
Neural Network Weight Selection Using Genetic
Algorithms

David Montana

presented by:

Carl Fink, Hongyi Chen, Jack Cheng,

Xinglong Li, Bruce Lin, Chongjie Zhang

April 12, 2005

1

Neural Networks

Neural networks generally consist of five components.

• A directed graph known as the network topology whose nodes

represent the neurodes (or processing elements) and whose arcs

represent the connections.

• A state variable associated with each neurode.

• A real-valued weight associated with each connection.

• A real-valued bias associated with each neurode.

• A transfer function f for each neurode such that the state of the

neurode is f(ωixi − β).

2

Genetic Algorithms

Genetic algorithms require five components.

• A way of encoding solutions to the problem on chromosomes.

• An evaluation function which returns a rating for each

chromosome given to it.

• A way of initializing the population of chromosomes.

• Operators that may be applied to parents when they reproduce

to alter their genetic composition. Standard operators are

mutation and crossover.

• Parameter settings for the algorithm, the operators, and so forth.

3

Genetic Algorithms

(19.3, 0.05,−1.2, 345, 2.0, 7.7, 68.0)

Mutation
−→ (19.3, 0.05,−1.2, 345, 2.0,8.2, 68.0)

Figure 1: Mutation Operation

(19.3, 0.05,−1.2, 345, 2.0, 7.7, 68.0), (17.6, 0.05,−1.2, 250, 3.0, 7.7, 70.0)

Crossover
−→ (17.6, 0.05,−1.2, 345, 3.0, 7.7, 68.0)

Figure 2: Crossover Operation

4

Genetic Algorithms

Given these five components, a genetic algorithm operates according

to the following steps.

• Initialize the population using the initialization procedure, and

evaluate each member of the initial population.

• Reproduce until a stopping criterion is met.

5

Genetic Algorithms

Reproduction consists of iterations of the following steps.

• Choose one or more parents to reproduce. Selection is stochastic,

but the individuals with the highest evaluations are favored in

the selection.

• Choose a genetic operator and apply it to the parents.

• Evaluate the children and accumulate them into a generation.

After accumulating enough individuals, insert them into the

population, replacing the worst current members of the

population.

6

Pattern Classification Problem

A Problem with k features and M classes:

Given a set of training examples, selects the most likely class for any

instance not in the training set.

An instance is represented by a k-dimensional feature vector.

An example is represented by a instance and the class that the

instance belongs to.

7

Real Examples

• Handwritten character recognition

• Speech recognition

• Blood cell classification

• . . .

8

Neural Networks

• Sigmoid Feed-forward Neural Network

• Weighted Probabilistic Neural Networks (WPNN)

9

Sigmoid Feed-forward Networks

A feed-forward network

• A directed graph without cycles.

• A multi-layer network

Neurones in each layer (except output layer) are completely

connected to the forward layer.

• Each neuron in the network is a sigmoid unit

10

Sigmoid Network Topology

Figure 3: Typical Sigmoid Network

11

Sigmoid Unit

σ(x) is the function:

1
1+e−x

12

Application for Pattern Classification

13

Application for Pattern Classification (Cont.)

• Representation:

– Input representation: < x1, x2, . . . , xk >

– Class representation: < 1, 0, . . . , 0 > for class 1

• Evaluation Function

The sum of squared errors

• Training Algorithms

– Backpropagation Algorithm

– Genetic Algorithm

14

Weighted Probabilistic Neural Network (WPNN)

• WPNN is a pattern classification algorithm which falls into the

broad class of ”nearest-neighbor-like” algorithms.

• Likelihood Function: “distance” → probability

Note: Distance is between an instance to all examples of a particular

class, not just one example.

15

WPNN Likelihood Function

“Let the exemplars from class i be the k-vector ~xi
j for j = 1, . . . , Ni.

Then the likelihood function for class i is

Li(~x) =
1

Ni(2π)k/2(detΣ)1/2

Ni
∑

j=1

e−(~x−~xi
j)

T Σ−1(~x−~xi
j)

Li(~x) describes the probability that the instance x is of class i.”

Note: the class likelihood functions are sums of identical anisotropic

Gaussians centered at the examples divided by Ni.

16

WPNN Conditional Probability

The value of the likelihood function for a particular instance may fail

to classify the instance. For example, L1(~x) = 0.3, Lj(~x) = 0.01 for

j = 2, 3, . . . , M .

The conditional probability for class i:

Pi(~x) = Li(~x)/
M
∑

j=1

Lj(~x)

17

WPNN Feature Weights

• Training WPNN consists of selecting the entries of matrix Σ.

• Matrix Σ is restricted to be a diagonal matrix.

• The inverse of each entry in Σ is a weight on the corresponding

feature.

18

WPNN Implementation

It is called a ”neural network” because its implementation is natural

mapped onto a two-layer feed-forward network:

• k neurons in the input layer

• M neurons with standard normal Gaussian transfer functions in

the output layer

• kN neurons in the single hidden layers, each with a linear

function ax − b.

k: number of features, M : number of classes N : number of total

examples

19

WPNN Implementation (Cont.)

