
TEACHING SOFTWARE MODELING AND DESIGN
BASED ON THE SCIENCE OF DESIGN AND SCIENCE OF LEARNING

Sukhamay Kundu
Computer Science Dept., Louisiana State University

Baton Rouge, LA 70803, USA
(kundu@csc.lsu.edu)

Abstract

Teaching software modeling and software design
presents a different and difficult set of problems than
teaching some of the other aspects of software engineering
such as testing and requirements. As we point out this is
partly due to the inherent complexity of the concepts
involved in software modeling and design that requires a
different approach in teaching them. The science of soft-
ware modeling and design is also not quite as fully devel-
oped and mature although some major progress have been
made recently. The lack of a good collection of practical
and yet small enough examples of modeling and design
problems for classroom use for illustrating both the sci-
ence part of modeling and design principles and the engi-
neering applications of those principles makes the teach-
ing of these principles a significant challenge. We present
a stepwise refinement approach for creating finite-state
models that is better suited for classroom teaching.

1. Software Engineering Education

A good Software Engineering training involves several
key components. On the one hand, we have team-work,
software process (planning and management), and soft-
ware evaluation (user-interface and performance); on the
other hand, we have software requirements formulation,
software modeling, software architecture, software design,
software development and integration, and software (func-
tional) testing. We focus here on the challenges faced in
teaching software modeling and design.

2. Teaching Software Modeling and Design

We can view the finite-state behavior modeling of a
software as building a "theory" of how the software should
appear to the user whereas the subsequent steps of soft-
ware design and development may be viewed as the two
"engineering" steps to actually create a software that
behaves accordingly (i.e., driven by that theory). We view
the class-hierarchy structure of a software, which shows
the organization of the data items and the operations (func-
tions) in the software, as its design part.

A systematic method for creating an optimal class-
hierarchy from the finite-state model and the use-

relationship between the data items and the functions is
given in [3]. A semi-automatic tool to facilitate the cre-
ation of an optimal class-hierarchy from an use-relation-
ship is described in [4]. In [5], we showed that the finite-
state model can also be used to group the functions of a
software into components to create an architecture of the
software before doing the class-hierarchy design. The
success of both of these steps depends on building a cor-
rect finite-state model of the software. Although there is a
systematic method for building a finite-state model from a
given (finite) list of valid action (event) sequences and a
(finite) list of invalid sequences [1], this is not suitable for
practical applications such as modeling a software because
there is no way of knowing beforehand how many valid
and invalid action sequences would be needed. Thus, the
approach in [1] is suitable for building an approximate
model, which can be heavily influenced by the list of valid
and invalid sequences chosen.

We remark that, in principle, one should be able to
analyze the requirements of a software to determine the
valid and invalid action sequences but this can be very
tedious for a large software. If the requirements do not
support such an analysis then this means requirements are
not specified properly and we need to redo them. Note
that we cannot expect the requirements to give us a reg-
ular-expression [6] for a complete description of all valid
action sequences, and thus choosing a set of valid and
invalid sequences becomes essentially an engineering step.
For many applications, an extension of an invalid sequence
is also invalid (i.e., once an error has occurred, it cannot be
corrected by additional actions) and sometimes this can be
useful in building a finite-state model. Our stepwise
refinement approach is a practical method for building a
finite-state model that alleviates the problems in [1] and
that is suitable for classroom teaching.

2.1. Role of hierarchical information structure

Learning involves organizing the facts (concepts), their
relationships, and the rules (methods) for applying them in
a way that makes the recall (search) from the long-term
memory during problem-solving easier [2]. In-depth
learning means understanding not only more facts and
their relationships but also the constraints associated with



each rule that determine when it is applicable. If the
stored information in long-term memory is not easily
searchable, then in a problem-solving session a student
may not only fail to recall the proper information but also
recall some improper information and unsuccessfully try
to apply it.

The hierarchical information organization allow easier
recall of relevant facts and rules during problem-solving.
Thus, teachers need to structure the information presented
to students in a hierarchical form whenever possible so
that the students can organize (assimilate) the information
more easily.

