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Abstract 

People in computer vision and pattern recognition have been working on automatic recognition of
human faces for the last 20 years. Our approach to the face recognition problem is to combine the
principal component analysis and neural network. Here the faces are vertically oriented frontal view
with wide expression change. They are extracted from the images by the face detection code [2] first. It
will eliminates background influence as much as possible. The face space is described by a set of
eigenfaces. Each face is efficiently represented by its projection onto the space expanded by the
eigenfaces and has a new descriptor. Neural networks are used to recognize the face through learning
correct classification of these new descriptors. A real-time system has been created which combines the
face detection and recognition techniques. It continuously takes image from camera, finds the face inside
the image and recognizes it. A recognition rate of more than 95% has been achieved over real tests. It is
also shown that our face database can be easily expanded to accommodate more individuals.

1. Introduction

The problem can be described as following. Given an image of human face, compare it with models in
the database and report who it is if a match exists. Here the image is gray scale, vertically oriented
frontal view. Normal expression variation is allowed and the image is prepared under roughly constant
illumination. 

Because usually images are bigger than the actual faces, the first problem is to find the face in the image,
or face detection which is another closely related problem. We use the face detection code by Kah-Kay
Sung from MIT Artificial Intelligence Lab. We make some change to the code to make it run faster and
locate face more accurately.

Principal component analysis is applied to find the aspects of face which are important for identification.
Eigenvectors (eigenfaces) are calculated from the initial face image set. New faces are projected onto the
space expanded by eigenfaces and represented by weighted sum of the eigenfaces. These weights are
used to identify the faces.

Neural network is used to create the face database and recognize the face. We build a separate network
for each person. The input face is projected onto the eigenface space first and get a new descriptor. The
new descriptor is used as network input and applied to each person's network. The one with maximum
output is selected and reported as the host if it passes predefined recognition threshold.



Figure 1: Face recognition structure

2. Face Detection 

The problem before face recognition is face detection which finds the face in the image. We use the code
from the MIT Artificial Intelligence Lab [2] (below we call it face detection code ) to locate the face
inside the image and cut it out for recognition. 

Using the face detection code to prepare the face not only facilitates the recognition problem, but also set
a uniform standard as to which part of the image should be used as face which can't be achieved through
hand segmentation.

The face detection code search the face by exhaustively scanning the image at all possible scales.
Kah-Kay Sun started the face pattern size from 20x20 pixels and increased it by a scalar (0.1). In our
situation, we search a specific portion of the image (usually from 40% to 80% ) for the face. It will help
to speed the face detection procedure. If the actual face size is big, linear increase of the face pattern size
will lead to coarse face location. So we increase the face pattern size arithmatically by 4 pixels at each
step to locate the face more accurately.

For each window pattern, a series of 3 templates is applied sequentially to determine whether the input
image is a face. If the output of any test fails to pass the predefined threshold (usually 0.5), it is rejected
immediately. A face is reported only after the window pattern passes all the tests and the minimum of
the 3 test results will be selected as the final output. In our environment, we can assume that there is no
more than one face in the image. We set the threshold dynamically by replacing it with the maximum
output up to the searching point. This greatly reduces the time cost on searching by avoiding
unnecessary template tests.

If the image contains more than one person, we have to set a predefined threshold for face finding. For
each face inside the image, most of the time the code will find multiple face templates for it with small
location shift and size change. Finally all the face templates are packed to give only one face for each
person in the image. 

In our tests, most of the time the face detection code can find the face. It gives higher outputs on upright
face images than those from images with orientation change. But the objective of the face detection code
is to find faces inside images. Its aim is not to cut faces from images for recognition purpose. We have
found that sometimes the face templates located by the code are smaller than their actual size or not
central to the actual faces.

2.1 Face Model Resize

The face model used by the face detection code is 19x19. This is a little small for recognition. We use a
model of 46x46 for recognition. It is still a small size and it can keep all necessary details for



recognition. After the face is found, it is resized to this standard size.

2.2 Edge Removal

After the face is found and resized, a binary mask (Figure 2) is applied to eliminate those pixels on the
edges. This is done in order to remove those pixels from the background. Another reason is that the
model used by the face detection code is square. Our mask will shape it to rectangle which is closer to
the shape of human face.

Figure 2: Binary mask for edge removal

2.3 Illumination Normalization

The input face should have roughly the same lighting as those in the database. To avoid strong or weak
illumination, each face is normalized. The image is treated as a vector in the high dimensional space. Its
vector length is adjusted to the vector length of average face in the face space.

Figure 3: Face detection structure

3. Face Recognition

While the face detection problem emphasizes the commonality among faces and their difference from
non-faces, the interest in face recognition is the face variation among different individuals. What we
need is a mathematical description and explanation of the phenomenon that face A and face B are the
same person, or face A and face C are different people.

