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Abstract

This paper provides an overview of a program synthesis system for a class of quantum
chemistry computations. These computations are expressible as a set of tensor contractions
and arise in electronic structure modeling. The input to the system is a a high-level specifica-
tion of the computation, from which the system can synthesize high-performance parallel code
tailored to the characteristics of the target architecture. Several components of the synthesis
system are described, focusing on performance optimization issues that they address.

1 Introduction

Computers have made dramatic strides in speed over the last few decades, but unfortunately the
ease of programming parallel computers has not made much progress. As computers have in-
creased in achievable performance, making it feasible to accurately model more complex phe-
nomena, the time and effort required to develop the software has become the bottleneck in many
areas of science and engineering. The difficulty of developing high-performance software using
the available languages and tools is being recognized as one of the most significant challenges
today in the effective use of high-performance computers.
Over the last few years, we have engaged in a collaborative project with quantum chemists to
develop a program transformation system to automatically transform a high-level specification
of computations (expressed as tensor-contraction expressions) into optimized parallel programs.
This paper provides an overview of the TCE system, and discusses the performance-model driven
search-based approach to program transformation [5, 10, 26, 27] that are pursuing.
The paper is organized as follows. In the next section, we provide an overview of the components
of the TCE system. Section 3 discusses the approach to storage and data locality optimization
using a model-driven search-based approach. Section 4 discusses related work and we conclude
in Section 5.
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Figure 1: The Synthesis System

2 Overview of the Tensor Contraction Engine

Fig. 1 shows a flowchart for the TCE system. A “front-end” (not shown) generates a set of
working equations for the computational model, in the form of tensor contraction expressions,
which are essentially comprised of a large number of generalized matrix products involving multi-
dimensional arrays. The tensor contraction expressions, which may have hundreds of contraction
terms, are transformed by the TCE into parallel Fortran programs that can be interfaced with
quantum chemistry suites such [20]. The program transformation steps in the TCE include:
Operation minimization: The properties of commutativity and associativity of addition and mul-
tiplication and the distributivity of multiplication over addition are used to search for various pos-
sible ways of applying these properties to an input sum-of-products expression. A combination
that results in an equivalent form of the computation with minimal operation cost is generated. The
problem of determining an equivalent operation-minimal form of the expression is NP-complete,
but efficient pruning-search procedures have been developed that are very effective in practice
[30].
Memory minimization: The operation-minimal computation sequence synthesized by applying
algebraic transformation often requires the use of large temporary intermediate arrays. The Mem-
ory Minimization step seeks to perform loop fusion transformations to reduce the memory require-



ments. An abstraction called the fusion-graph has been developed and has served as the basis for
a search process used to evaluate alternate the loop fusion choices in the context of the TCE [29].
Storage and data locality optimization: If the space requirement exceeds physical memory ca-
pacity, portions of the arrays must be moved between disk and main memory as needed, in a way
that maximizes reuse of elements in memory. Loop blocking transformations are used to minimize
disk-to-memory transfer overhead [9, 8, 26, 27].
Space-time trade-off: When the memory-minimal solution is too large to fit in physical memory,
an optimization framework is used to determine the optimal trade-off between redundant recom-
putation and I/O for large intermediates stored on disk [10].
Data distribution and partitioning: This step determines how best to partition the arrays among
the processors of a parallel system. The data and work distribution that minimizes the total inter-
processor communication in executing a sequence of tensor contractions is determined [12].
Due to space limitations, we restrict ourselves in this paper to providing more details about only
the approach to storage and locality optimization.

3 Storage and Locality Optimization

A fundamental issue in transformation of a tensor contraction expression into an efficient program
is that of minimizing the cost of I/O and memory copies. If one or more of the arrays are too
large to fit within physical memory, disk I/O will be unavoidable. However, by suitable blocking
of the data and its access, the cost of disk I/O can be minimized. In addition, if some arrays are
intermediate results that are produced and then consumed, but not required upon exit, there may
be opportunities to produce and consume them “by-parts”, so that it may be possible to avoid the
need to write them out to disk at all. This possibility can be modeled in a loop framework in terms
of loop fusion and array contraction.