2.2. Generalization vs. compositional hierarchies

The generalization and compositional hierarchies are
the two main types of information hierarchies. We need
different approaches to build them, and thus we require
different approaches to deliver the information in these
hierarchies to the students for their assimilation. They
also require different approaches for the recall and use
during a problem-solving session.

In a generalization hierarchy, each item at level L + 1
is built by addition of a small "chunk" of new information
to an item at level L. This incremental building of com-
plex information structure is key to its success in teaching
and learning. We can traverse a generalization hierarchy
in a top-down fashion by any combination of depth-first
and breadth-first methods as needed to fit the different
learning styles [7].

For a compositional hierarchy, a breadth-first scheme
in assimilating (and teaching) the information is more suit-
able. Here, a top-down approach applies to visual (global)
learner and bottom-up approach to sequential (analytical)
learner [7]. Note that the conceptual or logical design of a
compositional hierarchy is done more easily in a top-down
approach although the actual physical construction of the
hierarchy may require a bottom-up approach.

Indeed, there are cases where we need to combine the
two types of hierarchies. The structure of a finite-state
model falls in this category; see Fig. 1(i). Here, the three-
way "from-to" relationship between transitions and states
(which have two distinct roles "from" and "to") is quite
complex and involves a number of cardinality constraints
as indicated in Fig. 1(iii). For example, the constraint
"1:1" next to Transitions indicates that a given transition
has a unique pair of from-state and to-state. The con-
straint "0:∞" at the other end of the link from Transitions
indicates that for a given pair of from-state and to-state
there can be any number of transitions; the guards in tran-
sitions distinguish among these transitions. There are still
other constraints such as "only one start-state", "one or
more final-states", "every state is reachable from the start-

state", etc; the third constraint helps to keep the number of
states small. These constraints are not captured in Fig.
1(iii). There are well-known algorithms [6] to simplify a
finite-state model by deleting unreachable states and mini-
mizing the number of states by merging equivalent states.
Fig. 1(ii) shows a generalization hierarchy of different
types of finite-state models, which does not include mod-
els involving time-constraints (timed-automata) and paral-
lel operations (petri-nets).

Finite-State
Model

States

Start
state

Final
states

Transi-
tions

from-to

Guards Actions

(i) A mixed hierarchy of parts
in a finite-state model.

Finite-State
Model

Object-State
Model

Statechart
Model

Objectchart
Model

(ii) A generalization hier-
archy of finite-state models.

From-ToStates
from

0:∞ 1:1

to

0:∞ 1:1

to

Transi-
tions

0:∞
1:1

(iii) An entity-relational model for "from-to" relation.

Figure 1. Tw o hierarchies of concepts related to finite-
state models; the simple arrow ’→’ means "parts-of".

3. Difficulty in Teaching Finite-State Models

Unlike a generalization hierarchy, a compositional
hierarchy of concept is more difficult to teach because it
does not lend itself to incremental learning as easily. The
full meaning of such a concept does not become clear until
all the components of the hierarchy are understood. Rec-
ognizing misconceptions and correcting them are also
more difficult for compositional concepts. Fortunately,
finite-state models have simple visual descriptions in the
form of state-diagrams, which help teaching this concept.

Determining a finite-state model for a given problem-
statement (say, from the requirements description) is typi-
cally a very difficult task. We cannot determine the states
one by one first and then determine the transitions one by
one; the incremental discovery approach is not useful here.
A good way to build a finite-state model is to create the
behavior-tree of valid action-sequences (which is typically
infinite, and thus we can begin by writing the tree upto
some depth) and then try to merge nodes of the tree by
arguing that the subtree at those nodes would be identical
(if they were fully developed). As we merge more and
more nodes, it becomes useful to create abstract character-
ization (description) of the nodes.



