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Neural Networks
Neural networks generally consist of five components.

e A directed graph known as the network topology whose nodes
represent the neurodes (or processing elements) and whose arcs

represent the connections.

A state variable associated with each neurode.

A real-valued weight associated with each connection.
A real-valued bias associated with each neurode.

A transfer function f for each neurode such that the state of the

neurode is f(w;x; — ).




Genetic Algorithms

Genetic algorithms require five components.

A way of encoding solutions to the problem on chromosomes.

An evaluation function which returns a rating for each

chromosome given to it.
A way of initializing the population of chromosomes.

Operators that may be applied to parents when they reproduce
to alter their genetic composition. Standard operators are

mutation and crossover.

Parameter settings for the algorithm, the operators, and so forth.



Genetic Algorithms
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Genetic Algorithms

Given these five components, a genetic algorithm operates according
to the following steps.

e Initialize the population using the initialization procedure, and
evaluate each member of the initial population.

e Reproduce until a stopping criterion is met.




Genetic Algorithms

Reproduction consists of iterations of the following steps.

e Choose one or more parents to reproduce. Selection is stochastic,
but the individuals with the highest evaluations are favored in

the selection.
e Choose a genetic operator and apply it to the parents.

e Lvaluate the children and accumulate them into a generation.
After accumulating enough individuals, insert them into the
population, replacing the worst current members of the

population.




Pattern Classification Problem

A Problem with k features and M classes:

Gwen a set of training examples, selects the most likely class for any

instance not in the training set.

An instance is represented by a k-dimensional feature vector.

An example is represented by a instance and the class that the

instance belongs to.




Real Examples

Handwritten character recognition
Speech recognition

Blood cell classification




Neural Networks

e Sigmoid Feed-forward Neural Network

e Weighted Probabilistic Neural Networks (WPNN)




Sigmoid Feed-forward Networks

A feed-forward network
e A directed graph without cycles.

e A multi-layer network
Neurones in each layer (except output layer) are completely
connected to the forward layer.

e Lach neuron in the network is a sigmoid unit
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Sigmoid Network Topology

Figure 3: Typical Sigmoid Network
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Sigmoid Unit
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Application for Pattern Classification
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Application for Pattern Classification (Cont.)

e Representation:

— Input representation: < xri,x9,..., T >

— C(Class representation: < 1,0,...,0 > for class 1
e LEvaluation Function

The sum of squared errors
e Training Algorithms

— Backpropagation Algorithm

— Genetic Algorithm
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Weighted Probabilistic Neural Network (WPNN)

e WPNN is a pattern classification algorithm which falls into the

broad class of "nearest-neighbor-like” algorithms.
e Likelihood Function: “distance” — probability

Note: Distance is between an instance to all examples of a particular

class, not just one example.
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WPNN Likelihood Function

“Let the exemplars from class ¢ be the k-vector a?; for j =1,..., N;.

Then the likelihood function for class 7 is

. 1 - —(@-2)T e (@)
Lz(x) = Z e J j
=1

N;(2m)k/2(detX)1/2 :
L;(Z) describes the probability that the instance z is of class i.”
Note: the class likelihood functions are sums of identical anisotropic
Gaussians centered at the examples divided by N;.
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WPNN Conditional Probability

The value of the likelihood function for a particular instance may fail

to classify the instance. For example, L; (%) = 0.3, L, (%) = 0.01 for
j=2.3,.... M.

The conditional probability for class i:
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WPNN Feature Weights

e Training WPNN consists of selecting the entries of matrix ..
e Matrix X is restricted to be a diagonal matrix.

e The inverse of each entry in X is a weight on the corresponding

feature.
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WPNN Implementation

It is called a "neural network” because its implementation is natural

mapped onto a two-layer feed-forward network:
e Lk neurons in the input layer

e N neurons with standard normal Gaussian transfer functions in

the output layer

e kN neurons in the single hidden layers, each with a linear

function ax — b.

k: number of features, M: number of classes IN: number of total

examples
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WPNN Implementation (Cont.)
The ((i — 1)k + j)th hidden neuron (i < N,j < k):
1. is connected to the jth input neuron with weight a = 1.0
2. has bias b equal to the value of jth feature of the ith example

3. is connected to the nth output neuron, where n is the class of the

ith exemplar, with weight w; , where w; is the selected feature

weight for the jth feature.
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An Example

Two classes, two features, and three examples:

No. | Instance | Class

1 | <1,2> | 1

2 | <2,5> | 2

3 <3,4> 1
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An Example (Cont.)
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Survey of Hybrid Systems

e Supportive combinations
Supportive combinations typically involve using one of these
methods to prepare data for consumption by the other. For
example, using a genetic algorithm to select features for use by

neural network classifiers.