An Example: AO-to-MO Transformation

As an example, we consider a transformation often used in quantum chemistry codes to transform
a set of two-electron integrals from an atomic orbital (AO) basis to a molecular orbital (MO) basis:

B(a, b, c, d) =
∑

p,q,r,s

C1(s, d) × C2(r, c) × C3(q, b) × C4(p, a) × A(p, q, r, s)

Here, A(p, q, r, s) is an input four-dimensional array (assumed to be initially stored on disk), and
B(a, b, c, d) is the output transformed array, which needs to be placed on disk at the end of the
calculation. The arrays C1 through C4 are called transformation matrices. In reality, these four
arrays are identical; we identify them by different names in our example in order to be able to
distinguish them in the text.
The indices p, q, r, and s have the same range N , denoting the total number of orbitals, and equal
to O + V , where O is the number of occupied orbitals in the chemistry problem, V is the number
of unoccupied (virtual) orbitals. Likewise, the index ranges for a, b, c, and d are the same, and
equal to V . Typical values for O range from 10 to 300; the number of virtual orbitals V is usually
between 50 and 1000.
The calculation of B is done in four steps to reduce the number of floating point operations:

B(a, b, c, d) =
∑

s

C1(s, d) ×
(∑

r

C2(r, c) ×
(∑

q

C3(q, b) ×
(∑

p

C4(p, a) × A(p, q, r, s)

)))



This results in the creation of temporary intermediate arrays T1, T2, and T3:

T1(a, q, r, s) =
∑
p

C4(p, a) × A(p, q, r, s)

T2(a, b, r, s) =
∑
q

C3(q, b) × T1(a, q, r, s)

T3(a, b, c, s) =
∑
r

C2(r, c) × T2(a, b, r, s)

Assuming that the available memory limit on the machine running this calculation is less than V 4

(which is about 3TB for V = 800 and double precision arrays), any of the logical arrays A, T1,
T2, T3, and B is too large to entirely fit in memory. Therefore, if the computation is implemented
as a succession of four independent steps, the intermediates T1, T2, and T3 have to be written to
disk once they are produced, and read from disk before they are used in the next step.
We use loop fusion and loop tiling to reduce memory requirements. To illustrate the benefit
of loop fusion, consider the first two steps in the AO-to-MO transformation: T1(a, q, r, s) =∑

p C4(p, a) × A(p, q, r, s); T2(a, b, r, s) =
∑

q C3(q, b) × T1(a, q, r, s). Fig. 2(a) shows the
loop structure for the direct computation as a two-step sequence: first produce the intermediate
T1(1 : Na, 1 : Nq, 1 : Nr, 1 : Ns) and then use T1 to produce T2(1 : Na, 1 : Nb, 1 : Nr, 1 :
Ns). This is as an abstract form of a specification of the computation, because it cannot be
executed in this form if the sizes of arrays are larger than limits due to the physical memory size.
Since all loops in either of the loop nests are fully permutable, and since there are no fusion-
preventing dependences, the common loops a, q, r, and s can be fused. Once fused, the storage
requirements for T1 can be reduced by contracting it to a scalar as shown in Fig. 2(b). Although
the total number of arithmetic operations remains unchanged, the dramatic reduction in size of the
intermediate array T1 implies that it can be completely stored in memory, without the need for any
disk I/O for it. In contrast, if Na × Nq × Nr × Ns is larger than available memory, the unfused
version will require that T1 be written out to disk after it is produced in the first loop, and then
read in from disk for the second loop.

Performance Modeling

Fig. 3(a) shows one abstract code specification for AO-to-MO transform, where loop fusion has
already been performed. Even after array contraction through loop fusion, some of the arrays
may be larger than available physical memory. If so, blocks of such arrays must be copied into
memory buffers for computation. In general, a block of a disk-resident array may have to be
copied into memory multiple times. For a given abstract code such as shown in Fig. 3(a), there
are an explosively large number of possible ways of generating concrete code with I/O statements
for movement of blocks of disk-resident arrays into in-memory buffers. Each alternative code
structure imposes a physical memory requirement and involves a data movement cost that can be
quantified.
A convenient way of structuring the alternatives is by viewing the transformation of an abstract
form of the code into a concrete form in multiple steps: 1) Tile each loop by splitting it into a pair
of loops: tiling loop and intra-tile loop; 2) Move intra-tile loops inside nesting structures, subject
to dependence constraints; and 3) Place disk I/O statements to copy blocks of disk-resident arrays
from/to in-memory buffers.