A trial-and-error approach to build the states and the
transitions of a finite-state model is to be avoided because
of the difficulty in correcting errors. An error can be due
to the states and also due to the transitions. An error in
transitions (or their guards) are comparatively easier to
correct if the meaning of the states are clear. Note that a
change in one transition may affect many valid and invalid
action-sequences, and thus a change should be done with a
full cognizance of which new sequences become valid and
which previously valid sequences become invalid, with
attention to the smallest sequences first. The situation is
very different in correcting an error in states, which inher-
ently requires adjustment of several transitions.

One good way to test the correctness of a model is to
argue why deleting or adding transitions and merging of
states would not work. Deletion of a state can be thought
as a special case of deleting all transitions to that state to
make that state unreachable from other states.

3.1. A small and yet challenging modeling problem

Consider a door of a room with a two-sided lock. We
assume that initially the door is closed from outside and
unlocked from both sides. The door can be locked from
outside only if it is closed from outside, i.e., the person
operating on the door is outside the room; likewise, the
door can be locked from inside if it is closed from inside,
i.e., the person is inside the room. We assume that the
door can be unlocked only from the side it is locked. (For
simplicity, assume that there is only one person who oper-
ates on the door; the person himself is not, however,
involved in our finite-state model of the door-operations.)
It follows that the door can be closed (and hence locked)
only from one side at a time. Finally, the door can be
opened from a given side only if it is closed but unlocked
from that side. Once the door is open, it can be closed
from either side; imagine the person operating on the door
can move in and out of the room when the door is open.

Fig. 2 shows the correct finite-state model for the door,
where we use distinct names for the outside and the inside
operations. One reason for this is that they may involve
different details of pushing/sliding the door in different
ways. Also, the operations lockFrOut and unlockFrOut
may involve a parameter for the key of the lock that must
match with a predefined constant in order for these opera-
tions to be successful whereas the operations lockFrIn and
unlockFrIn may involve a parameter that indicates, say,
push button or remote control operation, without the need
for key matching. The distinct names makes it quite easy
to build the model in Fig. 2. The start-state is indicated by
the bold circle; there are no final-states here in that the
door-operations continue forever (or, alternatively, each
state can be taken as a final-state). In state σ2, the person
may be inside or outside the room.

σ0

σ2

closeFrOut
openFrOut

σ3

closeFrIn
openFrIn

σ1
lockFrOut

unlockFrOut

σ4
lockFrIn

unlockFrIn

Figure 2. The finite-state model for the door with
two-sided lock, with distinct names for all operations.

Now, assume that we use the same name for the inside
and outside forms of the operations open and close. This
is justified if we assume that a robot is operating on the
door and at the center of the door (on each side) there is
information that the robot can read regarding where the
door-knob is located, which way it should be turned to
open, and whether the door should be pushed or pulled for
opening. This means a single open-function suffice for
both forms of open, and similarly for the close-function.
Fig. 3 shows the new finite-state model, which is consider-
ably more complex. This model is easily obtained from
Fig. 2 by replacing the names openFrOut and openFrIn by
open and similarly for closeFrOut and closeFrIn, and then
converting the resulting non-deterministic model (due to
the close operation at state σ2) to the deterministic form.
However, it is not easy to build the model in Fig. 3 directly
from the problem statement, and nor is it easy to imagine
the original version of the problem as an intermediate step
in building the model in Fig. 3.

doorClosed-
persOut

doorOpen-
persInOrOut

open doorClosed-
persIn

open

doorLocked-
persOut

lockFrOut
unlockFrOut

doorClosed-
persInOrOut

lockFrOut

close
open

doorLocked-
persIn

lockFrIn

lockFrIn
unlockFrIn

Figure 3. The finite-state model for the door when
we use the same name for two forms of open/close.

It is instructive to look at the incorrect finite-state
model in Fig. 4, which is conceived by sev eral students in
a software modeling course. The error in Fig. 4 is that
lockFromIn (lockFromOut) can immediately follow
unlockFromOut (unlockFromIn) although in reality they
must be separated by an 〈open, close〉 operation sequence.
In the next three subsections, we describe different
approaches for building the model in Fig. 3.

