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Abstract. In the last decade, one of the research topics that has received a great deal of

attention from the machine learning and computational learning communities has been the so

called boosting techniques. In this paper, we further explore this topic by proposing a new

boosting algorithm that mends some of the problems that have been detected in the, so far most

successful boosting algorithm, AdaBoost due to Freund and Schapire [FS97]. These problems

are: (1) AdaBoost cannot be used in the boosting by filtering framework, and (2) AdaBoost

does not seem to be noise resistant. In order to solve them, we propose a new boosting algorithm

MadaBoost by modifying the weighting system of AdaBoost. We first prove that one version

of MadaBoost is in fact a boosting algorithm. Second, we show how our algorithm can be

used and analyzed its performance in detail. Finally, we show that our new boosting algorithm

can be casted in the statistical query learning model [Kea93] and thus, it is robust to random

classification noise [AL88]. (This is a revised version of TR-C133.)

1 Introduction

In the last decade, “boosting techniques” have been received a great deal of attention from the

machine learning and computational learning communities. In this paper, we further explore

this topic by proposing a new boosting algorithm — MadaBoost — that mends some of the

problems that have been detected in the, so far most successful boosting algorithm, AdaBoost

due to Freund and Schapire [FS97]. These problems are: (1) AdaBoost cannot be used in

the boosting by filtering framework, and (2) AdaBoost does not seem to be noise resistant.

The outline of our modification was first proposed in [Wat99] with only a partial proof for its

justification. In this paper, we describe the modification in detail, provide a much improved

analysis of its correctness and performance, and prove that our new boosting algorithm can

be casted in the statistical query learning model [Kea93] and thus, it is robust to random

classification noise [AL88] as well as to some other kinds of less benign noise [Dec93].

While the above problem (2) is an obvious weakness, it may not seem so important that

even if the boosting algorithm does not work for the “filtering framework”, where examples are

randomly obtained with respect to a distribution defined over all instance space. Here we argue

that it is indeed important that the boosting algorithm can be used in the filtering framework.
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Recall that AdaBoost is defined for the “subsampling framework”, where a sample of sufficient

size, which is randomly selected before the boosting, is fixed throughout all the boosting process

and distributions are defined only with respect to the sample. From the theoretical side, one

consequence of having a boosting algorithm for the filtering framework is that we can directly

get a bound on the generalization error of the boosting algorithm. From a more practical side,

the advantage becomes more clear. First, we do not need to determine “sufficient sample size”

for the boosting process. (Although some formulas are provided to calculate sample size, they

may not be easy to use and they usually give overestimated size.) Secondly, since a sample is

not a priori fixed, we can run the weak learner on random samples of appropriate sizes at each

iteration of the boosting; in this way, we can reduce the computation time particularly when

the dataset is very large and we use sampling for scaling-up the weak learner [DGW98]. Recall

that AdaBoost is defined for the subsampling framework, and in fact, as we show in Section 4,

it is not appropriate for the filtering framework, at least not in an obvious way.

Note that there are boosting algorithms, namely, the one proposed by Schapire [Sch90]

and the one by Freund [Fre95], that can be used for the filtering framework and that are

noise resistant [AD93] in the sense of the statistical query learning model. However, none of

known algorithms have been “adaptive” like AdaBoost or like the algorithm we propose here,

a property that has been repeatedly shown to be crucial for the practical feasibility of a boosting

algorithm. More recently, some attempts have been done in order to improve AdaBoost, mainly

to try to make it noise resistant. These modifications also tried to change the weighting scheme

so that the weights change more smoothly (see, for instance [FHT98]). From these variations,

the only one that is a boosting algorithm in the PAC sense is the BrownBoost recently proposed

by Freund [Fre99]. While BrownBoost seems more error resistant than AdaBoost, it has not

been shown whether it can be used in the filtering framework. Moreover, BrownBoost is a more

complicated than AdaBoost, while our algorithm remains as simple as AdaBoost.

Our modification for MadaBoost is very simple. We just bound the weight assigned to

each example by its initial probability. In this way, the weights of the examples cannot become

arbitrarily large as it happens in AdaBoost. The uncontrolled growth of the weights seems to

be the root of the problems of AdaBoost and we provide some evidence in this direction by

showing that this modified weighting scheme works under the filtering framework and belongs to

the statistical query model. What is more important and of theoretical interest is that we could

show that even this moderate weight scheme has the boosting property. Unfortunately, our proof

still has some minor weaknesses. First, the proof works only for one version of MadaBoost that

has an even more moderate weight scheme. Secondly, we need to assume that the advantages (its

difference from random guessing) of the weak hypotheses produced during the boosting process

are monotonically decreasing. Thirdly, the boosting speed, at least what we could prove, is

much slower than the one for AdaBoost. Nevertheless, we do not expect these weaknesses to

affect the practicality of our algorithm. (See the discussions in the later sections.)

This paper is organized as follows. In the following section, we review the basic notions

of boosting and algorithm AdaBoost in detail, discussing its advantages and disadvantages in
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order to clearly establish our goal. In Section 3 we describe MadaBoost, our modification of

AdaBoost that we propose, and for one version of MadaBoost, we prove a theorem concerning

its efficiency in the subsampling framework. Then, in Section 4 we describe in detail how to use

our algorithm for the filtering framework and why AdaBoost seems not to work and discuss its

generalization error. Finally, in Section 5 we prove that MadaBoost belongs to the statistical

query learning model. We conclude in Section 6 with some concluding remarks and highlighting

future work.

2 Motivation and Our Technical Goal

Here we explain our motivation more specifically and state the technical goal of this paper.

(Those who are familiar with the notions of PAC learning, boosting, and AdaBoost can skip

the following explanation and subsection. But please do not skip Section 2.2, where we give the

description of AdaBoost in a different way from the original description.)

We begin by recalling some basic notions from computational learning theory, in particular,

on PAC learning (see, e.g., [KV94]). The goal of PAC learning is to obtain some hypothesis

f that can predict an unknown target function f∗ with a desired accuracy under an unknown

distribution D on the domain X of f∗. Throughout this paper, we consider the problem of

learning binary functions; that is, the range of our target function f∗ is {0, 1}. In the PAC

learning model, a learning algorithm can generate labeled examples by using some black box

example generator EXD,f∗, which generates a pair (x, f∗(x)) with probability D(x), and it is

expected to obtain some f that is close to f∗. More precisely, an algorithm A is called a PAC

learner (in the strong sense) if for any D, and for any input ǫ and δ, 0 < ǫ, δ < 1, by using

EXD,f∗, A yields some hypothesis f such that corD(f, f∗) (
def
= Prx:D{ f(x) = f∗(x) }) ≥ 1 − ǫ

with probability at least 1 − δ. On the other hand, an algorithm yielding a hypothesis that is

better than the random hypothesis, i.e., the hypothesis predicting 0 or 1 uniformly at random,

is called a weak PAC learner. More precisely, for any D and any input δ, 0 < δ < 1, a weak

PAC learner uses EXD,f∗ and obtains, with probability at least 1− δ, a hypothesis h such that

corD(h, f∗) = 1/2 + γ for some γ > 0. This γ is called the advantage of h (over the random

hypothesis). The efficiency (e.g., the running time) of a learning algorithm is usually measured

in terms of 1/ǫ, 1/δ, the size of instances, and the “complexity” of a target function (resp.,

for weak learners, 1/γ, 1/δ, the size of instances, and the “complexity” of a target function).

In order to simplify our discussion, we will ignore instance size and complexity of the target

function, and we measure the efficiency only in terms of 1/δ and 1/ǫ and/or 1/γ.

2.1 Boosting Techniques: Subsampling and Filtering

The question of whether a weak PAC learning algorithm is really weaker than a strong PAC

learning algorithm was answered negatively by Schapire [Sch90]. He showed that any weak PAC

learning algorithm could be transformed into a strong PAC learning algorithm by using what

he called “boosting techniques”.
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We explain the outline of boosting techniques. Suppose that we are given some weak learning

algorithm WeakLearn. For the rest of the paper we will assume that WeakLearn is an

algorithm that, when given as input a confidence value δ, it asks for a certain amount of labeled

examples under a fixed but unknown distribution and, with probability larger than 1−δ, outputs

a weak hypothesis that has error strictly smaller than 1/2 under the distribution from which

the examples were generated.

A boosting algorithm runs this WeakLearn several times, say T times, under distributions

D1, ...,DT that are slightly modified from the given distribution D and collects weak hypotheses

h1, ..., hT . (In the following, we call each execution of WeakLearn a boosting round or boosting

step.) A final hypothesis is built by combining these weak hypotheses. Here the key idea is to

put more weight, when making a new weak hypothesis, to “problematic instances” for which

the previous weak hypotheses perform poorly. That is, at the point when h1, ..., ht−1 have been

obtained, the boosting algorithm computes a new distribution Dt that puts more weight on

those instances that have been misclassified by most of h1, ..., ht−1. Then a new hypothesis

ht produced by WeakLearn on this distribution Dt should be strong on those problematic

instances, thereby improving the performance of the combined hypothesis built from h1, ..., ht.