Collaborative combinations
Collaborative combinations typically involve using the genetic
algorithm to determine the neural network weights or the

topology or learning algorithm.
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Supportive Combinations

e Using NN to assist GA
e Using GA to assist NN

— Data preparation
— Evolving network parameters and learning rules

— Using GA to explain and analyze NN
e Using GA and NN independently
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Collaborative Combinations

GA to select weight
Two basic differences between different approaches: architectures
(feedforward sigmoidal, WPNN, cascade-correlation, recurrent

sigmoidal, recurrent linear threshold, feedforward with step functions

and feedback with step functions) and difference in GA itself.
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Collaborative Combinations

e GA to specify NN topology

— A genotype representation must be devised and an attendant
mapping from genotype to phenotype must be provided.

There must be a protocol for exposing the phenotype to the

task environment.

There must be a learning method to fine tune the network

function.
There must be a fitness measure.

— There must be method for generating new genotypes.

e GA to learn the NN learning algorithm
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Reasons to apply GA to NN

Finding the global optima
For recurrent networks
For networks with discontinuous functions

GA can optimize any combination of weights, biases, topology

and transfer functions

The ability to use arbitrary evaluation function
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Disadvantage and Solutions

e [ixcessive computing time

e Solutions:
Using specialized NN hardware
Using the best local learning algorithm
Using parallel implementations of GA

By finding the best division of labor between the local and
evolutionary learning paradigms to make the best possible use

of training time
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GA Formulation for Training Sigmoid FFNN

Problem Formulation
Initialization

Genetic Operators
Fitness Evaluation

Genetic Parameters
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Problem Formulation
e Individuals are the NN’s themselves;

e no string encoding

e Topology is fixed, weights are evolved
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Population Initialization

e Selection of initial weights

Plot of e~ *l
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Fitness Evaluation

e Sum of Squared Error
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Genetic Operators - Sigmoid FFNN
Unbiased-Mutate-Weights - Select from probability distribution
Biased-Mutate-Weights - Add in previous weight

Mutate-Nodes - Mutatation grouped by node (schema

preservation)
Crossover-Weights - Uniform-crossover vs. point-crossover

Crossover-Nodes - Crossover grouped by node (schema

preservation)

Crossover-Features - Competing conventions

Mutate-Weakest-Nodes - Non-random selection of least

contributive

Hillclimb - One step in direction of gradient
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Parameter Values
e Population-Size: 50

e (Generation-Size: 1

e Parent-Scalar: [0.89, 0.93]
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Experimental Results — Feedforward Sigmoidal

First, Comparing the three mutations resulted in a clear order
1. MUTATE-NODES
2. BIASED-MUTATE-WEIGHTS
3. UNBIASED-MUTATE-WEIGHTS
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Experimental Results — Feedforward Sigmoidal
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Experimental Results — Feedforward Sigmoidal

(Cont.)

Second, a comparing of the three crossovers produced no clear winner.
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Experimental Results — Feedforward Sigmoidal
(Cont.)

Third, when MUTATE-WEAKEST-NODE was added to a mutation
and crossover operator, it improved performance only at the
beginning. The performance decreased after a certain small amount

of time.

plain GA

= MUTATE-WEAKEST-NODES

Best Evaluation

[terations
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Experimental Results — Feedforward Sigmoidal
(Cont.)

Finally, a generic training algorithm with operators

MUTATE-NODES and CROSSOVER-NODES outperformed

backpropagation on our problem.

— Genetic Algorithm
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Experimental Results — Feedforward Sigmoidal

(Cont.)

