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Abstract

This paper discusses an approach to the synthesis of high-performance parallel programs for a class of computations
encountered in quantum chemistry and physics. These computations are expressible as a set of tensor contractions and arise
in electronic structure modeling. An overview is provided of the synthesis system, that transforms a high-level specification
of the computation into high-performance parallel code, tailored to the characteristics of the target architecture. An example
from computational chemistry is used to illustrate how different code structures are generated under different assumptions of
available memory on the target computer.

1 Introduction

The complexity of developing high-performance parallel software has led to many efforts aimed at raising the level of
abstraction above message-passing using MPI. The approaches range from a) new parallel languages like ZPL [32] and
parallel extensions to general-purpose sequential languages like C [5] Java [36] and Fortran [30], to b) parallel libraries and
problem solving environments like SCALAPACK [6], PLAPACK [1], UHFFT [27], Global Arrays [29], OVERTURE [4],
Cactus [31], PETSc [2], Broadway [13] etc., to c) domain-specific synthesis from high-level specification, such as SPIRAL
for the signal processing domain [28].

In this paper, we provide an overview of a project that is developing a program synthesis system to facilitate the rapid
development of high-performance parallel programs for a class of scientific computations encountered in chemistry and
physics — electronic structure calculations, where many computationally intensive components are expressible as a set of
tensor contractions. Currently, manual development of accurate quantum chemistry models in this domain is very tedious
and takes an expert several months to years to develop and debug. The synthesis tool aims to reduce the development time
to hours/days, by having the chemist specify the computation in a high-level form, from which an efficient parallel program
is automatically synthesized. This should enable the rapid synthesis of high-performance implementations of sophisticated
ab-initio quantum chemistry models, including models that are too tedious for manual development by quantum chemists.

The computational domain that we consider is extremely compute-intensive and consumes significant computer resources
at national supercomputer centers. Many of these codes are limited in the size of the problem that they can currently solve
because of memory and performance limitations. The computational structures that we address are present in some compu-
tational physics codes modeling electronic properties of semiconductors and metals, and in computational chemistry codes
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such as ACES II, GAMESS, Gaussian, NWChem[14], PSI, and MOLPRO. In particular, they comprise the bulk of the com-
putation with the coupled cluster approach to the accurate description of the electronic structure of atoms and molecules
[22, 23]. Computational approaches to modeling the structure and interactions of molecules, the electronic and optical prop-
erties of molecules, the heats and rates of chemical reactions, etc., are crucial to the understanding of chemical processes
in real-world systems. Examples of applications include combustion and atmospheric chemistry, chemical vapor deposition,
protein structure and enzymatic chemistry, and industrial chemical processing. Computational chemistry and materials sci-
ence account for significant fractions of supercomputer usage at national centers (for example, approximately 85% of total
usage at Pacific Northwest National Laboratories, 30% at NERSC, and about 50% of one of SDSC’s systems).

The synthesis of efficient parallel code from a high-level specification as a set of tensor contractions requires many opti-
mization issues to be addressed. We use an example to illustrate the issues and solution approach, and provide pointers to
other publicatiosn that provide about the compiler transformations. Section 2 provides some background about the compu-
tational context addressed. Section 3 uses a motivating example that abstracts a computation implemented in many quantum
chemistry packages. Section 4 provides an overview of the components of the synthesis system. Section 5 provides pseu-
docode output by the synthesis system for the motivating example, under different assumptions of available memory. This
illustrates the power of the system to generate tailored code optimized for the problem and system parameters. Section 6
provides a discussion along with pointers to related work.

2 The computational context

In the class of computations considered, the final result to be computed can be expressed in terms of tensor contractions,
essentially a collection of multi-dimensional summations of the product of several input arrays. Due to commutativity,
associativity, and distributivity, there are many different ways to compute the final result, and they could differ widely in the
number of floating point operations required. Consider the following expression:

Sabij =
∑

cdefkl

Aacik ×Bbefl × Cdfjk ×Dcdel

If this expression is directly translated to code (with ten nested loops, for indicesa − l), the total number of arithmetic
operations required will be4 × N10 if the range of each indexa − l is N . Instead, the same expression can be rewritten by
use of associative and distributive laws:

Sabij =
∑
ck

(∑
df

(∑
el

Bbefl ×Dcdel

)
× Cdfjk

)
×Aacik

This corresponds to the formula sequence shown in Fig. 1(a) and can be directly translated into code as shown in Fig. 1(b).
This form only requires6 × N6 operations. However, additional space is required to store temporary arraysT1 andT2.
Often, the space requirements for the temporary arrays poses a serious problem. For this example, abstracted from a quantum
chemistry model, the array extents along indicesa − d are the largest, while the extents along indicesi − l are the smallest.
Therefore, the size of temporary arrayT1 would dominate the total memory requirement.