Unlike the face detection where there are only two classes of objects, faces and non-faces, here each
individual is a separate class. All faces have the same facial features and are basically very similar in
overall configuration. It makes the face recognition a difficult and fine discrimination problem. Another
thing which makes it more complicated is that each individual's face can have many variations because
of the change in orientation, expression and lighting. While we hope that the system could handle a wide
range of variation in real tests, the number of examples in learning a specific individual's face is always
limited.

A face image is a two dimensional array of intensity values. In our experiments the standard size is
46x46. It can also be treated as a vector or a point in a space of dimension 2116. But face images are not
randomly distributed in this high dimensional space. The fact that all faces are basically very similar to
each other and have the same facial features such as eyes, nose and mouth makes all the faces a subset
of the whole image space, in other words, the dimension of the face space is smaller than that of the
image space. 



Sirovich and Kirby [6] and Kirby and Sirovich [7] first applied the principal component analysis in
efficient face representation. In this technique a new coordinate system is created for the faces where
coordinates are part of the eigenvectors of a set of face images. New faces can be approximately
reconstructed with only part of their projection onto the new low-dimensional space.

Matthew Turk and Alex Pentland [1] expanded the idea to face recognition. Faces are encoded by a
small set of weights corresponding to their projection onto the new coordinate system, and are
recognized by comparing them with those of known individuals. 

3.1 Eigenspace Representation

First we prepare an initial set of face images [X1, X2, ... , Xn]. The average face of the whole face
distribution is

X = (X1 + X2 + ... + Xn )/n

Then the average face is removed from each face,

Xi' = Xi - X, i = 1, 2, ... , n

The eigenvectors are calculated from the new image set [X1', X2', ... Xn'] as [Y1, Y2, ..., Yn]. These
eigenvectors are orthonormal to each other. They do not correspond directly to any face features like
eyes, nose and mouth. Instead they look like sort of face and are refered as eigenfaces. They are a set of
important features which describe the variation in the face image set. The dimension of the complete
eigenspace is n-1 because the eigenvalue of the remaining eigenface is 0. Our eigenface space is created
with 593 face images (Figure 4).

Figure 4: Part of the face images used to create eigenspacee

As a property to the eigenvector, each of them has an eigenvalue associated with it. More important,
eigenvectors with bigger eigenvalues provide more information on the face variation than those with
smaller eigenvalues. This is in contrast to the Euclidian space representation where all axes are of the
same importance. Figure 5 and 6 show the eigenfaces with high and low eigenvalues respectively.



Figure 5: The first 20 eigenfaces with the highest eigenvalues

Figure 6: Eigenfaces with eigenvalues ranked from 141 to 160

From figure 7 we can see that the eigenvalue curve drops very quickly.



Figure 7: Eigenvalues of eigenfaces

After the eigenfaces are extracted from the covariance matrix of a set of faces, each face is projected onto
the eigenface space and represented by a linear combination of the eigenfaces, or has a new descriptor
corresponding to a point inside the high dimensional space with the eigenfaces as axes. 

If we use all the eigenfaces to represent the faces, those in the initial image set can be completely
reconstructed. But these eigenfaces are used to represent or code any faces which we try to learn or
recognize. Figure 8 show the faces reconstructed from eigenfaces with high eigenvalues, while Figure 9
using those with low eigenvalues. It's clear that we should use eigenfaces with higher eigenvalues to
reconstruct the faces because they provide much more information on the face variation.

Figure 8 also illustrates that while small set of eigenfaces can not reconstruct the original face, using too
many eigenfaces will introduce noise to the reconstructed face. We use the first 100 eigenfaces with the
highest eigenvalues. The face which we try to recognize is projected onto the 100 eigenfaces first. It
produces a new description of the face with only 100 real numbers.



Figure 8: Faces reconstructed using eigenfaces with high eigenvalues. The label above each face is the
range of eigenfaces used.

Figure 9: Faces reconstructed using eigenfaces with low eigenvalues. The label above each face is the
range of eigenfaces used.

Because projection onto the eigenface space describes the variation of face distribution, it's natural to use
these new descriptors of faces to classify them. Faces are recognized by comparing the new face
descriptor with the face database which has been encoded in the same way. One approach to find the
face pattern is to calculate the Euclidian distance between the input face descriptor and each known face
model in the database. All faces of the same individual are supposed to be close to each other while



different persons have different face clusters. But actually we don't have any prior knowledge on the
distribution of the new face descriptors. We can't assume it to be Gaussian distribution and each
individual will make one cluster. We have found that usage of this method is not sufficient in real tests.

A better approach is to recognize the face in unsupervised manner using neural network architecture. We
collect typical faces from each individual, project them onto the eigenspace and neural networks learn
how to classify them with the new face descriptor as input.

3.2 Neural Network 

The neural network has a general backpropagation structure with three layers. The input layer has 100
nodes from the new face descriptors. The hidden layer has 10 nodes. The output unit gives a result from
0.0 to 1.0 telling how much the input face can be thought as the network's host. 