double T1(Na,Nq,Nr,Ns)
double T2(Na,Nb,Nr,Ns)
T1(*,*,*,*) = 0
T2(*,*,*,*) = 0
FOR a = 1, Na
FOR q = 1, Nq
FOR r = 1, Nr
FOR s = 1, Ns
FOR p = 1, Np

T1(a,q,r,s)
+= C4(p,a) * A(p,q,r,s)

END FOR p,s,r,q,a
FOR a = 1, Na
FOR b = 1, Nb
FOR r = 1, Nr
FOR s = 1, Ns
FOR q = 1, Nq

T2(a,b,r,s)
+= C3(q,b) * T1(a,q,r,s)

END FOR q,s,r,b,a

(a) Unfused code

double T1(1,1,1,1)
double T2(Na,Nb,Nr,Ns)
T1(1,1,1,1) = 0
T2(*,*,*,*) = 0
FOR a = 1, Na
FOR q = 1, Nq
FOR r = 1, Nr
FOR s = 1, Ns
FOR p = 1, Np

T1(1,1,1,1)
+= C4(p,a) * A(p,q,r,s)

END FOR p
FOR b = 1, Nb

T2(a,b,r,s)
+= C3(q,b) * T1(1,1,1,1)

END FOR b
END FOR s,r,q,a

(b) Fused code

Figure 2: Example of the use of loop fusion to reduce memory requirements

Fig. 3(b) shows one possible placement of intra-tile loops for this code. Given a particular tiled
loop structure, such as in Fig. 3(b), there are still many possible choices for the placement of
I/O statements, and choice of tile sizes for the various tiled loops. The fundamental objectives
in making the choice are to minimize the total disk I/O cost, subject to the physical memory
constraints. The placement of disk I/O statements and tile sizes both affect the disk I/O cost as
well as the total physical memory requirement. At one extreme, if disk I/O statements are placed
at the innermost possible positions, just before/after computational statements inside loop nests,
only a single memory location will be needed for each array, but the disk I/O cost would be
prohibitively large. At the other extreme, if unlimited physical memory were available, the disk
I/O statements could be moved all the way out, with all reads of input arrays happening before any
of the loops of the computation, and the writes being done at the end of all the loops. In practice,
for computations that cannot fit within physical memory, some intermediate placements of disk
I/O statements, along with suitable choice of tile sizes will be best.

Quantifying Data Movement Costs

We next develop cost expressions for memory usage and disk I/O cost, as a function of tile sizes
and placements of disk I/O statements. Let the tile sizes be Ta, Tb, ... for loops a, b, ... where each
tile size variable has a lower bound of 1 and an upper bound of the full loop range. In addition
to tile size variables, placement variables, λi, i = 0, 1, 2, ..., are introduced to encode placement
choices, as explained below. These variables are used to determine where the I/O statement for an
array will be placed. Each of these λ values are constrained to take only values 0 or 1 by using the
following equality constraint:

λi × (1 − λi) = 0, i = 0, 1, 2 . . .

Consider the possible read placements for input array C4. Irrespective of the read placement, the
disk access cost will include the total size of the disk version of the array. If any redundant loops
(i.e. those that do not explicitly occur in any of the index expressions) surround the read statement,



FOR a,b,r,s
T2[b,a,r,s]=0

FOR r,s
FOR a,q
T1[a,q]=0

FOR a,p,q
T1[a,q]+=C4[p,a]*A[p,q,r,s]

FOR a,b,q
T2[b,a,r,s]+=C3[q,b]*t_1[a,q]

FOR a,b,c,d
B[a,b,c,d]=0

FOR a,b,c
FOR s
T3[s]=0

FOR r,s
T3[s]+=C2[r,c]*t_2[b,a,r,s]

FOR d,s
B[a,b,c,d]+=C1[s,d]*T3[s]

(a) Abstract Code for AO-to-MO transform

FOR aT,bT,rT,sT,aI,bI,rI,sI
T2[bT+bI,aT+aI,rT+rI,sT+sI]=0

FOR rT,sT,rI,sI
FOR aT,qT,aI,qI
T1[aT+aI,qT+qI]=0

FOR aT,pT,qT,aI,pI,qI
T1[aT+aI,qT+qI]+=C4[pT+pI,aT+aI]

