed �� 	
� 	 ���� times.

memory and recomputation costs for each tree node of the expres-
sion tree. For each node &, the nesting for & only reflects con-
straints on the loop structure for the subtree rooted at &. From a
solution tree we compute a fusion tree by propagating constraints
on loop nestings from the top of the tree down to the leaves. The
resulting fusion tree is then translated into an abstract syntax tree
by constructing a computation order for the tree nodes. A node &
is computed after its subtrees. For a binary node, the subtree with
the most loops fused is computed just before the parent. After the
computation order is determined, the loops are inserted to form an
abstract syntax tree representation of the code. For example, for the
expression tree corresponding to the formula sequence in Fig. 1(a)
this algorithm constructs the pseudo-code in Fig. 7 as the solution
with the minimal recomputation cost that stays below ���� words.

6. PARTIAL EXPANSION OF REDUCED IN-
TERMEDIATES

Once a set of optimal solutions is determined by the first step
of the space-time trade-off algorithm, we resort to array expansion
for the second step. The second step operates on the abstract syn-
tax tree generated by the first step of the algorithm. In this tree,
an interior node represents a loop nest, while a leaf represents the
computation of a node from the expression tree. A parent-child pair
of nodes denotes an outer-inner loop pair, whereas nodes with the
same parent represent adjacent loops. For an example, the abstract
syntax tree corresponding to the pseudo-code in Fig. 7 is shown in
Fig. 8.

The total number of operations needed to compute the final re-
sult is the sum over the number of operations for the leaves of the
abstract syntax tree. For each leaf, the number of operations is
obtained by multiplying the cost of the operation (one for multipli-
cations or additions, a higher cost for function evaluations) by the
loop ranges of all its ancestors in the abstract syntax tree. For ex-
ample, the number of operations required to compute� in Fig. 8 is
����������	�� 	 ���� � operations (the factor of 2 comes
from one multiplication and one addition). Likewise, the number
of operations necessary to compute �� is �������������� 	
������ � operations, assuming 1000 floating point operations are
needed for each evaluation of ��. In the case of � the number of
operations cannot be further reduced. There is no redundant cost
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Figure 8: Abstract syntax tree for the fused loop structure
shown in Fig. 7. A node in the tree represents a loop nest; a
parent-child pair represents an outer loop (parent node), and
an inner loop (child node). The leaves of the tree are multipli-
cation and addition computations or function evaluations.

in computing � . In contrast, �� is repeatedly computed �� 	 �
times, since 	 is a redundant loop for ��. For the pseudo-code
presented in Fig. 7 and the corresponding abstract syntax tree in
Fig. 8, the recomputation cost is ������� � ���������� 	
������ ��� � ��, coming entirely from the evaluation of ��.

In practice, the intermediate arrays do not have to be fully down-
sized to a lower number of dimensions. For example, the solution
in Fig. 7 uses only �� � ��� words, much less than the memory
limit of ���� words. We can therefore increase the sizes of some
intermediate arrays in order to reduce the recomputation cost. In
our algorithm, each redundant node in the tree is split into a parent-
child pair, corresponding to a tiling loop node, and an intra-tile loop
node. Figures 9 and 10 present the pseudo-code and abstract syn-
tax tree for the same computation, this time performed with loop
tiling. In this example, the root of the abstract syntax tree 	 is the
only redundant loop, but in general the number of redundant loops
could be as large as the number of nodes in the abstract syntax tree.
Here the 	 loop is split into the tiling and intra-tile loops 	� and 		.
The ranges of these loops are �� (the number of blocks) and !
(the block size), respectively, such that their product is equal to the
original range: ! � �� 	 �� 	 � 	 ����. The arrays ��, �
and� are partially expanded from size one to size! along the 	 di-
mension. The redundant computation of �� is now only performed
�� times instead of �� times, resulting in a lower recomputation
cost. The maximum value for the block size ! is determined by
the total amount of memory available in the system.

Our algorithm for determining the best choice for array expan-
sion (the one that minimizes recomputation cost, and still stays
within the total amount of memory available) proceeds as follows:
for a given untiled abstract syntax tree generated in the first step
(Fig. 8), all its redundant nodes are first split into tiling/intra-tile
pairs. Subsequently, the resulting abstract syntax tree is transformed
by intra-tile loop permutation and fission into an equivalent ab-
stract syntax tree with the property that each intra-tile loop is either
redundant or non-redundant with respect to all of its descendant
leaves. At this point those intra-tile loops which are redundant with
respect to their descendant leaves are removed.