Boosting techniques differ typically on (i) the weighting scheme used to obtained the mod-

ified distribution, (ii) the way the weak hypotheses are combined, and (iii) the way to execute

WeakLearn on the modified distributions. According to this last point, boosting techniques

can be classified in two types:- boosting by subsampling and boosting by filtering [Fre95] 1.

In the boosting by subsampling framework, a boosting algorithm first obtains, using EXD,f∗,

a set S of enough number of examples as a “training set”. Then it runs WeakLearn on S by

changing the weight of each example. The goal is to obtain a hypothesis that explains the training

set well and hope that this hypothesis will also predict well the label on unseen examples outside

S. Since we can now regard S as a domain, we only need to provide labeled examples under a

given distribution on S, which is possible so long as the distribution is efficiently computable.

That is, the boosting algorithm can provide examples to WeakLearn according to its desired

distribution. Or, alternatively, we can modify WeakLearn so that it can handle weighted

examples. Usually, the initial distribution is set to the uniform distribution on the training set

S (and zero everywhere else).

On the other hand, in the boosting by filtering framework, a boosting algorithm selects

an example from the original domain X each time WeakLearn requests one. This selection

procedure is regarded as a “filter” between EXD,f∗ and WeakLearn. That is, the filter observes

each example generated by EXD,f∗ and either “rejects” it and throws it away or “accepts” it

and passes it on to WeakLearn; by this process, the boosting algorithm runs WeakLearn

on modified distributions. Notice that, in this framework, the distributions are defined with

respect to the original domain rather than with respect to a sample set as in the subsampling

framework. In this case, the initial distribution is the unknown distribution D from which the

1These frameworks are also sometimes refer as boosting by reweighting and boosting by resampling [FS96].
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examples are obtained.

2.2 Adaptive Boosting: AdaBoost

Among all the theoretically provable boosting techniques, the most successful one in practical

applications has been AdaBoost due to Freund and Schapire [FS97]. The explanation of its

success comes from two reasons, first its simplicity and second a property of AdaBoost that pre-

vious boosting algorithms [Sch90, Fre95] lacked of, namely, “adaptivity”. The algorithm adapts

its strategy to the situation being used, which free its user from the difficulty of determining

algorithmic parameters.

Let us see what the “adaptivity” of AdaBoost means. For using any of the previous boost-

ing algorithms [Sch90, Fre95], we need to specify a lower bound γ of the advantage of weak

hypotheses that one can expect from WeakLearn. This γ, with other parameters, determines

an actual boosting strategy (i.e., a weighting scheme and a form of the combined hypothesis),

which works well so long as the weak learner keeps producing weak hypotheses with advantage

≥ γ. Furthermore, the total running of the boosting algorithm increases depending on 1/γ,

roughly O(1/γ2). Thus, when using one of these boosting algorithms, one has to estimate γ

appropriately; if γ is overestimated, then the boosting process may not work, but if γ is under-

estimated, the boosting process becomes unnecessarily slow. AdaBoost solves this problem!

It adapts to the advantages of the obtained weak hypotheses and depending on this informa-

tion, it chooses an appropriate strategy on-line. Thus, we do not have to estimate γ for using

AdaBoost.

Now we describe AdaBoost in more detail. AdaBoost is designed for the subsampling

framework. Let S be the sample that is given as input to AdaBoost. For any t ≥ 1, assume

that we have already obtained hypotheses h1, ..., ht−1, where each hi is a weak hypothesis of f∗

on some distribution Di−1 defined with respect to sample S. Let ǫ1, ..., ǫt−1 denote the errors

and γ1, ..., γt−1 denote the advantages of these hypotheses; that is, ǫi
def
= 1− corDi

(hi) and γi
def
=

advDi
(hi) (= 1/2− ǫi). We use parameters β1, ..., βt−1 that are defined as βi

def
=
√
ǫi/(1− ǫi) (=

√
(1− 2γi)/(1 + 2γi)) for each i, 1 ≤ i ≤ t−1. (Remark. In this paper, we define βi in this way,

which is the square root of βi used in [FS97]. Due to this change, the weight wt defined below

is not the same as the one used in [FS97] although the definitions of the distributions Dt and

the combined hypothesis ft also given below are mathematically equivalent. Thus, there is no

essential difference between this description of the algorithm and the original one, while ours is

more appropriate for discussing the modification to the filtering framework.) For any hypothesis

h and any x ∈ X, define cons(h, x)
def
= 1 (resp., −1) if h(x) = f∗(x) (resp., h(x) 6= f∗(x)). Then

for each instance x ∈ S, its weight wt−1(x) after the (t − 1)th boosting round is defined as

follows.

wt−1(x)
def
= D0(x)×

∏

1≤i≤t−1

β
cons(hi,x)
i ,

where D0 is the initial distribution, that is the uniform distribution on S. Let Wt−1
def
=
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∑
x∈S wt−1(x). The next distributionDt is defined asDt(x)

def
= wt−1(x)/Wt−1 for all x ∈ S. (Note

that D1(x) = D0(x).) Finally, the combined hypothesis ft−1 of h1, ..., ht−1 is their weighted ma-

jority vote that is defined as

ft−1(x)
def
=





1, if
∏

i:hi(x)=1

βi ≤
∏

i:hi(x)=0

βi,

0, otherwise.

Then for the “boosting property” of AdaBoost, we have the following theorem proved by

Freund and Schapire in [FS97].

Theorem 1 Suppose that WeakLearn, when called by AdaBoost on a training set S, gen-

erates weak hypotheses h1, h2, ..., hT whose advantages are γ1, γ2, ..., γT . Then the error of the

combined hypothesis fT on S can be bounded as follows.

error(S, fT )
def
= Pr

x:D0

{ fT (x) 6= f∗(x) } ≤ exp

(
−2

T∑

i=1

γ2
i

)
.

Now we calculate the number of boosting rounds T needed in order to make fT consistent

with the sample S. Suppose as in the theorem that WeakLearn produces hypotheses whose

advantages are γ1, γ2, ..., γT . Then it follows from the theorem that if
∑T

i=1 γ
2
i ≥ (ln ‖S‖)/2,

then we have that error(S, fT ) < 1/‖S‖, which means that fT does not make any error on S.

Hence, for any lower bound γ of γ1, ..., γT , we have T = O(1/γ2). That is, even if we do not

supply lower bound γ, AdaBoost takes an appropriate strategy and performs at least as well

as the previous boosting techniques with the best parameter γ.

2.3 Drawbacks of AdaBoost and Our Technical Goal

Although its indisputable success, AdaBoost has two main problems that we address in this

paper. Solving them while keeping the good properties of AdaBoost, namely, simplicity and

adaptivity, is our main objective. Let us first describe what are these two problems.

Recall that AdaBoost is designed for the subsampling framework. The subsampling frame-

work has a number of disadvantages, both from a theoretical and a practical points of view,

which can be avoided by having a boosting algorithm that works for the filtering framework.

In the following, we discuss the advantages of having a version of AdaBoost for the filtering

framework.

One of the main theoretical drawbacks of AdaBoost is the lack of a tight bound on its

generalization error. In Theorem 1, we have seen that, assuming the existence of a WeakLearn,

AdaBoost produces a hypothesis that is consistent with a given set of examples; that is,

the training error can be driven down to zero. However, we are usually interested in how a

hypothesis performs on unseen instances; that is, we want to bound the generalization error.

One way to do this could be by restricting the weak learner to choose its hypothesis from

a simple class of functions and then restrict the number of hypotheses that are going to be
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combined, i.e., the number of boosting steps. Then using uniform convergence theory we can

bound the generalization error of AdaBoost [FS97]. In this way we can upper bound the

generalization error of AdaBoost by ǫ̂ + O(
√
Td/|S|), where ǫ̂ is the error in the training

set S, T is the number of boosting rounds, and d is the VC dimension of the WeakLearn

hypothesis space. It has been observed, however, by several researchers [DC96, FS96, Bre98]

that this bound does not reflect the actual behavior of AdaBoost. Even after the training

error has reached zero, AdaBoost sometimes continues to drive down the generalization error

contradicting the bound. A seemingly better bound in terms of a quantity called the margin

has been proposed by Schapire et.al. [SFBL98]. While this bound seems qualitatively right it

is still greatly underestimating the actual performance of AdaBoost and thus not satisfactory.

From the statistical community, Breiman [Bre98] has proposed an explanation in terms of bias-

variance decomposition but without providing a provable theorem about the generalization error

of AdaBoost.