The operation minimization problem encountered here is a generalization of the well known matrix-chain multiplication
problem, where a linear chain of matrices to be multiplied is given, e.g., ABCD, and the optimal order of pair-wise multipli-
cations is sought, i.e., ((AB)C)D versus (AB)(CD), etc. In contrast, for computations expressed as sets of matrix contractions,
there is additional freedom in choosing the pair-wise products. For the above example, instead of forcing a single chain order,
e.g., ABCD, other orders are possible, such as the BDCA order shown for the operation-reduced form above.

We have shown that the problem of determining the operator tree with minimal operation count is NP-complete and have
developed a pruning search procedure [20, 21] that is very efficient in practice. For the above example, although the latter
form is far more economical in terms of the number of operations, its implementation will require the use of temporary
intermediate arrays to hold the partial results of the parenthesized array subexpressions. Sometimes, the sizes of intermediate
arrays needed for the “operation-minimal” form are too large to even fit on disk.

A systematic way to explore ways of reducing the memory requirement for the computation is to view it in terms of
potential loop fusions. Loop fusion merges loop nests with common outer loops into larger imperfectly nested loops. When
one loop nest produces an intermediate array which is consumed by another loop nest, fusing the two loop nests allows the
dimension corresponding to the fused loop to be eliminated in the array. This results in a smaller intermediate array and thus
reduces the memory requirements. For the example considered, the application of fusion is illustrated in Fig. 1(c). This way,
T1 can be reduced to a scalar andT2 to a 2-dimensional array, without changing the number of operations.
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T1bcdf =
∑

el

Bbefl ×Dcdel

T2bcjk =
∑
df

T1bcdf × Cdfjk

Sabij =
∑
ck

T2bcjk ×Aacik

(a) Formula sequence

T1=0; T2=0; S=0;
for b, c, d, e, f, l[

T1bcdf += Bbefl Dcdel
for b, c, d, f, j, k[

T2bcjk += T1bcdf Cdfjk
for a, b, c, i, j, k[

Sabij += T2bcjk Aacik
(b) Direct implementation (unfused code)

S = 0;
for b, c

T1f = 0; T2f = 0;
for d, f for e, l[

T1f += B befl Dcdel
for j, k[

T2f jk += T1f C dfjk
for a, i, j, k[

Sabij += T2f jk Aacik
(c) Memory-reduced implementation (fused)

Figure 1. Example illustrating use of loop fusion for memory reduction.

For a computation comprising a number of nested loops, there are often many fusion choices, that are not all mutually
compatible. This is because different fusion choices could require different loops to be made the outermost. In prior work,
we addressed the problem of finding the choice of fusions for a given operator tree that minimized the total space required
for all arrays [17, 18, 19].

3 A motivating example from CCSD(T)

One of the most computationally intensive components of many quantum chemistry packages is the CCSD(T) scheme.
It is a coupled cluster approximation that includes single and double excitations from the Hartree-Fock wavefunction plus a
perturbative estimate for theconnectedtriple excitations. For molecules well described by a Hartree-Fock wave function, this
method predicts bond energies, ionization potentials, and electron affinities to an accuracy of±0.5 kcal/mol, bond lengths
accurate to±0.0005 Å, and vibrational frequencies accurate to±5cm−1. This level of accuracy is adequate to answer many
of the questions that arise in studies of chemical systems.

As a motivating example to illustrate some of the pertinent optimization issues addressed, we discuss a component of
the CCSD(T) calculation. The following representative equation arises in the Laplace factorized expression for linear triples
perturbation correction:

A3A = Xce,afYae,cf + Xaē,cf̄Ycē,af̄ + Xaē,c̄fYc̄ē,af

+ Xāe,cf̄Yce,āf̄ + Xāe,c̄fYc̄e,āf + Xāē,c̄f̄Yc̄ē,āf̄ ,

whereX andY are of the formXae,cf = tae
ij tcf

ij andYce,af = 〈cb ‖ ek〉〈ab ‖ fk〉, respectively.
Integrals with two vertical bars have been antisymmetrized and may be expressed as:(〈pq ‖ rs〉 = 〈pq | rs〉 − 〈pq | sr〉),

where integrals with one vertical bar are of the form〈µν | ωλ〉 =
∫ ∫

dr3ds3φµ(r)φν(s)|r − s|−1φω(r)φλ(s) and are quite
expensive to compute (requiring on the order of 1000 arithmetic operations). Electrons may have either up or down (or
alpha/beta) spin. Down spin is denoted here with an over-bar. The indicesi, j, k, l, m, n refer to occupied orbitals, of number
O between 30 and 100. The indicesa, b, c, d, e, f refer to unoccupied orbitals of number V between 1000 and 3000. The
integrals are written in the molecular orbital basis, but must be computed in the underlying atom-centered Gaussian basis,
and transformed to the molecular orbital basis. We omit these details in our initial discussion here.