*A[pT+pI,qT+qI,rT+rI,sT+sI]
FOR aT,bT,qT,aI,bI,qI
T2[bT+bI,aT+aI,rT+rI,sT+sI]+=

C3[qT+qI,bT+bI]*T1[aT+aI,qT+qI]
FOR aT,bT,cT,dT,aI,bI,cI,dI

B[aT+aI,bT+bI,cT+cI,dT+dI]=0
FOR aT,bT,cT,aI,bI

FOR sT,cI,sI
T3[sT+sI,cI]=0

FOR rT,sT,cI,rI,sI
T3[sT+sI,cI]+=C2[rT+rI,cT+cI]

*T2[bT+bI,aT+aI,rT+rI,sT+sI]
FOR dT,sT,cI,dI,sI
B[aT+aI,bT+bI,cT+cI,dT+dI]+=

C1[sT+sI,dT+dI]*T3[sT+sI,cI]

(b) One possible structure for tiling of loops

C4[pT+pI,aT+aI]=Read(C4Disk,1,5600.0)
C3[qT+qI,bT+bI]=Read(C3Disk,1,5600.0)
FOR rT,sT,rI,sI

FOR aT,qT,aI,qI
T1[aT+aI,qT+qI]=0

A[pT+pI,qT+qI]=Read(ADisk,sT/80*1+rT/80+1,6400.0)
FOR aT,pT,qT,aI,pI,qI
T1[aT+aI,qT+qI]+=C4[pT+pI,aT+aI]*A[pT+pI,qT+qI]

FOR aT,bT
FOR aI,bI

T2[bI,aI]=0
FOR qT,aI,bI,qI

T2[bI,aI]+=C3[qT+qI,bT+bI]*T1[aT+aI,qT+qI]
Write(T2Disk,sT/80*1*2*2+rT/80*2*2+

bT/35*2+aT/35+1,1225.0)
C2[rT+rI,cT+cI]=Read(C2Disk,1,5600.0)
C1[sT+sI,dT+dI]=Read(C1Disk,1,5600.0)
FOR aT,bT

T2[bI,aI,rT+rI,sT+sI]=
Read(T2Disk,bT/35*2+aT/35+1,7840000.0)

FOR cT,aI,bI
FOR sT,cI,sI

T3[sT+sI,cI]=0
FOR rT,sT,cI,rI,sI

T3[sT+sI,cI]+=
C2[rT+rI,cT+cI]*T2[bI,aI,rT+rI,sT+sI]

FOR dT
FOR cI,dI
B[cI,dI]=0

FOR sT,cI,dI,sI
B[cI,dI]+=C1[sT+sI,dT+dI]*T3[sT+sI,cI]

Write(BDisk,dT/70*1*2*2+cT/70*2*2
+bT/35*2+aT/35+1,4900.0)

(c) Concrete Code for AO-to-MO transform with
Disk I/O

Figure 3: Example of abstract, tiled and concrete code with I/O for AO-to-MO transform Na =
Nb = Nc = Nd = 70, Np = Nq = Nr = Ns = 80, Memory Limit = 128MB, Double Precision
Arrays.



they add a multiplicative cost to the accesses of the array. For the possible placement above loop
qT , the disk access volume will be:

Nr × Ns × SizeC4

where the total size of array C4 is multiplied by the ranges of the redundant loops sT , rT , sI , rI .
Although this only counts the number of elements accessed, the cost model can be refined to
account for seek time etc. The disk access cost for read placement above loop pT is again Nr ×
Ns × SizeC4. However, the cost if the read is placed above loop rT is SizeC4. It can be reasoned
in this case that only these three possible placements need be considered for I/O for C4 and that
other potential placements are either inferior or equivalent in terms of memory usage cost and disk
access cost. So for C4, �log2(3)� = 2 placement variables λ0 and λ1 are introduced as follows:

(λ0 × λ1 × Nr × Ns × SizeC4) + (λ0 × (1 − λ1) × Nr × Ns × SizeC4)

+((1 − λ0) × λ1 × SizeC4)
If λ0 = 1, λ1 = 1, the first placement is selected, if λ0 = 1, λ1 = 0, the second one is selected,
and so on. Along the same lines, the memory cost expression for C4 using the placement variables
can be written as follows:

(λ0 × λ1 × Tp × Ta) + (λ0 × (1 − λ1) × Np × Ta) + ((1 − λ0) × λ1 × Np × Na)+

((1 − λ0) × (1 − λ1) × 2 × memoryLimit)
For (λ0, λ1) = (1, 1), (1, 0), (0, 1), there are valid disk cost and memory cost terms. However, for
(λ0, λ1) = (0, 0), the following memory cost term is introduced:

((1 − λ0) × (1 − λ1) × 2 × memoryLimit)

so that the memory constraint is never satisfied for this combination of values for the placement
variables. No disk cost term needs to be introduced for this combination.