Notice that a version of AdaBoost designed for the filtering framework necessarily pro-

vides a direct bound on the generalization error as it was done with previous boosting algo-

rithms [Sch90, Fre95]. Recall that in the filtering framework a new training sample is obtained

(randomly with respect to the current distribution) at each boosting iteration from which a new

weak hypothesis is constructed. Thus, the “boosting property” of a boosting algorithm for the

filtering framework should be proved directly on the generalization error.

Other advantage of the boosting by filtering framework is that the task of determining

the appropriate sample size does not have to be done a priory. In fact, we could use a different

sample size at each boosting iteration, and this point could be used for improving total efficiency.

For example, suppose that we have a WeakLearn that observes examples under a certain

distribution and determines in an on-line manner when it has seen enough examples to output

a hypothesis [DGW98]. This sort of WeakLearn can be extremely efficient in minimizing

the number of examples used compared to the usual WeakLearn where the total number

of examples needed is usually determined a priori by using a worst case bound that works

for any distribution. Moreover, this could be particularly useful in practical situations where

huge amount of data is available but we do not need to use it all at each step to construct a

weak hypothesis. Notice that a WeakLearn like this can be boosted only under the filtering

framework and thus, AdaBoost (used in the subsampling framework) is not appropriate for it.

Unfortunately, though, AdaBoost does not seem suitable for the boosting by filtering

framework, at least in a straightforward way. If one constructs the filter in the obvious way (i.e.,

obtaining one example under the original distribution and then using its weight to determine the

probability that the example is passed or not to the WeakLearn), then after certain boosting

iterations, the probability that the filter outputs any example may become exponentially smaller

than the current error of the combined hypothesis. Thus, while we still need to do some more

boosting iterations to reach the desired error bound, we cannot obtain enough examples from the

filter for WeakLearn to work. The technical problem is that after certain number of boosting

iterations, the weights of the instances can grow exponentially. Thus, most of the weight under
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the current probability distribution is placed in a fraction with very small weight under the

original probability distribution, and hence, most of the examples are rejected by the filter.

This problem is described in more detail in Section 4.

The second main problem is that AdaBoost does not seem to be noise resistant. A recent

empirical study done by Dietterich [Die98] shows that the performance of AdaBoost in noisy

domains gets degradated. The reason seems to be that more and more weight is being placed on

the noisy examples forcing the weak learner to agree with them; thus, the weak learner obtains

erroneous hypotheses that degradate the generalization error of the combined hypothesis. While

this problem seems difficult to solve in general, we may still be able to treat noisy data of some

type. For example, if a learning algorithm can be used for the statistical query learning of

Kearns [Kea93], we can handle random classification noise [AL88] and several other kinds of

less benign noise [Dec93]. In fact, Aslam and Decatur [AD93] showed that previous boosting

algorithms have this property. On the other hand, it seems difficult to show it for AdaBoost

due to again its weighting scheme that may put very large weight to some instances and the

fact that it is not designed for the filtering framework (the proof in [AD93] heavily relies in this

fact).

Now from the discussion above, our technical goal becomes clear. We would like to modify

the weighting scheme of AdaBoost so that no instance gets an extremely large weight. With

such a weighting scheme the filtering algorithm can produce each example in a reasonable amount

of time, and thus, we could use this new boosting algorithm in the filtering framework. From

this, a bound on the generalization error and noise resistant properties should follow. Moreover,

we want do this modification while keeping the good properties of AdaBoost, in particular, the

adaptive boosting property.

3 MadaBoost: A New Weighting Scheme

In the previous section, we stated our technical goal. That is, while keeping the adaptive

boosting property, we want to modify the weighting scheme of AdaBoost so that (i) it can be

used in the filtering framework, and (ii) it can be used for the statistical query learning. Here we

describe our modification for our boosting algorithm MadaBoost and prove that one version

of MadaBoost has an adaptive boosting property.

Since AdaBoost is designed for the subsampling framework, for the sake of comparison we

will also describe MadaBoost in the subsampling framework. In Section 4 we will explain how

to make it work for the filtering framework.

The modification we propose is very simple. For each instance x, we modify its weight

wt(x) after the tth boosting round with the initial weight D0(x) as a saturation bound; that

is, the weight wt(x) cannot be increased beyond D0(x). (Recall that D0, in the subsampling

framework, is usually taken as the uniform distribution over S.) More specifically, our new

weighting system is defined as follows. For each instance x ∈ S, the new weight wt−1(x) after

the (t− 1)th step is defined by
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wt−1(x)
def
=





D0(x)×
∏

1≤i≤t−1

β
cons(hi,x)
i , if

∏

1≤i≤t−1

β
cons(hi,x)
i < 1, and

D0(x), otherwise.

The rest is exactly the same as before. That is, we define Wt−1
def
=
∑

x∈S wt−1(x), and the

next distribution Dt is defined by Dt(x)
def
= wt−1(x)/Wt−1 for all x ∈ S, and also the combined

hypothesis is exactly the same as for AdaBoost (see Section 2.2).

Thus, the weight of each instance changes very moderately. It is interesting to see that

even using this moderate weighting scheme the algorithm still has some boosting property. For

example, our experiments [DW99b] show that MadaBoost has a boosting property more or

less similar to AdaBoost. We can also prove some basic boosting property of MadaBoost for

a special case where (we may assume that) the advantage of every obtained hypothesis is some

fixed γ > 0 [Wat99].

Here we prove a more general boosting property. Unfortunately, though, for our current

proof, we need to modify the weighting scheme of MadaBoost even more moderate one. The

difference from MadaBoost is the definition of βt; here the following definition is used.

βt =

√
ǫ′t

1− ǫ′t
, where ǫ′t =

√
ǫt√
2
.

That is, instead of using the error probability ǫt of the tth weak hypothesis, we use ǫ′t, which is

slightly larger than ǫt. In terms of the advantage γt, we have

ǫ′t =

√
ǫt√
2

=

√
1− 2γt

2
≈ 1− γt

2
=

1

2
− γt

2
.

Hence, roughly speaking, this new weighting scheme defines βt by using the advantage that is

the half of the real one. Note also that ǫ′t < 1/2 so long as ǫt < 1/2. We refer this version of

MadaBoost as MB:1/2.

For this MB:1/2, we can prove the following boosting property.

Theorem 2 Suppose that WLearn, when called by MB:1/2 on a training set S, generates weak

hypotheses h1, h2, ..., hT whose advantages are γ1, γ2, ..., γT that satisfies γ1 ≥ γ2 ≥ · · · ≥ γT > 0.

Let f1, f2, ..., fT be combined hypotheses obtained after each round. Then for any ǫ, either there

is some t, 1 ≤ t < T , for which we have

error(S, ft) = Pr
x:D0

{ ft(x) 6= f∗(x) } < ǫ,

or we have the following bound.

error(S, fT ) = Pr
x:D0

{ fT (x) 6= f∗(x) } ≤ 1−
T∑

i=1

2ǫγ2
i .
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Before the proof, let us examine the meaning of this theorem. Suppose as before that our

goal is to obtain a hypothesis whose error probability on S is less than ǫ = 1/‖S‖ (under the

uniform distribution over S), and suppose that WeakLearn generates weak hypotheses with

advantage larger than γ. Then within T = (‖S‖ − 1)/(2γ2) rounds, we have some ft with

error(S, ft) < ǫ because if no ft, 1 ≤ t < T , has this desired property, then we have

error(S, fT ) ≤ 1− ‖S‖ − 1

2γ2
· 2γ2

‖S‖ ≤
1

‖S‖ ,

that is, fT indeed has the desired property. Hence, we can bound the boosting rounds as

O(‖S‖/γ2), or O(ǫ−1/γ2) in general to reduce the error in S below ǫ. Recall, on the other

hand, that AdaBoost, as well as many other boosting techniques, needs O(ln ǫ−1/γ2) under

the same situation. That is, the boosting speed of MB:1/2, at least the one we can prove here,

is exponentially slower than AdaBoost in terms of ǫ−1.

Here we need one condition; that is, the advantage sequence γ1, γ2, . . . , γT is non-increasing.

Intuitively, a learning problem gets harder and harder as boosting proceeds; hence, it seems

natural to assume that an advantage sequence is non-increasing. In fact, this phenomenon has

been confirmed experimentally by Dietterich et.al. in dietterich-kearns-mansour-icml96, where

it was found that the distributions generated by AdaBoost are increasingly difficult for the

WeakLearn and thus, the advantage sequence is monotonically decreasing. Similar results

have been also obtained by our experiments [DW99b] for MadaBoost and MB:1/2.

Note that, even if it occurs γt > γt−1 for some round t, we can continue boosting by using

γt−1 instead of γt. That is, MB:1/2 works with no problem with any advantage sequence; it

just cannot use the advantage of some “accidentally” good weak hypothesis.

For proving the theorem, we first note the following fact, which will be also important for

our discussion in the next section.