A3A is one of many contributions to the energy, and among the most expensive, scaling asO(OV 5). Here, we assume
that we have already computed the amplitudestae

ij , and they must be read as necessary, and contracted to form a block ofX.
The integrals〈cb ‖ ek〉 must be recomputed as necessary, contracted to form a block ofY corresponding toX, and the two
contracted to form the scalar contribution to the energy.

Fig. 2 shows pseudo-code for the computation of one of the energy componentsE for A3A. Temporary arraysT1 and
T2 are used to store the integrals of form〈ab ‖ ek〉, where the functionsf1 andf2 represent the integral calculations (in
reality,f1 andf2 represent the same array/function, but it is more convenient to treat them as distinct initially, to simplify our
explanation about the space-time trade-off problem addressed by the synthesis system). The intermediate quantitiesXaecf

are computed by contracting over (i.e., summing over products of) input arrayT , while the intermediate quantitiesYceaf are
obtained by contracting overT1 andT2. The final result is a single scalar quantityE, that is obtained by adding together the
O(OV 3) pair-wise productsXaecfYceaf .

The cost of computing each integralf1, f2 is represented byCf , and in practice is of the order of hundreds or a few
thousand arithmetic operations. The pseudo-code form shown in Fig. 2 is computationally very efficient in minimizing the
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for a, e, c, f[
for i, j[

Xaecf += Tijae Tijcf

for c, e, b, k[
T1cebk = f 1(c, e, b, k)

for a, f, b, k[
T2afbk = f 2(a, f, b, k)

for c, e, a, f[
for b, k[

Yceaf += T1cebk T2afbk

for c, e, a, f[
E += Xaecf Yceaf

array space time
X V 4 V 4O2

T1 V 3O Cf V 3O
T2 V 3O Cf V 3O
Y V 4 V 5O
E 1 V 4

Figure 2. Unfused operation-minimal form.

for a, e, c, f[
for i, j[

Xaecf += Tijae Tijcf

for a, f[
for c, e, b, k[

T1cebk = f 1(c, e, b, k)

for c, e[
for a, f, b, k[

T2afbk = f 2(a, f, b, k)

for c, e, a, f[
for b, k[

Yceaf += T1cebk T2afbk

for c, e, a, f[
E += Xaecf Yceaf

⇒

for a, e, c, f
for i, j[

X += Tijae Tijcf
for b, k[

T1 = f 1(c, e, b, k)
T2 = f 2(a, f, b, k)
Y += T1 T2

E += X Y

array space time
X 1 V 4O2

T1 1 Cf V 5O
T2 1 Cf V 5O
Y 1 V 5O
E 1 V 4

Figure 3. Use of redundant computation to allow full fusion.

number of expensive integral function evaluationsf1 andf2, and maximizing the reuse of the stored integrals inT1 andT2
(each element ofT1 andT2 is usedO(V 2) times). However, it is impractical due to the huge memory requirement. For
example, withO = 100 andV = 5000, the size ofT1, T2 is O(1014) bytes and the size ofX, Y is O(1015) bytes. By fusing
pairs of producer-consumer loops, reductions in the array sizes may be obtained, since the array dimension corresponding
to the fused loop can be eliminated from the intermediate array. It can be seen that the loop that producesX (with indices
a, e, c, f ), the loop that producesY (with indicesc, e, a, f ) and the loop that consumesX andY to produceE (with indices
c, e, a, f ) can all be fully fused together, permitting the elimination of all explicit indices inX andY to reduce them to
scalars. However, the loops producingT1 (with indicesc, e, b, k) andT2 (with indicesa, f, b, k) cannot also be directly
fused with the other three loops because their indices do not match.

Fig. 3 shows how a reduction of space forT1 andT2 can be achieved by introducing redundant loops around their producer
loops — add loops with the missing indicesa, f for T1 andc, e for T2. Now all five loops have common indicesa, e, c, f
that can be fused, permitting elimination of those indices from all temporaries. Further, by fusing the producer loops forT1
andT2 with their consumer loop, which producesY , theb, k indices can also be eliminated fromT1 andT2. A dramatic
reduction of memory space is achieved, reducing all temporariesT1, T2, X andY to scalars, but the space savings come at
the price of a significant increase in computation. No reuse is achieved of the quantities derived from the expensive integral
calculationsf1 andf2. SinceCf is of the order of 1000 in practice, the integral calculations now dominate the total compute
time, increasing the operation count by three orders of magnitude over the unfused form in Fig. 2.