Figures 9 and 10 show the pseudo-code and abstract syntax tree
after such a transformation. The 		 loop is split into three loops
along different branches of the tree. It is present as an ancestor
of all the leaves except for the one that produces ��, where it has
been removed to reduce the recomputation cost. After this tree



E = 0
for c_t

for c_i
c = c_i + c_t * NB
for b,e,k

T1[c_i,b,e,k] = f1(c,e,b,k)
for a,f

for e,c_i
Y[c_i,e] = 0

for b,k
T2 = f2(a,f,b,k)
for e,c_i
Y[c_i,e] += T2 * T1[c_i,b,e,k]

for c_i
c = c_i + c_t * NB
for e
X[c_i] = 0
for i,j

X[c_i] += T[i,j,a,e] * T[i,j,c,f]
E += Y[c_i,e] * X[c_i]

return E

Figure 9: Pseudo-code for the solution with the lowest recom-
putation cost after the second step of the algorithm, subject to
a memory limit of ���� words. The 	 loop is split into the tiling
and intra-tile loops 	� and 		. The ranges of these loops are
�� and !, respectively. ! is the block size, and �� is the
number of blocks. Their product is equal to the original range
�� 	 � 	 ���� of the 	 loop. The arrays ��, � and� are par-
tially expanded from size one to size ! along the 	 dimension.
The evaluation of ����� �� �� �� is performed �� times.

transformation the algorithm proceeds by choosing numerical val-
ues for the tile sizes, thus fixing the loop ranges for all the nodes
in the abstract syntax tree. If the original range of a loop is ��,
choosing a block size ! for the intra-tile loop also fixes the range
�� 	 ��'! of the tiling loop.

We thus obtain a new abstract syntax tree with well-defined loop
ranges. Using the loop ranges, we can determine the recomputa-
tion cost for the entire abstract syntax tree by adding the number of
redundant operations for each leaf of the tree. With this approach,
we arrive at a total recomputation cost for the abstract syntax tree
for given tile sizes. We repeat the calculation of the recomputation
cost for different sets of tile sizes. We define our tile size search
space in the following way: if �	 is the loop range of a recompu-
tation loop, we use a tile size starting from ! 	 � (no tiling), and
successively increasing ! by doubling it until it reaches �	. This
ensures a slow (logarithmic) growth of the search space for increas-
ing values of �	. If �	 is small enough, an exhaustive search can
instead be performed.

This tiling procedure and search for the optimal tile sizes is re-
peated for all solutions produced by the first step of the algorithm.
We finally choose the solution with the minimal recomputation
cost.

7. RESULTS
In this section we present the results of our two step space-time

trade-off algorithm for the NWChem example introduced in Sec-
tion 3. We choose input parameters relevant to the addressed prob-
lem: �	 	 �� 	 �� 	 � 	 ���, �� 	 �� 	 �� 	 �� 	
�� 	 � 	 ����, function evaluation cost  � 	 ���� floating
point operations and available memory of ( 	 ���� words.

Figure 4 shows the pseudo-code for the solution that was man-
ually optimized by a domain expert.1 The �, 	, �, and � loops are

�The NWChem code also contains code for transforming integrals
from the atomic basis into the molecular basis. This transformation
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Figure 10: Abstract syntax tree for the fused and tiled loop
structure shown in Fig. 9. The 	 loop is redundant for the
leaf evaluating ����� �� �� ��, resulting in a large recomputation
cost. To improve upon that, the redundant loop 	 is split into
a tiling/intra-tile pair of loops (	� and 		, respectively). The
intra-tile loops 		 are then moved by fission and permutation
operations toward the bottom of the tree. The 		 loop is finally
discarded for the leaf computing ����� �� �� ��. The remaining
		 loops are indicated by empty circles.

split into tiling and intra-tile loops of size �� and !, respectively.
They obey the constraint ! � �� 	 � . The largest intermedi-
ate array is � , which is a four-dimensional block of size !�. The
recomputation cost of this solution is � ���

��� �'!� � ��. Re-
quiring that the total memory usage is less than ( 	 ���� words,
and using the values for �, � and  � provided in the previous
paragraph, we arrive at a recomputation cost of 	 ���� ���� oper-
ations. The recomputation cost is due to the redundant evaluation
of the functions �� and �� ��

� times.
The optimal solution is obtained using the two step space-time

trade-off algorithm presented in Sections 5 and 6. The first step pro-
duces six solutions. All other possible loop fusion structures have
both higher memory usage and higher recomputation cost than one
or more of these solutions. Figure 11 shows the six solutions rang-
ing in memory usage from three words to ���� ���� words, and in
recomputation cost from zero operations to �� � ���� operations.
The memory limit in our example is marked by the solid horizon-
tal line. Solution number 1 is trivial, and represents the memory
optimal solution with no redundant computation. Such a solution
always exists for any operator tree. If its memory usage is below
the memory limit, then the second step of the algorithm is no longer
necessary, and this becomes the optimal final solution. Otherwise,
it is discarded, along with all the other solutions that are above the
memory limit (in this case, only number 1). The rest of the so-
lutions (2 through 6 in this example) are then passed through the
second step of the algorithm. Figure 7 shows the pseudo-code for
solution 2, which has the lowest recomputation cost (	 ���� ����

floating point operations) after the first step of the algorithm.
The array expansion step brings significant further reduction of

the recomputation cost for all the remaining 5 solutions. Their re-
computation costs, ranging from ��� � ���� to �� � ���� opera-
tions after step 1, are reduced to between �������� and ��������

operations. The pseudo-code for the final optimal solution is pre-
sented in Fig. 9. It happens to be the tiled form of solution 2, which
was the best solution before the array expansion step. However,
this is just a coincidence, due in part to the very small operator tree

is encapsulated in the function calls.
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Figure 11: Relationship between memory usage and recompu-
tation cost. Solid triangles represent the 6 different solutions
produced by the first step of the space-time trade-off algorithm.
The horizontal line shows the hard memory limit of ( 	 ����

words used for this example. Except for solution 1, which uses
more memory than the ���� words limit, all the other solutions
are analyzed by the second step of the algorithm.

considered for this example, which in turn generates a very limited
number of solutions. In general, any of the solutions obtained in
step one could become the optimal solution after tiling.

We note that the final solution is not trivial, in fact it has a rather
complex structure. We also observe that, although their cost is simi-
lar, all the solutions (the tiled versions of 2 through 6) have abstract
syntax trees that are quite different. Indeed, even for a relatively
simple formula, like the one used in this example, the collection
of solutions is rather rich and non-trivial. Manual optimization is
unlikely to find and test all possibilities, especially for larger trees.
It is also interesting to note that one of the solutions produced by
the algorithm (the tiled version of 6) is identical to the manually
optimized pseudo-code presented in Fig. 4. Its recomputation cost
of ��� � ���� operations is roughly one order of magnitude higher
than the cost of the optimal solution.

We investigate the recomputation cost of the optimal code in
comparison with that of the manually generated code for various
values of the input parameters �, � , and ( , consistent with their
physical meaning. We find, as expected, that the structure of the op-
timal code may change from one set of input parameters to another.
The improvement factor over the manual code presented in Fig. 4
ranges from 1 (when the manual code is optimal) to 20, depending
on �, � , and ( .

8. RELATED WORK
Much work has been done on improving locality and parallelism

by loop fusion. Kennedy and McKinley [13] presented an algo-
rithm for fusing a collection of loops to minimize parallel loop
synchronization and maximize parallelism. They proved that find-
ing loop fusions that maximizes locality is NP-hard. Darte [5] dis-
cusses the complexity of maximal fusion of parallel loops. A fast
algorithm was presented by Kennedy in [12] that allows accurate
modeling of data sharing as well as the use of fusion enabling trans-
formations. Ding [6] illustrates the use of loop fusion in reducing
storage requirements through an example, but does not provide a
general solution. Gao et al. [8] studied the contraction of arrays
into scalars through loop fusion as a means to reduce array access

overhead. They partitioned a collection of loop nests into fusible
clusters using a max-flow min-cut algorithm, taking into account
the data dependencies.

Loop fusion in the context of delayed evaluation of array expres-
sions in compiling APL programs has been discussed by Guibas
and Wyatt [9]. As part of their algorithm, a general buffering mech-
anism was devised to save portions of a sub-expression that will be
repeatedly needed, to avoid re-computation. They considered loop
fusion without any loop reordering; and their work is not aimed
at minimizing array sizes. Lewis et al. [20] discusses the applica-
tion of fusion directly to array statements in languages such as F90
and ZPL. Callahan et al. [2] present a technique to convert array
references to scalar accesses in innermost loops.

There has been some recent work on using loop fusion for mem-
ory reduction for sequential execution. Fraboulet et al. [7] use loop
alignment to reduce memory requirement between adjacent loops
by formulating the one-dimensional version of the problem as a net-
work flow problem. Song [23] and Song et al. [25, 24] present a dif-
ferent network flow formulation of the memory reduction problem
and they include a simple model of cache misses as well. However,
they do not consider the issue of trading off memory for recompu-
tation.

9. CONCLUSION
This paper addressed a space-time trade-off problem that arises

in the context of a larger project on developing a program synthe-
sis system, targeted at the development of high-performance par-
allel programs for a class of computations encountered in quan-
tum chemistry. A two step algorithm was developed for the space-
time trade-off optimization problem. Results were presented of its
application to a test case abstracted from the quantum chemistry
code NWChem. The solution derived using our implementation of
the algorithm reduces the recomputation cost of the calculation by
about an order of magnitude for typical problem sizes.
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