Quantifying Memory Usage Costs

Next, we enumerate constraints on the size of the in-memory buffer for the arrays. Consider
different possible placements for array A. If the read for array A is placed just above loop aI , its
in-memory buffer size will be Tp × Tq, and the following constraint is imposed on the buffer size:

Tp × Tq × sizeof(double) ≥ 2MB

There turn out to be six possible placements to be considered for array A, and so three placement
variables λi, i = 2, 3, 4, are used in the disk cost and memory cost expressions for A, to construct
the entire constraint expression. For example, the first term in the expression will be

λ2 × λ3 × λ4 × Tp × Tq × sizeof(double)

while the second term will be

λ2 × λ3 × (1 − λ4) × Tp × Nq × sizeof(double)

and so on.
In this manner, we construct disk cost, memory cost and other constraint expressions for all arrays.
The generation of optimized concrete code can be done by solving a constrained optimization
problem: minimize the disk access cost expression, subject to the constraints that requires the
memory usage expression to be no greater than available physical memory. This can be done by
use of a specialized search procedure, or a general-purpose solver. For the particular example in
Fig. 3(b), use of the DCS solver [1] resulted in the optimized values shown in the concrete form
of the code shown in Fig. 3(c).



Processor OS Compiler Memory
Dual Itanium-2 (900 MHz) Linux 2.4.18 efc version 7.1 4GB

Table 1: Configuration of the system whose I/O characteristics were studied.

Optimizations included Total Disk I/O Total execution
and omitted I/O time (secs) time (secs)

Fusion + Optimizing Tiling 248.43 954.87
No Fusion, Optimizing Tiling 747.83 1261.95

No Fusion, Tile size = 4th 1240.85 1957.18
root of memorySize/3

Table 2: Total disk I/O and execution times for codes generated for all three cases.

Experimental Results
In this section, we present experimental data on the performance of code generated by the TCE for
the four-index transform calculation discussed earlier. Three different combinations of optimiza-
tions were used to generate code with explicit disk I/O statements.

1. Fusion + Optimized Tiling: The TCE loop fusion and tiling optimizations were enabled
[5, 26].

2. No Fusion, Optimized Tiling: Loop fusion was disabled, but the TCE tiling optimization
was enabled.

3. No Fusion, Standard Tiling: Loop Fusion was disabled; the tile sizes of all loops were
standardized to 1/3 of the 4th root of the memory size. This is the approach used in current
quantum chemistry codes.

The sizes of the tensors used for the experiments were Na = Nb = Nc = Nd = V = 140
and Np = Nq = Nr = Ns = N = 150. The performance of the generated concrete code was
measured on the Itanium 2 Cluster at The Ohio Supercomputer Center. Each node in the cluster
has the configuration shown in Table 1. Since not all of the physical memory can be used for data,
the memory limit for the optimizations was set to 2GB.
As can be seen, the code with standard tiling has the most redundant disk I/O. This is the state
of the art for the code generators currently used by chemists. Table 2 shows the disk I/O times
and total execution times of the generated code for all three cases. Our combined fusion and tiling
optimizations result in code that has 80% less disk I/O than the code with standard tiling.