A desirable solution would be somewhere in between the unfused structure of Fig. 2 (with maximal memory requirement
and maximal reuse) and the fully fused structure of Fig. 3 (with minimal memory requirement and minimal reuse). This is
shown in Fig. 4, where tiling and partial fusion of the loops is employed. The loops with indicesa, e, c, f are tiled by splitting
each of those indices into a pair of indices. The indices with a superscriptt represent the tiling loops and the unsuperscripted
indices now stand for intra-tile loops with a range ofB, the block size used for tiling. For each tile(at, et, ct, f t), blocks of
T1 andT2 of sizeB2 are computed and used to formB4 product contributions to the components ofY , which are stored in
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for a t, e t, c t, f t

for a, e, c, f[
for i, j[

Xaecf += Tijae Tijcf

for b, k
for c, e[

T1ce = f 1(c, e, b, k)

for a, f[
T2af = f 2(a, f, b, k)

for c, e, a, f[
Yceaf += T1ce T2af

for c, e, a, f[
E += Xaecf Yceaf

array space time
X B4 V 4O2

T1 B2 Cf (V/B)2V 3O
T2 B2 Cf (V/B)2V 3O
Y B4 V 5O
E 1 V 4

Figure 4. Use of tiling and partial fusion to reduce recomputation cost.

an array of sizeB4.
As the tile sizeB is increased, the cost of function computation forf1, f2 decreases by a factor ofB2, due to the reuse

enabled. However, the size of the needed temporary array forY increases asB4 (the space needed forX can be reduced
back to a scalar by fusing its producer loop with the loop producing E, butY ’s space requirement cannot be decreased). The
maximum allowable size ofB will be determined by memory capacity.

The above shows just one of many possible ways of introducing redundancy to trade-off recomputation cost and memory
requirements. In [8] we provide a formalization and solution to the space-time trade-off problem encountered in this context.
Besides the space-time trade-off optimization, a number of other compile-time optimization issues are addressed in the
synthesis system, as outlined in the next section.

The computation considered here is just one component of theA3A term, which in turn is only one of very many terms
that must be computed. Although developers of quantum chemistry codes naturally recognize and perform some of these
optimizations, a collective analysis of all these computations to determine their optimal implementation is beyond the scope of
manual effort. Further, the time required to develop codes to implement such computational models is quite large, especially
since the tensor contraction expressions can get quite complex — Fig. 5 shows an example of the kind of tensor expressions
encountered when developing accurate computational models.

In the next section, we provide an overview of a transformation system that we are developing to aid quantum chemists in
rapidly developing high-performance parallel codes for computations that they specify as a set of high-level tensor contrac-
tions.

4 Overview of the synthesis system

In this section, we briefly describe the basic structure of the synthesis system being developed. Some of these components
are tightly coupled (for example, memory minimization and data distribution), and they are treated together as one combined
module in the synthesis system.
High-level language:The input to the synthesis system is a sequence of tensor contraction expressions (essentially sum-of-
products array expressions) together with declarations of index ranges of arrays, as shown in Fig. 6. This high-level notation
provides essential information to the optimization components that would be difficult or impossible to extract out of low-level
code.
Algebraic transformations: It takes input from the user in the form of tensor expressions and synthesizes an output compu-
tation sequence. The Algebraic Transformations module uses the properties of commutativity and associativity of addition
and multiplication and the distributivity of multiplication over addition [20, 21]. It searches for all possible ways of applying
these properties to an input sum-of-products expression, and determines a combination that results in an equivalent form of
the computation with minimal operation cost.
Memory minimization: The operation-minimal computation sequence synthesized by the Algebraic Transformation mod-
ule might require an excessive amount of memory due to the large temporary intermediate arrays involved. The Memory
Minimization module attempts to perform loop fusion transformations to reduce the memory requirements [19]. This is done
without any change to the number of arithmetic operations.
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hbar[a,b,i,j] == sum[f[b,c] * t[i,j,a,c], c] - sum[f[k,c] * t[k,b] * t[i,j,a,c], k,c] + sum[f[a,c] * t[i,j,c,b], c] - sum[f[k,c] * t[k,a] * t[i,j,c,b], k,c] - sum[f[k,j] * t[i,k,a,b], k] - sum[f[k,c] *

t[j,c] * t[i,k,a,b], k,c] - sum[f[k,i] * t[j,k,b,a], k] - sum[f[k,c] * t[i,c] * t[j,k,b,a], k,c] + sum[t[i,c] * t[j,d] * v[a,b,c,d], c,d] + sum[t[i,j,c,d] * v[a,b,c,d], c,d] + sum[t[j,c] * v[a,b,i,c],

c] - sum[t[k,b] * v[a,k,i,j], k] + sum[t[i,c] * v[b,a,j,c], c] - sum[t[k,a] * v[b,k,j,i], k] - sum[t[k,d] * t[i,j,c,b] * v[k,a,c,d], k,c,d] - sum[t[i,c] * t[j,k,b,d] * v[k,a,c,d], k,c,d] - sum[t[j,c]