Backpropagation Algorithm is more computationally efficient than
Genetic Algorithm.
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Five Components of the genetic algorithm with
WPNN:

Representation

e a "logarithmic” representation for large dynamic range with

proportional resolution;

e Map: n — B"Fo
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2. Evaluation Function

e “leaving-one-out” technique:

a special form of cross-validation

e Performance function:

P-3 S {1 R + X R

i=1 5=1 qF~1
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Leave-One-Out Method
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Leave-One-Out Method

For k=1,2,...,k
Err(k) =0

1. Randomly select a training

data point and hide its class
label
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Leave-One-Out Method

For k=1,2,...,k
Err(k) =0

1. Randomly select a training

data point and hide its class
label

2. Using the remaining data and
given k to predict the class la-
bel for the left data point
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Leave-One-Out Method
For k=1,2,...,k
Err(k) =0

1. Randomly select a training

data point and hide its class
label

. Using the remaining data and
given k to predict the class la-
bel for the left data point

(k=1) @ Em()=1 . Err(k) = Err(k) + 1 if the
predicted label is different
from the true label
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Leave-One-Out Method
For k=1,2,...,k
Err(k) =0

pig 1. Randomly select a training

data point and hide its class
label

. Using the remaining data and

given k to predict the class la-
bel for the left data point

. Err(k) = Err(k) + 1 if the

predicted label is different
from the true label

Repeat the procedure until all training examples are tested.
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Leave-One-Out Method
For k=1,2,...,k
Err(k) =0

1. Randomly select a training

data point and hide its class
label

. Using the remaining data and
given k to predict the class la-
Err(1) =3 bel for the left data point

Err(?jz . Err(k) = Err(k) + 1 if the
Ty = predicted label is different

from the true label
Repeat the procedure until all training examples are tested.

Choose the k whose Err(k) is minimal
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Empirical observations and theoretical arguments show WPNN works

best when only a small fraction of the exemplars contribute

significantly. So we reject a particular, for any exemplar 2% , if

] Y

M
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FAT; i=1

Where P =4
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3. Initialization Procedure

WPNN: integers chosen randomly in [1, K].

Where K depends on the desired range and resolution for weight
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4. Genetic Operators

WPNN: standard GA mutation and uniform crossover
Uniform crossover example:
Individual Genotype
A abcdef
B qwerty
Offspring q b ed t £

The gene at locus j, where 0 < j < string length, from both parents
have equal selected for the new offspring.

Why uniform?
e A real-valued representation is used and no particular

e ordering to the feature weights.
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5. Parameter Values
e Population-Size: 1600

e (Generation-Size:

1. “steady-state” approach. With the large population a

steady-state GA is used, which means Generation-Size is

small relative to Population-Size.
2. for using a single CPU, Generation-size = 1.
e Parent-Scalar: the smaller the Parent-Scalar, the faster the

converge.
Parent-Scalar = 0.9
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Sample run of a steady-state GA

1. Initial population(randomly generated)
a) (1001010) eval = 3
b) (0100110) eval =

(
(

3
(¢) (1101011) eval = 5
4

(d) (0110101) eval =

2. New children, from crossover or 3rd and 4th:
(a) (1101101) eval = 5
(b) (0110011) eval = 4
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Experimental Results — WPNN

WPNN was a new and untested algorithm, the experiments with
WPNN centered on the overall performance rather than on the

training algorithm.

54



Experimental Results — WPNN (Cont.)

4 data set designed are used to illustrate both the advantages and
shortcomings of WPNN.
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Experimental Results — WPNN (Cont.)

First Data Set:

1. It is a training set that is generated during an effort to classify

simulated sonar signals.
2. 10 features
3. 5 classes

4. 516 total exemplars
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Experimental Results — WPNN (Cont.)

Second Data Set: Same as first data set except:

5 more features are added (which were random numbers uniformly

distributed between 0 and 1 hence contained no information relevant

to classification)
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Experimental Results — WPNN (Cont.)

Third Data Set: Same as first data set except:

10 irrelevent features are added. (total of 20 features)
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Experimental Results — WPNN (Cont.)

Fourth Data Set:

e Has 20 features just like the third data set.

e Pair each of the true feature with one of the irrelevant features.

e Mixing up the relevant features with the irrelevant features with

via linear combinations.
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Experimental Results — WPNN (Cont.)

Dataset 1 2 3 4
Backpropagation | 11 | 16 | 20 | 13
PNN 9 | 94 29
WPNN 10 | 11 25
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