Lemma 3 Suppose that MB:1/2 is executed with a sample set S in which it executes WeakLearn

for t times and obtains weak hypotheses h1, ..., ht with advantage γ1, ..., γt. Let ft be the combined

hypothesis obtained from them. Then we have

error(S, ft) = Pr
x:D0

{ ft(x) 6= f∗(x) } ≤ Wt.

Remark. The proof follows from the definition of ft and Wt, and it is omitted here. Note

that the same proof works independent from the choice of βt. Hence, the theorem holds for

MadaBoost. Furthermore, the theorem also holds even for AdaBoost (under the weigting

scheme as described in Section 2.)

Therefore, in order to prove Theorem 2, it suffices to show that the sequence W1,W2, ...

converges to 0. More specifically, we need to show that Wt is smaller than Wt−1 by (ǫ/2)γ2
t (if

Wt−1 ≥ ǫ). This is what we will prove below.

Proof of Theorem 2. For any t ≥ 1, we consider the situation when the tth boosting round

has just finished. (Below the ith boosting round is simply called “the ith step”.) That is,
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WeakLearn has been called for t times and t weak hypotheses h1, . . . , ht have been obtained.

Let ǫ1, . . . , ǫt be their errors, and let γ1, . . . , γt be their advantages. We would like to discuss how

much Wt gets decreased from Wt−1, but it seems difficult to estimate the decrement because

there may be some instance x ∈ X for which the weight does not change between the (t− 1)th

and the tth step. Thus, we introduce here some “imaginary” weight that bounds Wt and show

that it gets decreased as the theorem claims.

First we define our new weight for the situation that the (t−1)th step has been finished. For

this, we divide the instance space X according to the value
∏t−1

i=1 β
cons(hi,x)
i of each instance x ∈

X. (For simplifying our notation, we use below Bt−1(x)
def
=
∏t−1

i=1 β
cons(hi,x)
i .) More specifically,

we divide X into two sets U and V , where U (resp., V ) is the set of instances x ∈ X such that

Bt−1(x) < 1 (resp., Bt−1(x) ≥ 1). Note that x is in U iff ft−1 gives a correct classification, and

note that for any x ∈ V , its weight wt−1(x) is defined by wt−1(x) = D0(x). Now we define our

new weight w̃t−1(x) as follows.

(if x ∈ U) w̃t−1(x)
def
= Bt−1(x)D0(x), and

(if x ∈ V ) w̃t−1(x)
def
= (1 + αt log

β−1
t
Bt−1(x))D0(x).

Where αt
def
= β−1

t − 1 > 0. Also define W̃t−1
def
=
∑

x∈X w̃t−1(x).

We explain the motivation of this weight function. In our original weight scheme, all in-

stances in U changes their weight from the (t− 1)th step to the tth step, while some instances

x in V keep the same weight, i.e., D0(x). Thus, for the weight w̃t−1(x) for each x ∈ V , we

introduce the additional nonnegative term αt log
β−1

t
Bt−1(x)D0(x) so that w̃t−1(x) changes de-

pending whether ht gives the correct classification of x or not. Intuitively, if ht correctly (resp.,

wrongly) classifies x ∈ V , then its weight gets decreased (resp., increased) by αt.

We need to be a bit careful for defining the new weight for the tth step. The weight w̃t after

the tth step is defined similarly, but the division of X is different and βt+1 should be used here.

That is, these are defined as follows by using Bt(x)
def
=
∏t

i=1 β
cons(hi,x)
i and αt+1

def
= β−1

t+1 − 1.

U ′ def
= {x ∈ X |Bt(x) < 1 },

V ′ def
= {x ∈ X |Bt(x) ≥ 1 },

(if x ∈ U ′) w̃t(x)
def
= Bt(x)D0(x), and

(if x ∈ V ′) w̃t(x)
def
= (1 + αt+1 log

β−1
t+1

Bt(x))D0(x).

Then define W̃t
def
=
∑

x∈X w̃t(x). On the other hand, for our comparison, we also consider an

intermediate weight function w̃′
t that is defined as follows.

(if x ∈ U ′) w̃′
t(x)

def
= Bt(x)D0(x),

(if x ∈ V ′) w̃′
t(x)

def
= (1 + αt log

β−1
t
Bt(x))D0(x).

Define W̃ ′
t

def
=
∑

x∈X w̃′
t(x).

Below we will show that W̃t gets decreased from W̃t−1 by (γ2
t /2)Wt−1 by proving that (i)

W̃t ≤ W̃ ′
t , and (ii) W̃ ′

t ≤ W̃t−1 − (γ2
t /2)Wt−1.
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First prove W̃t ≤ W̃ ′
t . For this, it suffices to show that w̃t(x) ≤ w̃′

t(x) for all x ∈ X. The

case that x ∈ U ′ is trivial because by definition w̃t(x) = w̃′
t(x). Consider the case x ∈ V ′. Here

we note that β−1
t+1 ≤ β−1

t ; this is because we assumed that γt+1 ≤ γt. Thus we have

w̃t(x) ≤ w̃′
t(x)

⇔ αt+1 log
β−1

t+1
Bt(x) ≤ αt log

β−1
t
Bt(x)

⇔ (β−1
t − 1)(log2Bt(x)/ log2 β

−1
t ) ≤ (β−1

t+1 − 1)(log2Bt(x)/ log2 β
−1
t+1)

⇔ (β−1
t − 1)/ log2 β

−1
t ≤ (β−1

t+1 − 1)/ log2 β
−1
t+1.

This last inequality holds because φ(z) = (z − 1)/ log2 z is monotone for z > 1.

Next we analyze how much does W̃ ′
t get decreased from W̃t−1. For this, we estimate ∆(x)

= w̃′
t(x)− w̃t−1(x) considering the cases (U) x ∈ U and (V) x ∈ V . Furthermore, for each case,

we consider the case (P) ht correctly classifies x and the case (Q) ht wrongly classifies x. Below

we use P and Q to denote {x ∈ X |ht(x) = f∗(x) } and {x ∈ X |ht(x) 6= f∗(x) } respectively.

(Case U.P) Note that x ∈ U ′. Hence, by definition, we have

w̃t−1(x) = Bt−1(x)D0(x) = wt−1(x), and

w̃′
t(x) = Bt(x)D0(x) = βtwt−1(x).

Thus ∆(x) = (βt − 1)wt−1(x) (≤ 0).

(Case U.Q) We have either x ∈ U ′ or x ∈ V ′. For the former case, we have

w̃t−1(x) = Bt−1(x)D0(x) = wt−1(x), and

w̃′
t(x) = Bt(x)D0(x) = β−1

t wt−1(x),

and hence ∆(x) = (β−1
t − 1)wt−1(x) (≥ 0). For the latter case, we have

w̃t−1(x) = Bt−1(x)D0(x), and

w̃′
t(x) = (1 + αt log

β−1
t
Bt(x))D0(x) = (1 + αt + αt log

β−1
t
Bt−1(x))D0(x).

Thus, we have

∆(x) = (1−Bt−1(x) + αt + αt log
β−1

t
Bt−1(x))D0(x)

= (αt + (1−Bt−1(x) + αt logβ−1
t
Bt−1(x)))D0(x).

Here we want to show that 1 − Bt−1(x) + αt log
β−1

t
Bt−1(x) ≤ 0. Note that βt ≤ Bt−1(x) < 1

because x ∈ U (i.e., Bt−1(x) < 1) and x ∈ V ′ (i.e., Bt(x) = Bt−1(x)β
−1
t ≥ 1). Hence, Bt−1(x)

= βz
t for some z, 0 < z ≤ 1. Then we have

1−Bt−1(x) + αt log
β−1

t
Bt−1(x) = 1− βz

t − αtz

On the other hand, the function ψ(z)
def
= 1 − βz

t − αtz is nonincreasing on [0, 1] (since αt =

β−1
t − 1 ≥ − lnβt) and ψ(z) = 0. Thus, we can show that

∆(x) ≤ αtD0(x) ≤ β−1
t αtBt−1(x)D0(x) = β−1

t αtwt−1(x).
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(Case V.P) We have either x ∈ U ′ or x ∈ V ′. For the latter case, we have

w̃t−1(x) = (1 + αt logβ−1
t
Bt−1(x))D0(x), and

w̃′
t(x) = (1 + αt log

β−1
t
Bt(x))D0(x) = (1− αt + αt log

β−1
t
Bt−1(x))D0(x).