* t[k,b] * v[k,a,c,i], k,c] + 2 * sum[t[j,k,b,c] * v[k,a,c,i], k,c] - sum[t[j,k,c,b] * v[k,a,c,i], k,c] - sum[t[i,c] * t[j,d] * t[k,b] * v[k,a,d,c], k,c,d] + 2 * sum[t[k,d] * t[i,j,c,b] * v[k,a,d,c],

k,c,d] - sum[t[k,b] * t[i,j,c,d] * v[k,a,d,c], k,c,d] - sum[t[j,d] * t[i,k,c,b] * v[k,a,d,c], k,c,d] + 2 * sum[t[i,c] * t[j,k,b,d] * v[k,a,d,c], k,c,d] - sum[t[i,c] * t[j,k,d,b] * v[k,a,d,c],

k,c,d] - sum[t[j,k,b,c] * v[k,a,i,c], k,c] - sum[t[i,c] * t[k,b] * v[k,a,j,c], k,c] - sum[t[i,k,c,b] * v[k,a,j,c], k,c] - sum[t[i,c] * t[j,d] * t[k,a] * v[k,b,c,d], k,c,d] - sum[t[k,d] * t[i,j,a,c]

* v[k,b,c,d], k,c,d] - sum[t[k,a] * t[i,j,c,d] * v[k,b,c,d], k,c,d] + 2 * sum[t[j,d] * t[i,k,a,c] * v[k,b,c,d], k,c,d] - sum[t[j,d] * t[i,k,c,a] * v[k,b,c,d], k,c,d] - sum[t[i,c] * t[j,k,d,a]

* v[k,b,c,d], k,c,d] - sum[t[i,c] * t[k,a] * v[k,b,c,j], k,c] + 2 * sum[t[i,k,a,c] * v[k,b,c,j], k,c] - sum[t[i,k,c,a] * v[k,b,c,j], k,c] + 2 * sum[t[k,d] * t[i,j,a,c] * v[k,b,d,c], k,c,d] -

sum[t[j,d] * t[i,k,a,c] * v[k,b,d,c], k,c,d] - sum[t[j,c] * t[k,a] * v[k,b,i,c], k,c] - sum[t[j,k,c,a] * v[k,b,i,c], k,c] - sum[t[i,k,a,c] * v[k,b,j,c], k,c] + sum[t[i,c] * t[j,d] * t[k,a] * t[l,b] *

v[k,l,c,d], k,l,c,d] - 2 * sum[t[k,b] * t[l,d] * t[i,j,a,c] * v[k,l,c,d], k,l,c,d] - 2 * sum[t[k,a] * t[l,d] * t[i,j,c,b] * v[k,l,c,d], k,l,c,d] + sum[t[k,a] * t[l,b] * t[i,j,c,d] * v[k,l,c,d], k,l,c,d]

- 2 * sum[t[j,c] * t[l,d] * t[i,k,a,b] * v[k,l,c,d], k,l,c,d] - 2 * sum[t[j,d] * t[l,b] * t[i,k,a,c] * v[k,l,c,d], k,l,c,d] + sum[t[j,d] * t[l,b] * t[i,k,c,a] * v[k,l,c,d], k,l,c,d] - 2 * sum[t[i,c] *

t[l,d] * t[j,k,b,a] * v[k,l,c,d], k,l,c,d] + sum[t[i,c] * t[l,a] * t[j,k,b,d] * v[k,l,c,d], k,l,c,d] + sum[t[i,c] * t[l,b] * t[j,k,d,a] * v[k,l,c,d], k,l,c,d] + sum[t[i,k,c,d] * t[j,l,b,a] * v[k,l,c,d],

k,l,c,d] + 4 * sum[t[i,k,a,c] * t[j,l,b,d] * v[k,l,c,d], k,l,c,d] - 2 * sum[t[i,k,c,a] * t[j,l,b,d] * v[k,l,c,d], k,l,c,d] - 2 * sum[t[i,k,a,b] * t[j,l,c,d] * v[k,l,c,d], k,l,c,d] - 2 * sum[t[i,k,a,c]

* t[j,l,d,b] * v[k,l,c,d], k,l,c,d] + sum[t[i,k,c,a] * t[j,l,d,b] * v[k,l,c,d], k,l,c,d] + sum[t[i,c] * t[j,d] * t[k,l,a,b] * v[k,l,c,d], k,l,c,d] + sum[t[i,j,c,d] * t[k,l,a,b] * v[k,l,c,d], k,l,c,d] - 2