The ((i − 1)k + j)th hidden neuron (i < N, j < k):

1. is connected to the jth input neuron with weight a = 1.0

2. has bias b equal to the value of jth feature of the ith example

3. is connected to the nth output neuron, where n is the class of the

ith exemplar, with weight wj , where wj is the selected feature

weight for the jth feature.

20

An Example

Two classes, two features, and three examples:

No. Instance Class

1 < 1, 2 > 1

2 < 2, 5 > 2

3 < 3, 4 > 1

21

An Example (Cont.)

1

Ni(2π)2k 1√
ω1,...,ωk

(

Ni
∑

j=1

e−
∑

k

n=1
ωnx2

jn

)

x1 − 1 x2 − 2 x1 − 2
x2 − 5

x1 − 3 x2 − 4

2 Classes

k · N = 2 · 3 = 6

2 Features

ω1 ω2
ω1

ω2
ω1

ω2

22

Survey of Hybrid Systems

• Supportive combinations

Supportive combinations typically involve using one of these

methods to prepare data for consumption by the other. For

example, using a genetic algorithm to select features for use by

neural network classifiers.

• Collaborative combinations

Collaborative combinations typically involve using the genetic

algorithm to determine the neural network weights or the

topology or learning algorithm.

23

Supportive Combinations

• Using NN to assist GA

• Using GA to assist NN

– Data preparation

– Evolving network parameters and learning rules

– Using GA to explain and analyze NN

• Using GA and NN independently

24

Collaborative Combinations

GA to select weight

Two basic differences between different approaches: architectures

(feedforward sigmoidal, WPNN, cascade-correlation, recurrent

sigmoidal, recurrent linear threshold, feedforward with step functions

and feedback with step functions) and difference in GA itself.

25

Collaborative Combinations

• GA to specify NN topology

– A genotype representation must be devised and an attendant

mapping from genotype to phenotype must be provided.

– There must be a protocol for exposing the phenotype to the

task environment.

– There must be a learning method to fine tune the network

function.

– There must be a fitness measure.

– There must be method for generating new genotypes.

• GA to learn the NN learning algorithm

26

Reasons to apply GA to NN

• Finding the global optima

• For recurrent networks

• For networks with discontinuous functions

• GA can optimize any combination of weights, biases, topology

and transfer functions

• The ability to use arbitrary evaluation function

27

Disadvantage and Solutions

• Excessive computing time

• Solutions:

– Using specialized NN hardware

– Using the best local learning algorithm

– Using parallel implementations of GA

– By finding the best division of labor between the local and

evolutionary learning paradigms to make the best possible use

of training time

28

GA Formulation for Training Sigmoid FFNN

• Problem Formulation

• Initialization

• Genetic Operators

• Fitness Evaluation

• Genetic Parameters

29

Problem Formulation

• Individuals are the NN’s themselves;

• no string encoding

• Topology is fixed, weights are evolved

30

Population Initialization

• Selection of initial weights

Plot of e−|x|

31

Fitness Evaluation

• Sum of Squared Error

E(~ω) ≡ 1/2
∑

d∈D

∑

k∈outputs

(tkd − okd)
2

32

Genetic Operators - Sigmoid FFNN

• Unbiased-Mutate-Weights - Select from probability distribution

• Biased-Mutate-Weights - Add in previous weight

• Mutate-Nodes - Mutatation grouped by node (schema

preservation)

• Crossover-Weights - Uniform-crossover vs. point-crossover

• Crossover-Nodes - Crossover grouped by node (schema

preservation)

• Crossover-Features - Competing conventions

• Mutate-Weakest-Nodes - Non-random selection of least

contributive

• Hillclimb - One step in direction of gradient

33

Parameter Values

• Population-Size: 50

• Generation-Size: 1

• Parent-Scalar: [0.89, 0.93]

34

Experimental Results — Feedforward Sigmoidal

First, Comparing the three mutations resulted in a clear order

1. MUTATE-NODES

2. BIASED-MUTATE-WEIGHTS

3. UNBIASED-MUTATE-WEIGHTS

35

Experimental Results — Feedforward Sigmoidal

36

Experimental Results — Feedforward Sigmoidal

(Cont.)

Second, a comparing of the three crossovers produced no clear winner.

37

Experimental Results — Feedforward Sigmoidal

(Cont.)

Third, when MUTATE-WEAKEST-NODE was added to a mutation

and crossover operator, it improved performance only at the

beginning. The performance decreased after a certain small amount

of time.

38

Experimental Results — Feedforward Sigmoidal

(Cont.)

Finally, a generic training algorithm with operators

MUTATE-NODES and CROSSOVER-NODES outperformed

backpropagation on our problem.

39

Experimental Results — Feedforward Sigmoidal

(Cont.)