Hence ∆(x) = −αtD0(x) = −αtwt−1(x) (≤ 0). For the former case, we have

w̃t−1(x) = (1 + αt logβ−1
t
Bt−1(x))D0(x), and

w̃′
t(x) = Bt(x)D0(x) = Bt−1(x)βtD0(x)

Let us consider here backwards. For our later analysis, we would like to have ∆(x) ≤
(βt − 1)wt−1(x). But for this, it is enough to have ∆(x) ≤ (βt − 1)w̃t−1(x) since Bt−1(x) ≥ 1

and thus w̃t−1(x) ≥ wt−1(x). On the other hand, since

∆(x) = (Bt−1(x)βt − (1 + αt log
β−1

t
Bt−1(x)))D0(x),

we have

∆(x) ≤ (βt − 1)w̃t−1(x)

⇔ Bt−1(x)βt − (1 + αt logβ−1
t
Bt−1(x)) ≤ (βt − 1)(1 + αt logβ−1

t
Bt−1(x))

⇔ Bt−1(x) ≤ 1 + αt log
β−1

t
Bt−1(x)

⇔ Bt−1(x)− 1

log
β−1

t
Bt−1(x)

≤ αt.

To prove the last inequality, we note that 1 ≤ Bt−1(x) < β−1
t . Thus, by letting β−1

t = 1+ δ and

Bt−1(x) = (1 + δ)z for some δ, z > 0, we have

Bt−1(x)− 1

logβ−1
t
Bt−1(x)

=
(1 + δ)z − 1

z
≤ zδ

z
= δ = β−1

t − 1.

Thus, the desired inequality holds since we defined αt = β−1
t − 1. In fact, this is one of the

reasons for our definition of αt.

(Case V.Q) Since x ∈ V ′, we have

w̃t−1(x) = (1 + αt log
β−1

t
Bt−1(x))D0(x), and

w̃′
t(x) = (1 + αt logβ−1

t
Bt(x))D0(x) = (1 + αt + αt logβ−1

t
Bt−1(x))D0(x).

Hence ∆(x) = αtD0(x) = (β−1
t − 1)wt−1(x) (≥ 0).

Summarize our analysis. Note that αt = β−1
t − 1 ≥ 1 − βt. Then for any x ∈ X, we have

shown that

x ∈ P ⇒ ∆(x) ≤ max(βt − 1,−αt)wt−1(x) ≤ (βt − 1)wt−1(x), and

x ∈ Q ⇒ ∆(x) ≤ max(β−1
t αt, β

−1
t − 1)wt−1(x) ≤ β−1

t (β−1
t − 1)wt−1(x).

Thus, the total difference ∆
def
= W̃ ′

t − W̃t−1 is estimated as follows.
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∆ =
∑

x∈X

∆(x) =
∑

x∈P

∆(x) +
∑

x∈Q

∆(x)

≤
∑

x∈P

(βt − 1)wt−1(x) +
∑

x∈Q

β−1
t (β−1

t − 1)wt−1(x)

= Wt−1 ×

∑

x∈P

(βt − 1)Dt−1(x) +
∑

x∈Q

β−1
t (β−1

t − 1)Dt−1(x)




= Wt−1 × ((βt − 1)(1− ǫt) + β−1
t (β−1

t − 1)ǫt).

Where the last equality is from the definition of P , Q, and ǫt; that is, ǫt = Prx:Dt−1{ht(x) 6=
f∗(x) } = Dt−1(Q), and 1− ǫt = Prx:Dt−1{ht(x) = f∗(x) } = Dt−1(P ).

Here recall that βt is defined as
√
ǫ′t/(1− ǫ′t) with ǫ′t =

√
ǫt/2. Hence we have ǫt ≤ ǫ′t and

β−1
t ǫt = 2(ǫ′t)

2

√
1− ǫ′t
ǫ′t

= ǫ′t(2
√
ǫ′t(1− ǫ′t)) ≤ ǫ′t.

Then we can bound ∆ as follows.

∆ = Wt−1 × ((βt − 1)(1− ǫt) + β−1
t (β−1

t − 1)ǫt)

= Wt−1 × ((βt − 1)(1− ǫt) + β−2
t ǫt − β−1

t ǫt)

≤ Wt−1 × ((βt − 1)(1− ǫt) + β−1
t ǫ′t − β−1

t ǫt)

= Wt−1 × (β−1ǫ′t + (1− ǫ′t)βt − 1 + (ǫ′tβt − ǫtβt + ǫt − ǫtβ−1
t ))

≤ Wt−1 × (β−1ǫ′t + (1− ǫ′t)βt − 1 + (2ǫ′tβt − 2(ǫ′t)
2(βt + β−1

t )))

= Wt−1 × (β−1ǫ′t + (1− ǫ′t)βt − 1)

= Wt−1 × (2
√
ǫ′t(1− ǫ′t)− 1) = Wt−1 × (

√
1− (1− 2ǫ′t)

2 − 1) ≤ Wt−1 ×
−(1− 2ǫ′t)

2

2

= Wt−1 ×
−1− (1− 2γt) + 2

√
1− 2γt

2
≤ Wt−1 ×

(−2 + 2γt) + (2− 2γt − γ2
t )

2

= Wt−1 ×
(
−γ

2
t

2

)
.

That is, W̃ ′
t (hence W̃t) gets decreased from W̃t−1 at least by Wt−1(γ

2
t /2).

Now suppose that Wt−1 is bigger than ǫ. (Otherwise we are done.) Then W̃t decreases from

W̃t−1 by at least (ǫ/2)γ2
t . On the other hand, W̃0 = W0 = 1. Therefore, if Wt ≥ ǫ for all t,

1 ≤ t < T , then we have WT ≤ W̃T ≤ 1− (ǫ/2)
∑

1≤i≤T γ
2
i , as claimed. ⊔⊓

Two remarks from the above proof. First consider the reason why the further modifi-

cation of MadaBoost is necessary. This is because we estimated ∆(x) somewhat larger.

More specifically, for the case x ∈ Q, we estimated ∆(x) ≤ max(β−1
t αt, β

−1
t − 1)wt−1(x)

≤ β−1
t (β−1

t − 1)wt−1(x); but we usually would be able to use the smaller bound ∆(x) ≤
(β−1

t − 1)wt−1(x). Suppose that this bound worked for all (or almost all) x ∈ Q, then we

would be able to bound ∆ by Wt−1× (β−1ǫt +(1− ǫt)βt−1) = Wt−1× (2
√
ǫt(1− ǫt)−1), which

gives ∆ ≤ Wt−1 × (
√

1− 4γ2
t − 1) ≤ Wt−1 × (−2γ2

t ). Then a similar boosting property would

be provable for MadaBoost.
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Next consider the possibility of proving a faster convergence like AdaBoost. The reason

of our slower convergence is due to the additive decrement of W̃t, whereas the weight Wt gets

decreased multiplicatively in AdaBoost. Note, however, W̃t gets decreased multiplicatively if

we may assume that W̃t ≈Wt. In fact, assuming that W̃t ≈Wt, we would have ∆ (
def
= W̃t−W̃t−1)

≤ W̃t−1 × (−γ2
t /2). Thus, W̃t ≤ W̃t−1 × (1− γ2

t /2); that is, W̃t gets decreased multiplicatively

and indeed by a factor similar to AdaBoost. Since we may assume W̃t ≈Wt for the first several

boosting steps, we can expect convergence speed similar to AdaBoost, at least, for the first

several steps. This phenomenon has been observed in our experiments [DW99b].

4 Using MadaBoost with Filtering

In the previous section, we described MadaBoost and proved that some version of MadaBoost

is in fact a boosting algorithm. For the comparison with AdaBoost, the explanation was given

in the subsampling framework. Our original goal, however, was to propose an adaptive boosting

technique that can be used under the filtering framework. Here we show that MadaBoost

indeed satisfies our goal. (Though we have not formally proved the general boosting property

for MadaBoost, we will use, for the sake of simplicity, MadaBoost for our explanation this

and the later sections. The same analysis also holds for MB:1/2.)

4.1 Our Implementation

Note first that the boosting property of Theorem 2 holds in the filtering framework. The dif-

ference is that we consider the error probability on the whole domain X and that the initial

distribution D0 is the original distribution D that we assume over the domain X. More specif-

ically, Lemma 3 holds in the filtering framework, and the error probability of the combined

hypothesis (under D over X) is bounded by Wt. The main issue of the filtering framework is the

way to generate examples under given distributions and the probability that the filter outputs

an example.

Figure 1 gives the description of our example generator or filtering procedure used at the

tth boosting round, which is standard and essentially the same as the one given in [Fre95]. Here

wt−1(x) and Wt−1 are those defined in the previous section. But since we are discussing in the

filtering framework, D0 = D (in the definition of wt−1(x)), and Wt−1 =
∑

x∈X wt−1(x). The

following lemma is immediate from this description.

Lemma 4 Consider the execution of FiltEXDt for some t ≥ 1.

(1) FiltEXDt outputs x with probability p(x)D(x) (= wt−1(x)). Thus, FiltEXDt generates

examples under probability distribution Dt(x) = wt−1(x)/Wt−1.

(2) The probability that one example is output by FiltEXDt is
∑

x∈X p(x)D(x) = Wt−1.