* sum[t[i,j,c,b] * t[k,l,a,d] * v[k,l,c,d], k,l,c,d] - 2 * sum[t[i,j,a,c] * t[k,l,b,d] * v[k,l,c,d], k,l,c,d] + sum[t[j,c] * t[k,b] * t[l,a] * v[k,l,c,i], k,l,c] + sum[t[l,c] * t[j,k,b,a] * v[k,l,c,i],

k,l,c] - 2 * sum[t[l,a] * t[j,k,b,c] * v[k,l,c,i], k,l,c] + sum[t[l,a] * t[j,k,c,b] * v[k,l,c,i], k,l,c] - 2 * sum[t[k,c] * t[j,l,b,a] * v[k,l,c,i], k,l,c] + sum[t[k,a] * t[j,l,b,c] * v[k,l,c,i], k,l,c]

+ sum[t[k,b] * t[j,l,c,a] * v[k,l,c,i], k,l,c] + sum[t[j,c] * t[l,k,a,b] * v[k,l,c,i], k,l,c] + sum[t[i,c] * t[k,a] * t[l,b] * v[k,l,c,j], k,l,c] + sum[t[l,c] * t[i,k,a,b] * v[k,l,c,j], k,l,c] - 2 *

sum[t[l,b] * t[i,k,a,c] * v[k,l,c,j], k,l,c] + sum[t[l,b] * t[i,k,c,a] * v[k,l,c,j], k,l,c] + sum[t[i,c] * t[k,l,a,b] * v[k,l,c,j], k,l,c] + sum[t[j,c] * t[l,d] * t[i,k,a,b] * v[k,l,d,c], k,l,c,d] +

sum[t[j,d] * t[l,b] * t[i,k,a,c] * v[k,l,d,c], k,l,c,d] + sum[t[j,d] * t[l,a] * t[i,k,c,b] * v[k,l,d,c], k,l,c,d] - 2 * sum[t[i,k,c,d] * t[j,l,b,a] * v[k,l,d,c], k,l,c,d] - 2 * sum[t[i,k,a,c] * t[j,l,b,d]

* v[k,l,d,c], k,l,c,d] + sum[t[i,k,c,a] * t[j,l,b,d] * v[k,l,d,c], k,l,c,d] + sum[t[i,k,a,b] * t[j,l,c,d] * v[k,l,d,c], k,l,c,d] + sum[t[i,k,c,b] * t[j,l,d,a] * v[k,l,d,c], k,l,c,d] + sum[t[i,k,a,c] *

t[j,l,d,b] * v[k,l,d,c], k,l,c,d] + sum[t[k,a] * t[l,b] * v[k,l,i,j], k,l] + sum[t[k,l,a,b] * v[k,l,i,j], k,l] + sum[t[k,b] * t[l,d] * t[i,j,a,c] * v[l,k,c,d], k,l,c,d] + sum[t[k,a] * t[l,d] * t[i,j,c,b]

* v[l,k,c,d], k,l,c,d] + sum[t[i,c] * t[l,d] * t[j,k,b,a] * v[l,k,c,d], k,l,c,d] - 2 * sum[t[i,c] * t[l,a] * t[j,k,b,d] * v[l,k,c,d], k,l,c,d] + sum[t[i,c] * t[l,a] * t[j,k,d,b] * v[l,k,c,d], k,l,c,d] +

sum[t[i,j,c,b] * t[k,l,a,d] * v[l,k,c,d], k,l,c,d] + sum[t[i,j,a,c] * t[k,l,b,d] * v[l,k,c,d], k,l,c,d] - 2 * sum[t[l,c] * t[i,k,a,b] * v[l,k,c,j], k,l,c] + sum[t[l,b] * t[i,k,a,c] * v[l,k,c,j], k,l,c] +

sum[t[l,a] * t[i,k,c,b] * v[l,k,c,j], k,l,c] + v[a,b,i,j]

Figure 5. A tensor contraction expression from quantum chemistry.