Figure 10: Neural network structure

In order to make the training of neural network easier, one neural net is created for each person. Each
neural net identifies whether the input face is the network's host or not. The recognition algorithm selects
the network with the maximum output. If the output of the selected network passes a predefined
threshold, it will be reported as the host of the input face. Otherwise the input face will be rejected.

3.3 Training Set

After the neural network structure is set, the most important thing is to prepare the training examples. In
the beginning of the training, we select a number of face images from each person that are well aligned
frontal view. Any of them can represent their host clearly. All the faces here are extracted or cut by the
face detection code. These faces will be used as positive examples for their own networks and negative
examples for other networks.

Here we only deal with images which assume that they are always faces. In our tests, most of the time
the face detection code can find the face if it exists. The database is not supposed to handle non-face
images because in our situation it's unnecessary and it will make network training very difficult.

After the basic neural networks are created, we run them over new faces from the individuals in our
database. If the image fails to pass the face detection test, it will be ignored. If the face detection code
reports a face in the image, it will be applied to the face recogniton code. We check the recognition result
to find more faces for training. Here each face will fall into one of the four categories as following:

1. Faces have high output on their own networks and low output on other networks. No action here.

2. Faces have high output on both their own networks and some other networks. These faces will be
used as negative examples for other networks.

3. Faces are well-aligned frontal view and clearly represent their hosts. They have low output on their
own networks. These faces will be used as both positive examples for their own networks and negative



examples for other networks. 

4. Faces are not well cut and can't represent their hosts clearly. They have low output on their own
networks. If they have high output on some other networks, they will be included as negative examples
for other networks. Otherwise they will be ignored.

Once we get these new faces, we add them to training examples and retrain the neural networks.
Recognition errors will be corrected and the total performance will be improved. While adding some
examples from a specific individual will improve the performance of his own network, it will also
influence the performance of other networks. In our experiments, the network training process continues
until no significant recognition errors are found.

3.4 Normalize Training Set

If we use the original face descriptors from the training examples as neural network input, it will be
difficult to make the network converge. What we do is to make the average of the training set to zero and
unify its standard derivation. 

4 Experiments

Combining the techniques listed above, we have built a real-time system which continuously gets image
from camera, finds face with face detection code and recognizes it using the database which has been
created with neural network. If the face is recognized as one in the database, the speaker will say his
name, otherwise it will say ``no match". The experiments are conducted under roughly the same
illumination condition. Wide expression variations are incorporated. The faces are basically frontal view
without significant orientation change.

In our tests, each image is 200x200 pixels. We search an area from 40\% to 80% for the face. If a face is
located, the recognition can be conducted instantly. A recognition rate of more than 95% has been
achieved.

We can improve the recognition rate by recognizing the same person multiple times. We don't report the
recognition result until most of the recognitions during a short period of time give the same result. 

In the beginning our database contains 5 persons. After the initial database is created, we have added
another person to the database. It is shown that the database can be expanded easily.

Individuals Traning Examples Number Recognition Rate(%)
Alain 142 100
Ari 202 95

Charlie 107 92.5
Josh 118 95
Peter 103 97.5
Mike 179 95

Average 142 96

5 Related Works

Henry Rowley et. al. [3] have built another neural network-based face detection system. They first



preprocess the image window and then pass it through neural network to see whether it is a face. Their
networks have three types of hidden units: 4 looking at 10x10 pixel subregions, 16 looking at 5x5 pixel
subregions and 6 looking at 20x5 pixel subregions. These subregions are chosen to represent facial
features that are important to face detection. Overlapping detections are merged. To improve the
performance of their system, multiple networks are applied. They are trained under different initial
condition and have different self-selected negative examples. The outputs of these networks are
arbitrated to produce the final decision. 

Roberto Brunelli and Tomaso Poggio [6] develop two algorithms for face recognition: geometric feature
based matching and template matching. The geometric feature based matching approach extracts 35
facial features automatically such as eyebrow thickness and vertical position, nose vertical position and
width, chin shape and zygomatic breadth. These features form a 35-D vector and recognition is
performed with a Bayes classifier. In the template matching approach, each person is represented by an
image and four masks representing eyes, nose, mouth and face. Recognition is based on the normalized
cross correlation between the unclassfied image and the database images, each of which returns a vector
of matching scores (one per feature). The person is classified as the one with the highest cumulative
score. They also perform recognition based on single feature and features are sorted by decreasing
performace as eyes, nose, mouth and whole face template.

A face recognition system Visionics FaceIt wins the ``FERET'' face recognition test 1996 hold by the
US Army Research Laboratory. It was originally developed from the Computational Neuroscience
Laboratory at The Rockefeller University. Their face recognition is based on factorial coding which
transforms the image pattern into a large set of simpler statistically independent elements. The system
finds and recognizes face in real time. User can create their own face database and add new person to the
database. People can be gathered into different groups. A useful functionality is to unlock the screen if
the system recognizes the person. Currently it runs under Windows 95/NT with VFW or MIL video
capture device driver and IRIX system 5 with an external video camero such as SGI IndyCam.
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