The above statement (1) guarantees that this filtering procedure FiltEXDt gives an example

under the desired distribution Dt. On the other hand, it follows from the statement (2) that
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Procedure FiltEXDt

begin

if Wt−1 < ǫ then

output “accurate enough” and exit

end

repeat

use EXD,f∗ to generate an example (x, b);

p(x) ← min
(∏

1≤i≤t−1 β
cons(hi,x)
i , 1

)
;

% I.e., p(x) = wt−1(x)/D0(x), where D0(x) = D(x).

accept (x, b) with probability p(x);

until some example (x, b) is accepted;

return (x, b);

end-procedure.

Figure 1: An example generator FiltEXDt for the filtering framework.

the expected number of executions of EXD,f∗ until some example is accepted (i.e., the expected

running time of FiltEXDt) is 1/Wt−1. Thus, the procedure takes longer and longer time when

Wt−1 gets decreased. But also recall that Wt−1 bounds the error probability of the combined

hypothesis; hence, we can stop the filtering procedure if it takes, say, more than 1/ǫ steps to

get one example. Therefore, we may assume that the running time of the procedure is O(1/ǫ).

This is the key of our new weighting scheme.

To completely show that MadaBoost can be used in the filtering framework, we also need

to consider the following three points:- (i) how to set the confidence values so that the overall

algorithm does not fail with probability larger than 1− δ, (ii) the way to determine “Wt−1 < ǫ”

in FiltEXDt , and (iii) the way to estimate γt, the advantage of an obtained weak hypothesis ht.

To solve (i), notice that the places where the algorithm can fail are three:- in one of the

executions of WeakLearn, in estimating γt, and in determining when to stop (i.e., when Wt

becomes less than ǫ). It is easy to see that in order to obtain an overall confidence of δ, it suffices

to guarantee that any of these two procedures fails with probability at most δt
def
= δ/(3t(t+ 1))

at each boosting step t.

For (ii), we simply count the number of unsuccessful repeat-iterations in the execution of

FiltEXDt . We determine Wt−1 < ǫ if the number exceeds a certain bound that can be easily

derived from an appropriate concentration bound. For instance, it follows from the Hoeffding

bound that if Wt−1 > ǫ, then FiltEXDt executes, with probability ≥ 1− δt, the repeat-iteration

more than O((1/ǫ) ln(1/δt)) times to yield its output. Thus, when the repeat-iteration is exe-

cuted c(1/ǫ) ln(1/δt)) times (where c > 0 is some appropriate constant), we can decide Wt−1 < ǫ

and the probability of making a mistake with this decision is bounded by δt.

Finally, we consider (iii), the way to estimate the advantage γt of an obtained weak hypoth-

esis ht. This γt is important because it is used to determine the next weight function wt and to
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define the tth combined hypothesis. Recall that in the proof of Theorem 2, we assumed that γt

was computed exactly. While γt can be directly computed under the subsampling framework,

this cannot be done in a straightforward manner in the filtering framework. Notice here, how-

ever, that if we could obtain an estimate γ̂t of γt such that |γt − γ̂t| ≤ γt/2, then we could use

γ̂t/2 for γt. Since this implies that γt/4 < γ̂t/2 < γt, the proof of Theorem 2 follows, yielding

a slightly worse bound that now depends on γt/4 instead of γt. That is, we just slow down a

bit the speed of convergence to the desired error. Now how can we obtain such an estimator γ̂t

of γt? The situation is different from estimating Wt−1, and a straightforward application of a

convergence bound like the Chernoff and Hoeffding bounds does not work. Fortunately, we can

make use of more sophisticated estimation methods called “adaptive sampling techniques” that

have been proposed in [DGW98, DGW99]. (An adaptive sampling technique for estimating the

advantage is explicitly explained in a survey paper [Wat00].) By using one of these techniques,

it is possible to obtain a desired γ̂t from O((1/γ2
t ) ln(1/δt)) examples randomly generated by

EXD,f∗.

Now summarizing the above discussion, we have the following theorem.

Theorem 5 Suppose that for given inputs ǫ > 0 and δ < 1, the algorithm MadaBoost used

in the filtering framework as described above executes WeakLearn, finishes T boosting rounds

obtaining weak hypotheses with advantages γ1 ≥ γ2 ≥ · · · ≥ γT > 0, and terminates after the

T th round.

(1) With probability 1− δ, we have (i) Wt−1 ≥ ǫ for any t, 1 ≤ t < T , and (ii) WT < ǫ. Thus,

errorD(X,fT )
def
= Prx:D{ fT (x) 6= f∗(x) } ≤ WT < ǫ from Lemma 3. (Below we assume that

both (i) and (ii) hold.)

(2) We have

errorD(X,fT ) ≤ WT ≤ 1−
T∑

i=1

ǫγ2
i /8.

(3) For each execution of FiltEXDt, EXD,f∗ is called O((1/ǫ) ln(1/δt)) times, where δt
def
=

δ/3t(t + 1). Thus, if WeakLearn requests nt examples at the tth boosting round, then the

number of actual examples generated by EXD,f∗ is O((nt/ǫ) ln(1/δt)). Similarly, for estimat-

ing the advantage of the obtained tth weak hypothesis, EXD,f∗ is called O((1/ǫγ2
t )((ln(1/δt))

2)

times.

4.2 Why Not AdaBoost?

We have just seen that MadaBoost works for the filtering framework. At this point, we can

also explain clearly why AdaBoost cannot be used for the filtering framework.

As it happens with MadaBoost, the boosting property of AdaBoost, i.e., Theorem 1, still

holds in the filtering framework. Furthermore, Wt−1 also bounds the generalization error of the

tth combined hypothesis 2. On the other hand, we cannot use the above filtering procedure as it

2This property only holds under the weighting scheme as defined in Section 2.2.
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is because the weights are not bounded between 0 and 1. There are two ways to get around this,

either we normalize the weights of AdaBoost or we use the original definition in [FS97] where

the weights are bounded between 0 and 1. Both ways will lead to the same conclusion; that

is, the probability that the filter outputs one example could be exponentially smaller than the

current generalization error. We derive this conclusion using the original AdaBoost weights

and leave the other calculation to the reader. Recall that we are using βi =
√
ǫi/(1− ǫi).

Thus, under this definition, the original weight of AdaBoost as defined in [FS97] is wAB
t−1(x) =

∏
1≤i<t β

1+cons(hi,x)
i and WAB

t−1 =
∑

x∈X wAB
t−1(x). Moreover, it follows from the definitions that

errorD(X,ft) ≤ WAB
t−1/Bt−1, where Bt−1

def
=
∏

1≤i<t β
2
i . Hence, to drive the generalization error

down to certain ǫ, we need reduce WAB
t below ǫBt−1. On the other hand, for the obvious filter

for AdaBoost (the one stated in Figure 1 but using p(x) = wAB
t−1(x)), Lemma 4 also holds, and

hence, it takes O(1/WAB
t−1 ) expected time to output one example. Thus, the expected running

time of the filter becomes O(1/(ǫBt−1)). To understand the significance of this bound, suppose

that the advantage of all obtained weak hypotheses is γ; then Bt−1 = ((1− 2γ)/(1 + 2γ))(t−1).

Noting that t = O((ln ǫ)/γ2), it is easy to see that the running time of the filter becomes

exponential in 1/γ. This is why we needed to modify the weighting scheme of AdaBoost.

5 Noise Tolerance

We have argued that one of the drawbacks of AdaBoost is that it does not seem to be noise resis-

tant. While from the theoretical side nothing is known about it, recent work of Dietterich [Die98]

provides a reasonable experimental evidence that AdaBoost is not noise resistant. A very plau-

sible explanation for this phenomenon, also verified experimentally by Dietterich in his study,

is that AdaBoost seems to place more and more weight on the noisy examples making some of

the weak classifiers to agree on them and degradating the overall performance of the combined

hypothesis. Notice that with our new weighting scheme, the weights never become bigger than

its original value. Thus, with our algorithm we may be able to avoid the problem detected in

AdaBoost. We are planning to study experimentally this point in future work.

For the time being, we show here, from the theoretical point of view, that MadaBoost

is in fact resistant to certain kinds of noise by showing that it belongs to the statistical query

model of learning introduced by Kearns [Kea93]. Whether AdaBoost or any of its variants fall

into this model or not is not known. Notice that one of the key points for showing this result

is the fact that MadaBoost works in the filtering framework and thus, we can in fact estimate

probabilities from the modified distributions.