Data distribution and partitioning: This component determines how best to partition the arrays among the processors of a
parallel system. We assume a data-parallel model, where each operation in the operation sequence is distributed across the
entire parallel machine. The arrays are to be disjointly partitioned between the physical memories of the processors. Since
the data distribution pattern affects the memory usage on the parallel machine, this component is closely coupled with the
memory minimization component [7].
Space-time transformation: If the Memory Minimization module is unable to reduce memory requirements of the computa-
tion sequence below the available disk capacity on the system, the computation is infeasible unless some space-time trade-off
is utilized. If no satisfactory transformation is found, feedback is provided to the Memory Minimization module, causing
it to seek a different solution [8]. If the Space-Time Transformation module is successful in bringing down the memory
requirement below the disk capacity, the Data Locality Optimization module is invoked.
Data locality optimization: If the space requirements exceed physical memory capacity, portions of the arrays must be
moved between disk and main memory as needed to maximize the reuse of elements in memory. The same considerations
are involved in minimizing cache misses — blocks of data are moved between physical memory and the space available in
the cache [9, 10].
Code generation: The back end of the synthesis system provides the output as pseudocode, FORTRAN or C code. The
generated code can be either serial or parallel, using either MPI or the Global Arrays library. Depending on the circumstances,
the synthesised code could also call highly-tuned, machine-specific Basic Linear Algebra Subprograms (BLAS) libraries, or
optimized low-level functions from the existing quantum chemistry packages.

5 Code synthesized for motivating CCSD(T) example

For demonstrating the range of different loop structures for a given tensor contraction expression, consider the A3A term
with explicit conversion from atomic to molecular orbitals; a high-level representation of this calculation is presented in the
example input file in Fig. 6. Here the numbers of occupied and virtual orbitals areO = 100 andV = 3000, respectively, and
the number of atomic orbitals is assumed to beN = O + V. The atomic orbital indices arela , mu, om, andnu , and range
from 1 to N; the virtual orbital indices, ranging from1 to V, are denoted bya, b, c , d, e, andf , and the occupied orbital
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range N = 3100;
range V = 3000;
range O = 100;

index la,mu,nu,om : N;
index a,b,c,d,e,f : V;
index i,j,k : O;

mlimit = 100GB;

function F(N,N,N,N);

procedure P(in Co[N,O], in Cv[N,V], in T[O,O,V,V], out E)=
begin

E==sum[
sum[

sum[sum[sum[sum[F(mu,nu,om,la)*Co[la,k],{la}]*Cv[om,b],{om}]*Cv[nu,f],{nu}]*Cv[mu,a],{mu}]
*
sum[sum[sum[sum[F(mu,nu,om,la)*Co[la,k],{la}]*Cv[om,b],{om}]*Cv[nu,e],{nu}]*Cv[mu,c],{mu}],
{b,k}]

*
sum[T[i,j,a,e]*T[i,j,c,f],{i,j}],
{a,e,c,f}];

end

Figure 6. Input file for the A3A term with conversion from atomic to molecular orbitals.

indices, ranging from1 to O, arei , j , andk .
The mlimit declaration specifies the space limit allowed for the arrays involved in the calculation. Thefunction

declaration sets parameters of functions evaluations; here,F denotes evaluation of theN4 atomic integrals. Theprocedure
declaration specifies the input and output arrays in the calculation, and the computation to be performed. In Fig. 6, the input
arrays are thet amplitudes (represented byT), and the atomic to molecular transformation matrixC(N,N) , which is broken
up, for convenience, in two sub-matrices:Co(N,O) andCv(N,V) . The output of the computation is the scalarE, and it is
calculated according to the given formula.

The code output of the synthesis tool depends on the parameters — number of orbitals, space limit — specified in the
input file. The same high-level representation results in different code structures, tailored to specific problem sizes and
machine capabilities. For example, Fig. 7 shows pseudocode generated for the case when the molecular integrals〈cb ‖ ek〉
and〈ab ‖ fk〉 fit on disk. Here, thereadF statements represent the disk read operations for〈cb ‖ ek〉 and〈ab ‖ fk〉, and
tmp n arrays denote intermediate arrays. The transformation of the integrals from the atomic to the molecular orbital basis
is decoupled from the actual CCSD(T) computation shown in Fig. 7. The four-step transformation through the arraysC is
performed once, and its results stored on disk.

E == 0.0;
for aT, cT, eT, fT

for fI, eI, cI, aI
tmp_3[aI,cI,eI,fI] == 0.0;

for b, k
for fI, aI

tmp_1[aI,fI] == readF((aT + aI),b,(fT + fI),k);
for eI, cI

tmp_2[eI,cI] == readF((cT + cI),(eT + eI),b,k);
for fI, eI, cI, aI

tmp_3[aI,cI,eI,fI] += tmp_2[eI,cI] * tmp_1[aI,fI];
for fI, eI, cI, aI

tmp_4 == 0.0;
for i, j

tmp_4 += T[i,j,(cT + cI),f] * T[i,j,a,e];
E += tmp_4 * tmp_3[aI,cI,eI,fI];

return E;