4 Related Work

Aspects of some of the important problems addressed in the synthesis system such as operation
minimization, memory reduction and locality optimization have also received attention in research
on compiler optimizations.
Some recent work has explored the use of loop fusion for memory reduction for sequential exe-
cution. Fraboulet et al. [16] use loop alignment to reduce memory requirement between adjacent
loops by formulating the one-dimensional version of the problem as a network flow problem. Song
et. al. [43] present a different network flow formulation of the memory reduction problem and they
include a simple model of cache misses as well. However, they do not consider the issue of trading
off memory for recomputation.
Considerable research on loop transformations for locality in nested loops has been reported in
the literature [13, 32, 36, 46]. Over the fifteen years, there has also been considerable progress



towards developing powerful frameworks based on the polyhedral model of loop computations
[3, 4, 7, 14, 19]. Nevertheless, a performance-model driven approach to the integrated use of loop
fusion and loop tiling for enhancing locality in imperfectly nested loops has not been addressed
in these works. Wolf et al. [47] consider the integrated treatment of fusion and tiling only from
the point of view of enhancing locality and do not consider the impact of the amount of required
memory; the memory requirement is a key issue for the problems considered in the context of the
TCE. Loop tiling for enhancing data locality has been studied extensively [13, 24, 25, 41, 46, 47,
42], and analytic models of the impact of tiling on locality in perfectly nested loops have been
developed [18, 31, 39]. Frameworks for handling imperfectly nested loops have been presented
in [2, 33, 42]. Ahmed et. al. [2] have developed a framework that embeds an arbitrary collection
of loops into an equivalent perfectly nested loop that can be tiled; this allows a cleaner treatment
of imperfectly nested loops. Lim et al. [33] develop a framework based on affine partitioning
and blocking to reduce synchronization and improve data locality. Specific issues of locality
enhancement, I/O placement and optimization, and automatic tile size selection have not been
addressed in the works that can handle imperfectly nested loops [2, 33, 42].
The approach undertaken in this project bears similarities to some projects in other domains, such
as the SPIRAL project which is aimed at the design of a system to generate efficient libraries
for digital signal processing algorithms [21, 48]. SPIRAL generates efficient implementations of
algorithms expressed in a domain-specific language called SPL by a systematic search through
the space of possible implementations. Other efforts in automatically generating efficient imple-
mentations of programs include FFTW [17], the telescoping languages project [22], ATLAS [45]
for deriving efficient implementation of BLAS routines, the PHIPAC [6] project, and the TUNE
project [44]. In addition, motivated by the difficulty of detecting and optimizing matrix operations
hidden in array subscript expressions within loop nests, several projects have worked on efficient
code generation from high-level languages such as MATLAB and Maple [15, 35, 37, 38].
While our effort shares some common goals with several of the projects mentioned above, there
are also significant differences. Some of the optimizations we consider, such as the algebraic
optimizations, memory minimization, and space-time trade-offs, do not appear to have been pre-
viously explored, to the best of our knowledge. We also take advantage of certain domain-specific
properties of the computations; for example, since all expressions considered in this framework are
tensor contractions, the loops of the resulting code are fully permutable, and there are no depen-
dencies preventing fusion. This observation is crucial for the optimization algorithms of several
components (memory minimization, space-time transformation, data locality).

5 Current Status

We have taken a two-pronged approach to concurrently develop two versions of the TCE: one
developed by our collaborators at Pacific Northwest National Laboratory PNNL, that incorporates
many domain-specific features such as spin and symmetry, but does not implement many of the
optimizations and transformations shown in Fig. 1; and another being developed at OSU, that is
based on a framework for program transformation and optimization.
The prototype TCE system has automatically derived and implemented optimized, parallel pro-
grams for various, high-order, single-reference configuration interaction (CI), coupled cluster
(CC), and many-body perturbation theory (MBPT) models for the description of electron cor-
relation in the ground state. These are the initial parallel implementations for many of these mod-
els, and have proved competitive to equivalent hand-written programs in sequential performance.
These implementations are being distributed with the latest release of NWChem 4.5 [20].



Theory # Terms # Lines Year
CCD 11 3209 1978

CCSD 48 13213 1982
CCSDT 102 33932 1988

CCSDTQ 183 79901 1992

Table 1: History of development of implementations of Coupled Cluster methods

It is estimated that already several person-years of effort have been saved in the implementation
of these methods using the TCE. Table 1 gives an idea of the potential benefits from using the
automated synthesis capability of the TCE. It lists members of the Coupled-Cluster family in
increasing order of the method, the number of terms involved in the tensor contraction expression,
the number of lines of code for the synthesized parallel Fortran code, and the year of first manual
implementation of the method. A fourteen year span separated the availability of a CCD code
and a CCSDTQ code. Starting from scratch, the TCE can synthesize codes for all these methods,
representing tens of thousands of lines of code, in a matter of minutes to hours.
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