Before showing the result, let us recall the definitions of the statistical query model. In the

statistical query model (in short, SQ model) the learner does not have access to examples any

more. The example oracle EX(f∗,D) is replaced by a statistics oracle STAT (f∗,D) that answers

to statistical queries. A statistical query is of the form [χ, τ ], where τ is a tolerance parameter,

and χ is a mapping from labeled examples to {0, 1} (i.e. χ : X ×{0, 1} → {0, 1}) corresponding

to an indicator function for those examples about which statistic are to be collected. To the

18



query [χ, τ ], the statistics oracle returns STAT (f∗,D)[χ, τ ], that is an estimate P̂χ of Pχ =

Prx:D{χ(x, f∗(x)) } that satisfies |P̂χ − Pχ| ≤ τ . The intuition behind this query type is the

following. In the usual PAC learning model, a learner has to make a decision based on observed

examples. Thus, if the learner is given noisy examples, its decision based on them could be totally

wrong. On the other hand, if a learner uses information on statistics about the target concept

that are taken from a sufficiently big amount of examples, then the learner can still obtain

reasonable estimates even from noisy examples and thus, it can make a correct decision based

on them. By the SQ model we can discuss this situation. In fact, this intuition was shown to be

correct by Kearns [Kea93]. He showed that, if the noise rate is at most η, then every statistical

query could be simulated using O(1/(τ(1− 2η))) noisy examples (ignoring dependencies on the

accuracy and confidence parameters) and thus, any learning algorithm using only statistical

queries is resistant to random classification noise. Moreover, nearly every known PAC learning

algorithm can be shown to belong to the SQ model, showing the generality of the framework.

Further work by Decatur [Dec93] has also shown that an statistical query algorithm is resistant

to several other kinds of noise.

Now we show that MadaBoost belongs to the SQ model. For this, let us assume that

WeakLearn is a SQ learning algorithm; that is, it uses a statistical oracle instead of an example

oracle. Notice here that WeakLearn works under the modified distributions. That is, at each

step t, it does not use STAT (f∗,D) but STAT (f∗,Dt). On the other hand, the boosting

algorithm is given only the statistical oracle for the original distribution D. Therefore our task

here is to show the way to simulate a query to STAT (f∗,Dt) by using queries to STAT (f∗,D).

First we show how we can rewrite a statistical query to STAT (f∗,Dt) in terms of queries to

STAT (f∗,D). Next we show how precise the queries to STAT (f∗,D) could be made so the

tolerance required by STAT (f∗,Dt) is met.

To be specific, for the rest of the discussion, let us assume that we are in the step t of the

boosting process and that WeakLearn is making a query STAT (f∗,Dt)[χ, τ ]. Then we discuss

the way to simulate this query STAT (f∗,Dt)[χ, τ ]. Also we assume here that Wt ≥ ǫ for a given

parameter ǫ to the boosting algorithm, because otherwise, the boosting process would have been

terminated.

We need to divide a subspace X ′ def
= {x ∈ X | ft(x) = f∗(x) } in slices depending on the

value of wt(x). For this, we define n as the smallest integer satisfying the following inequality.

log

(
96(n+ 1)3

τǫ

)
≤ n.

Let l be the smallest integer such that Y l ≤
t∏

i=1

βi holds, where Y is defined as

Y
def
= 1− τǫ

192(n+ 1)2
.

Then define the following set for each k ≥ 0.
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Ek
def
= { x | x ∈ X and Y k+1 ≤

t∏

i=1

β
cons(hi,x)
i < Y k }.

Note that {Ek}k≥0 is the division of X ′.

Notice that the above definition makes sense since n always exists and Y is strictly smaller

than 1. Armed with this definition, we can now rewrite the query STAT (f∗,Dt)[χ, τ ] as follows.

STAT (f∗,Dt)[χ, τ ] = Prx:Dt{χ(x, f∗(x)) }
=

∑

x∈X

χ(x, f∗(x))Dt(x)

=
∑

x∈X

ft(x)=f∗(x)

χ(x, f∗(x))Dt(x) +
∑

x∈X

ft(x) 6=f∗(x)

χ(x, f∗(x))Dt(x)

=
∑

0≤k≤l−1

∑

x∈Ek

χ(x, f∗(x))Dt(x) +
∑

x∈X

ft(x) 6=f∗(x)

χ(x, f∗(x))
D(x)

Wt

=
∑

0≤k≤l

Pr
x:Dt

{χ(x, f∗(x)) ∧ x ∈ Ek }+
Prx:D{χ(x, f∗(x)) ∧ ft(x) 6= f∗(x) }

Wt

Now we want to approximate these two additive terms of the above formula. We show how

each term can be approximated efficiently up to an additive tolerance of τ/2; then the overall

probability is approximated up to an additive tolerance of τ as desired.

The second term in the above is already given in terms of probability with respect to D;

hence, we can use STAT (f∗,D) to approximate it appropriately as shown by the following

lemma. (The proof is easy and omitted here.)

Lemma 6 Let p = Prx:D{χ(x, f∗(x))∧ ft(x) 6= f∗(x) } and let p̂ and Ŵt be two estimators such

that

| p̂− p | ≤ τWt/6 and | Ŵt −Wt | ≤ τWt/6,

then an estimator p̂/Ŵt satisfies
∣∣∣∣∣
p̂

Ŵt

− p

Wt

∣∣∣∣∣ ≤
τ

2
.

For the first term, let us define the following probabilities in order to simplify the notation.

p
(1)
k

def
= Prx:Dt{χ(x, f∗(x)) ∧ x ∈ Ek }, and

p
(2)
k

def
= Prx:D{χ(x, f∗(x)) ∧ x ∈ Ek }

Then for any k ≥ 0, the following inequalities hold by definition of Ek.

Y k+1p
(2)
k

Wt
≤ p

(1)
k ≤ Y kp

(2)
k

Wt
. (1)

Thus, our goal is to obtain, for every k, an estimator p̂
(1)
k that approximates p

(1)
k up to an

appropriate additive tolerance. We estimate p
(1)
k by using the estimators p̂

(2)
k and Ŵt of p

(2)
k and

Wt. The following lemma states the way.
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Lemma 7 For any k ≥ 0, let p̂
(2)
k and Ŵt two estimators satisfying

| p̂(2)
k − p

(2)
k | ≤

τWt

24Y k+1(n+ 1)
and | Ŵt −Wt | ≤

τWt

24(n+ 1)
.

Then by defining p̂
(1)
k

def
= Y k+1p̂

(2)
k /Ŵt, we have

| p̂(1)
k − p

(1)
k | ≤

τ

4(n+ 1)
.

Proof. Since Wt ≥ ǫ, we have 1− Y = τǫ/(192(n+ 1)2) ≤ τWt/8(n+ 1). Moreover, since p
(2)
k

and Y k are both less than or equal to 1, the following inequality holds.

Y k(1− Y )p
(2)
k ≤ τWt

8(n+ 1)
,

which implies that

Y kp
(2)
k

Wt
− Y k+1p

(2)
k

Wt
≤ τ

8(n+ 1)
.

This inequality together with inequality (1) implies

p
(1)
k −

τ

4(n+ 1)
≤ Y k+1p

(2)
k

Wt
− τ

8(n+ 1)
and

Y k+1p
(2)
k

Wt
+

τ

8(n+ 1)
≤ p

(1)
k +

τ

4(n+ 1)
.

Thus, if we show that estimator p̂
(1)
k as defined in the statement of the lemma approximates

Y k+1p
(2)
k /Wt up to an additive tolerance smaller than τ/(8(n + 1)), then, by the inequality

above, we can conclude that p̂
(1)
k also approximates p

(1)
k up to an additive tolerance smaller than

τ/(4(n+ 1)) as claimed in the statement of the lemma.

First note the following two inequalities, which are easy to show.

Y k+1p
(2)
k + τWt

24(n+1)

Wt − τWt

24(n+1)

≤ Y k+1p
(2)
k

Wt
+

τ

8(n+ 1)
and

Y k+1p
(2)
k

Wt
− τ

8(n+ 1)
≤

Y k+1p
(2)
k − τWt

24(n+1)

Wt + τWt

24(n+1)

.

Next use the assumption of the lemma on p̂
(2)
k and Ŵt; then we have

Y k+1p
(2)
k − τWt

24(n+1)

Wt + τWt

24(n+1)

≤ Y k+1p̂
(2)
k

Ŵt

≤
Y k+1p

(2)
k + τWt

24(n+1)

Wt − τWt

24(n+1)

.

This implies that |p̂(1)
k − Y k+1p

(2)
k /Wt| ≤ τ/8(n+ 1), proving the lemma as already argued. ⊔⊓

Notice that as k becomes large the probability p
(1)
k gets smaller. In fact, we do not need to

approximate all of them; only the first n + 1 would be enough. The rest can be discarded as

shown in the following lemma.

Lemma 8
∑

n+1≤k≤l−1 p
(1)
k ≤ τ/4.
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Proof. Since Y < 1 and ǫ ≤ Wt, it follows from our choice of n that log(96(k + 1)3/(τWt)) ≤
k log(1/Y ) for any k > n. This implies

Y k

Wt
≤ τ

96(k + 1)3
≤ τ

4k2
.

Moreover, the following chain of inequalities also hold.