Backpropagation Algorithm is more computationally efficient than

Genetic Algorithm.

40

Five Components of the genetic algorithm with

WPNN:

Representation

• a ”logarithmic” representation for large dynamic range with

proportional resolution;

• Map: n → Bn−k0

41

2. Evaluation Function

• “leaving-one-out” technique:

a special form of cross-validation

• Performance function:

E =
M
∑

i=1

Ni
∑

j=1

{

[

1 − P̃i(~x
i
j)

]2
+

∑

q 6=i

[

P̃q(~x
i
j)

]2
}

42

Leave-One-Out Method

For k = 1, 2, . . . , k

Err(k) = 0

43

Leave-One-Out Method

For k = 1, 2, . . . , k

Err(k) = 0

1. Randomly select a training

data point and hide its class

label

44

Leave-One-Out Method

For k = 1, 2, . . . , k

Err(k) = 0

1. Randomly select a training

data point and hide its class

label

2. Using the remaining data and

given k to predict the class la-

bel for the left data point

45

Leave-One-Out Method
For k = 1, 2, . . . , k

Err(k) = 0

1. Randomly select a training

data point and hide its class

label

2. Using the remaining data and

given k to predict the class la-

bel for the left data point

3. Err(k) = Err(k) + 1 if the

predicted label is different

from the true label

46

Leave-One-Out Method
For k = 1, 2, . . . , k

Err(k) = 0

1. Randomly select a training

data point and hide its class

label

2. Using the remaining data and

given k to predict the class la-

bel for the left data point

3. Err(k) = Err(k) + 1 if the

predicted label is different

from the true label
Repeat the procedure until all training examples are tested.

47

Leave-One-Out Method
For k = 1, 2, . . . , k

Err(k) = 0

1. Randomly select a training

data point and hide its class

label

2. Using the remaining data and

given k to predict the class la-

bel for the left data point

3. Err(k) = Err(k) + 1 if the

predicted label is different

from the true label
Repeat the procedure until all training examples are tested.

Choose the k whose Err(k) is minimal

48

Empirical observations and theoretical arguments show WPNN works

best when only a small fraction of the exemplars contribute

significantly. So we reject a particular, for any exemplar xi
j , if

∑

~x6=~xj

e−(~x−~xi
j)

T Σ−1(~x−~xi
j) >

(

M
∑

i=1

Ni

)

/P

Where P = 4

49

3. Initialization Procedure

WPNN: integers chosen randomly in [1, K].

Where K depends on the desired range and resolution for weight

50

4. Genetic Operators

WPNN: standard GA mutation and uniform crossover

Uniform crossover example:

Individual Genotype

A a b c d e f

B q w e r t y

Offspring q b e d t f

The gene at locus j, where 0 ≤ j < string length, from both parents

have equal selected for the new offspring.

Why uniform?

• A real-valued representation is used and no particular

• ordering to the feature weights.

51

5. Parameter Values

• Population-Size: 1600

• Generation-Size:

1. “steady-state” approach. With the large population a

steady-state GA is used, which means Generation-Size is

small relative to Population-Size.

2. for using a single CPU, Generation-size = 1.

• Parent-Scalar: the smaller the Parent-Scalar, the faster the

converge.

Parent-Scalar = 0.9

52

Sample run of a steady-state GA

1. Initial population(randomly generated)

(a) (1001010) eval = 3

(b) (0100110) eval = 3

(c) (1101011) eval = 5

(d) (0110101) eval = 4

2. New children, from crossover or 3rd and 4th:

(a) (1101101) eval = 5

(b) (0110011) eval = 4

53

Experimental Results — WPNN

WPNN was a new and untested algorithm, the experiments with

WPNN centered on the overall performance rather than on the

training algorithm.

54

Experimental Results — WPNN (Cont.)

4 data set designed are used to illustrate both the advantages and

shortcomings of WPNN.

55

Experimental Results — WPNN (Cont.)

First Data Set:

1. It is a training set that is generated during an effort to classify

simulated sonar signals.

2. 10 features

3. 5 classes

4. 516 total exemplars

56

Experimental Results — WPNN (Cont.)

Second Data Set: Same as first data set except:

5 more features are added (which were random numbers uniformly

distributed between 0 and 1 hence contained no information relevant

to classification)

57

Experimental Results — WPNN (Cont.)

Third Data Set: Same as first data set except:

10 irrelevent features are added. (total of 20 features)

58

Experimental Results — WPNN (Cont.)

Fourth Data Set:

• Has 20 features just like the third data set.

• Pair each of the true feature with one of the irrelevant features.

• Mixing up the relevant features with the irrelevant features with

via linear combinations.

• 0.5(fi + gi) and 0.5(fi − gi + 1)

59

Experimental Results — WPNN (Cont.)

Dataset 1 2 3 4

Backpropagation 11 16 20 13

PNN 9 94 109 29

WPNN 10 11 11 25

60