Figure 7. Example of loop structure generated by the synthesis tool for the disk-resident array case.
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E = 0.0;
for aT, fT

for kT
for b, aI, fI, kI

tmp_5[b,kI,aI,fI] == 0.0;
for mu

for b, fI, kI
tmp_4[b,fI,kI] == 0.0;

for nu
for b, kI

tmp_3[b,kI] == 0.0;
for om

for kI
tmp_2[kI] == 0.0;

for la
tmp_1 == F(mu,nu,om,la);
for kI

tmp_2[kI] += Co[la,(kT + kI)] * tmp_1;
for b, kI

tmp_3[b,kI] += Cv[om,b] * tmp_2[kI];
for b, fI, kI

tmp_4[b,fI,kI] += Cv[nu,(fT + fI)] * tmp_3[b,kI];
for b, aI, fI, kI

tmp_5[b,kI,aI,fI] += Cv[mu,(aT + aI)] * tmp_4[b,fI,kI];
for eT

for c, aI, eI, fI
tmp_11[c,aI,eI,fI] == 0.0;

for kT
for b, c, eI, kI

tmp_10[b,c,eI,kI] == 0.0;
for mu

for b, eI, kI
tmp_9[b,eI,kI] == 0.0;

for nu
for b, kI

tmp_8[b,kI] == 0.0;
for om

for kI
tmp_7[kI] == 0.0;

for la
tmp_6 == F(mu,nu,om,la);
for kI

tmp_7[kI] += Co[la,(kT + kI)] * tmp_6;
for b, kI

tmp_8[b,kI] += Cv[om,b] * tmp_7[kI];
for b, eI, kI

tmp_9[b,eI,kI] += Cv[nu,(eT + eI)] * tmp_8[b,kI];
for b, c, eI, kI

tmp_10[b,c,eI,kI] += Cv[mu,c] * tmp_9[b,eI,kI];
for b, c, aI, eI, fI, kI

tmp_11[c,aI,eI,fI] += tmp_10[b,c,eI,kI] * tmp_5[b,kI,aI,fI];
for c, fI, eI, aI

tmp_12 == 0.0;
for i, j

tmp_12 += T[i,j,c,(fT + fI)] * T[i,j,(aT + aI),(eT + eI)];
E += tmp_12 * tmp_11[c,aI,eI,fI];

return E;

Figure 8. Example of loop structure generated by the synthesis tool for the case when molecular
orbital integrals cannot be stored on disk.
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Figure 8 shows the more interesting case when the input parameters are such that the molecular integrals are too large to
fit on disk. Then repeated calculation of these integrals becomes necessary, resulting in repeated calculation of the atomic
integralsF(mu,nu,om,la) . The synthesis tool analyzes several hundred different code structures that allow the evaluation
on-the-fly of the molecular integrals〈cb ‖ ek〉 and〈ab ‖ fk〉. For each code structure, the ranges of the tiling and intra-tile
loops (i.e. the “block sizes”) are optimized so that the recomputation cost is minimized, without exceeding the memory space
limit.

Typically, the code structure and the block sizes cannot be easily determined by the human developer. Evaluating hundreds
of different possibilities, whose recomputation costs may vary by a few orders of magnitude, is tedious at best. Moreover, the
entire analysis depends on the problem and machine parameters; different parameters result in different final code structures
for the same high-level input expression. The example input expression in Fig. 6, which should be computed in different
ways depending on the size of the molecular integrals relative to the disk size, illustrates the power of an automated synthesis
tool approach.

6 Related work and discussion

The approach undertaken in this project bears similarities to some projects in other domains, such as the SPIRAL project
which is aimed at the design of a system to generate efficient libraries for digital signal processing algorithms [28, 15,
35]. SPIRAL generates efficient implementations of algorithms expressed in a domain-specific language called SPL by a
systematic search through the space of possible implementations.

Other efforts in automatically generating efficient implementations of programs include FFTW [12], the telescoping lan-
guages project [16], ATLAS [34] for deriving efficient implementation of BLAS routines, the PHIPAC [3] project, and the
TUNE project [33]. In addition, motivated by the difficulty of detecting and optimizing matrix operations hidden in array
subscript expressions within loop nests, several projects have worked on efficient code generation from high-level languages
such as MATLAB and Maple [11, 24, 25, 26].

While our effort shares some common goals with several of the projects mentioned above, there are also significant dif-
ferences. Some of the optimizations we consider, such as the algebraic optimizations, memory minimization, and space-time
trade-offs, do not appear to have been previously explored, to the best of our knowledge. While optimization of performance
is a significant goal, more important in our context is the potential for dramatically reducing the developmental effort required
of a quantum chemist to develop a new computational model. Currently, the manual development and testing of a reasonably
efficient parallel code for a computational model such as the coupled cluster model typically takes months to years for a
computational chemist. We aim to reduce the time to prototype a new model to under a day, through use of the synthesis
system being developed. We are at present in the testing stages of the synthesis tool, and we expect to soon have a first release
available for the computational chemistry community.
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