∑

n+1≤k≤l−1

p
(1)
k ≤

∑

n+1≤k≤l−1

Y kp
(2)
k

Wt
≤

∑

n+1≤k≤l−1

Y k

Wt
≤

∑

n+1≤k≤l−1

τ

4k2
.

Then the lemma follows by noticing that
∑

n+1≤k≤l−1 τ/4k
2 is smaller than τ/4. ⊔⊓

Thus, for 1 ≤ k ≤ n, we use the estimator p̂
(1)
k as defined in Lemma 7, and for any k > n,

we just use p̂
(1)
k = 0 as our estimator. In this way, we can bound the error as follows.

∣∣∣∣∣∣

∑

0≤k≤l−1

p
(1)
k −

∑

0≤k≤l−1

p̂
(1)
k

∣∣∣∣∣∣
≤

∑

0≤k≤n

|p(1)
k − p̂

(1)
k |+

∑

n+1≤k≤l−1

|p(1)
k − 0|

≤
∑

0≤k≤n

τ

4(n+ 1)
+

∑

n+1≤k≤l−1

τ

4k2
≤ τ

2
.

Estimators p̂ and p̂
(2)
k can be obtained from queries to STAT (f∗,D), since they are esti-

mators of probabilities with respect to D, and the conditions ft(x) 6= f∗(x) and x ∈ Ek can be

tested in polynomial time. On the other hand, Ŵt cannot be directly obtained from STAT .

Before describing how to obtain Ŵt, let us discuss about the tolerances of these estimators.

We need to verify that the tolerances required for all the approximations involved in the

proof are not too small. In other words, we need to show that the inverse of all the tolerances

are polynomial in 1/ǫ and 1/τ . First recall that all the tolerances are required to depend on Wt.

This value is not known but we can assume that it is larger than ǫ throughout all the boosting

process; hence, we can substitute Wt by ǫ in all the tolerances. The tolerance required for Ŵt in

Lemma 7 (i.e., τǫ/24(n+1)) is the smallest among all the tolerances required; thus, it is enough

to show that 24(n+1)/τǫ is bounded by a polynomial in 1/ǫ and 1/τ . But this follows from the

fact that n is bounded by a polynomial; more specifically, it is easy to show that n is bounded

by O((1/ǫτ) ln(1/ǫτ)).

It remains to see how can we approximate Wt from STAT (f∗,D). The smallest tolerance

required for Wt through the proof is τǫ/24(n+ 1); hence, we show how to approximate Wt up

to this tolerance. First we rewrite Wt as follows.

Wt =
∑

x∈X

wt(x) = Pr
x:D
{ ft(x) 6= f∗(x) } +

∑

0≤k≤l−1

∑

x∈Ek

wt(x).

Moreover, by definition of Ek, the following inequality holds for any k ≥ 0.

Y k+1q
(2)
k ≤ q

(1)
k ≤ Y kq

(2)
k ,

where q
(2)
k = Prx:D{x ∈ Ek } and q

(1)
k =

∑
x∈Ek

wt(x).

The following lemma shows how to approximate Wt.
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Lemma 9 Let q = Prx:D{ ft(x) 6= f∗(x) } and for any k ≥ 0, let q̂
(2)
k and q̂ be two estimators

such that

| q̂(2)
k − q

(2)
k | ≤

τǫ

Y k+1192(n+ 1)2
and | q̂ − q | ≤ τǫ

48n
.

Then by defining Ŵt
def
= q̂ +

∑
0≤k≤n q̂

(2)
k , we have

|Wt − Ŵt | ≤
τǫ

24(n+ 1)
.

Proof. The proof is similar to the previous two proofs; thus, we only give its sketch. First by

our choice of Y , the following holds.

Y kq
(2)
k − Y k+1q

(2)
k ≤ τǫ

192(n+ 1)2
,

which implies

q
(1)
k −

τǫ

96(n+ 1)2
≤ Y k+1q

(2)
k −

τǫ

192(n+ 1)2
and Y k+1q

(2)
k +

τǫ

192(n+ 1)2
≤ q

(1)
k +

τǫ

96(n+ 1)2
.

Thus, from the assumption on the estimator q̂
(2)
k , it follows that Y k+1q̂

(2)
k approximates q

(1)
k

up to an additive tolerance of τǫ/96(n + 1)2. Moreover, by our choice of n, we can show that

the value of q
(1)
k for any k > n is smaller than ǫτ/96(k+ 1)3. Then we now obtain the following

bound.

|Wt − Ŵt | =

∣∣∣∣∣∣


q +

∑

0≤k≤l−1

q
(1)
k


−


q̂ +

∑

0≤k≤n

q̂
(2)
k



∣∣∣∣∣∣

≤ | q − q̂ |+
∑

0≤k≤n

∣∣∣ q(1)
k − q̂

(2)
k

∣∣∣+
∑

n+1≤k≤l−1

p
(1)
k

≤ τǫ

48(n+ 1)
+

∑

0≤k≤n

τǫ

96(n+ 1)2
+

∑

n+1≤k≤l−1

τǫ

96(k + 1)2(n+ 1)
≤ τǫ

24(n+ 1)
.

⊔⊓

Summarizing, we have shown how to estimate Prx:Dt{χ(x, f∗(x)) } up to tolerance τ by

combining appropriately the answers of the following statistical queries.

STAT (f∗,D)[χ(x, f∗(x)) ∧ ft(x) 6= f∗(x) , τǫ/6 ]

STAT (f∗,D)[χ(x, f∗(x)) ∧ x ∈ Ek , τǫ/(24Y k+1(n+ 1)) ] (for each k, 0 ≤ k ≤ n)

STAT (f∗,D)[ ft(x) 6= f∗(x) , τǫ/(48n) ], and

STAT (f∗,D)[x ∈ Ek , τǫ/(192Y k+1(n+ 1)2) ] (for each k, 0 ≤ k ≤ n).

Therefore, we have proven the following theorem. (The same statement holds for MB:1/2.)

Theorem 10 Algorithm MadaBoost is an statistical query boosting algorithm.
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6 Concluding Remarks

We have presented MadaBoost, a modification of AdaBoost that enjoys some properties that

AdaBoost lacked of, namely its ability to run under the filtering framework and to belong to

the statistical query learning model. Our modification for MadaBoost is very simple, we just

keep the weights of the examples bounded by its initial value and the rest of the algorithm is the

same as AdaBoost. We also considered a further modified version MB:1/2 of MadaBoost

in which the algorithm define the parameter βt by using the half of the real advantage of

the obtained weak hypothesis ht. We have shown that MB:1/2 is a boosting algorithm in

the PAC sense assuming that the advantage sequence is monotonically decreasing. We believe

that MadaBoost has a similar property; furthermore, while the convergence speed we proved

is exponential slower than that of AdaBoost, we believe that MadaBoost (and MB:1/2)

has a similar convergence speed at least for a certain number of initial boosting steps. (Our

experiments support these conjectures.) Certainly, proving these two conjectures is intriguing

and challenging from the theoretical view point.

We think that the ability of MadaBoost to run efficiently under the filtering framework

makes a large difference compared to AdaBoost when a large amount of data is available. To

confirm this, we have performed an experimental comparison of MadaBoost (and MB:1/2)

and AdaBoost in a companion paper [DW99b] and we briefly summarize those results here.

Our experimental results indicate that, when run under the subsampling framework, these

algorithms perform similarly in terms of training and test set error. On training sets, AdaBoost

converges a bit faster than MadaBoost, but then AdaBoost generates more difficult distri-

butions, which results in slowing down the convergence speed of AdaBoost. In fact, when

using a strong base learner like Naive Bayes, the boosting process has to stop earlier when using

AdaBoost because there are no weak hypotheses available. This results on a slight advan-

tage for MadaBoost that can run longer and further reduce the generalization error. In all

our experiments, the advantage sequence obtained using MadaBoost is always monotonically

decreasing. That is, it satisfies the assumption of Theorem 2.

When using both algorithms for the filtering framework the differences show up. AdaBoost

becomes extremely slow in generating a new sample at each iteration while MadaBoost not, as

predicted by the theoretical results in Section 4. Moreover, for some datasets, this also degra-

dates the behavior of AdaBoost compared to the results obtained when running it under the

subsampling framework (this has been already observed by Quinlan [Qui96]) while MadaBoost

performs equally well under both frameworks. We believe that the ability of MadaBoost to

work under the filtering framework would make some difference in practical applications where

we have a huge dataset and we want to speed up its execution through sampling. We have

already obtained some results in this direction [DW99a].

The experimental results using noisy data show that there is not so much difference between

AdaBoost and MadaBoost even when we run them under the filtering framework (except for

the differences that already show up when using noise free data). However, we have observed
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that, even when there is noise, boosting still generally improves the accuracy as opposed to the

results presented in [Die98]. The reason for this discrepancy could be that in our experiments we

used a different base learner (decision stumps and Naive Bayes) than the one used by Dietterich

(C4.5).
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