3.2. Use of generalization in finite-state modeling

Sometimes modeling more than what is needed, i.e., a
more special (detailed) case can be a useful tool in deriv-
ing the final model. This is the case for the finite-state
model in Fig. 3 and we can derive it from the model in



doorOpen-
persInOrOut

doorClosed
persInOrOut

close open

doorLocked-
persOut

lockFrOut
unlockFrOut

doorLocked-
persIn

lockFrIn
unlockFrIn

Figure 4. An incorrect finite-state model for the door.

Fig. 5, where we show the extra operations of the person
(robot) going in and out of the room when the door is
open. If we eliminate these extra operations by replacing
them with λ-moves and convert the resulting non-deter-
ministic model using the standard algorithms [6] into the
deterministic form, we get the model in Fig. 3.

persOut-
doorOpen

persOut-
doorClosed

close

open

persOut-
doorLocked

lockFrOut

unlockFrOut

persIn-
doorOpen

persIn-
doorClosed

close

open

persIn-
doorLocked

lockFrIn

unlockFrIn

goOut goIn

Figure 5. An extension of the model in Fig. 2 with goIn
and goOut operations and using the same names "open"

and "close" for their inside and outside forms.

3.3. Finite-state modeling by stepwise refinement

Sometimes, it is easier to build a non-deterministic
finite-state model first and then convert it to a determinis-
tic model using the standard algorithms [6]. The deter-
ministic model is needed for class-hierarchy design and
architectural decomposition [3-5]. In addition, the model-
ing task can be simplified if we treat certain action-
sequences, whose actions always occur consecutively in
the order in those sequences, as a whole. For the door
example, there are three such action-sequences: a = 〈open,
close〉, b = 〈lockFrIn, unlockFrIn〉, and c = 〈lockFrOut,
unlockFrOut〉; we can call each such action-sequence a
compound-action. One can then unfold the complex
actions by introducing additional new states on each tran-
sition involving a complex action. If a complex action is
made of k simple actions, then we introduce k − 1 new
states in this process. The resulting model can be then
minimized by the standard algorithms [6] to simplify it
and obtain the final model.

Fig. 6(i) shows a non-deterministic model for the door
with two-sided lock considered in Fig. 3 using the com-
pound-actions {a, b, c}. This model is easy to construct;
here, the non-determinism occurs because of the action-

sequence a = 〈open, close〉. Fig. 6(ii) shows the determin-
istic form and Fig. 6(iii) shows the result after unfolding it.
The minimization of the model in Fig. 6(iii) gives the
model in Fig. 3.

persOut-
doorClosed

〈lockFrOut, unlockFrOut〉,
〈open, close〉

persIn-
doorClosed

〈lockFrIn, unlockFrIn〉,
〈open, close〉

〈open, close〉

〈open, close〉

(i) A non-deterministic model of the door with
two-sided lock using three compound-actions.

persOut-
doorClosed

〈lockFrOut, unlockFrOut〉

persInOrOut-
doorClosed

〈open, close〉

〈open, close〉
〈lockFrOut, unlockFrOut〉

persIn-
doorClosed

〈lockFrIn, unlockFrIn〉

〈lockFrIn, unlockFrIn〉
〈open, close〉

(ii) The deterministic model obtained from (i).

persOut-
doorClosed

lockFrOut unlockFrOut

persInOrOut-
doorClosed

open
close

open

close
unlockFrOut

lockFrOut

persIn-
doorClosed

unlockFrIn
lockFrIn

lockFrIn

unlockFrIn

close

open

(iii) The unfolding of compound-actions in (ii) by adding new states.

Figure 6. Illustration of the use of non-deterministic
model and compound actions.

It is worth noting that if first build a model ignoring,
say, the operations {lockFrIn and unlockFrIn}, then we
only get the submodel on the states {σ0, σ1, σ2} in Fig. 2
with the names openFrOut replaced by open and close-
FrOut by close. However, there is no easy way to enlarge
it to get the model in Fig. 3.

3.4. Finite-state modeling via machine learning

Fig. 7(i) shows a small part of the behavior tree, i.e.,
valid action-sequences for our door example up to the
maximum length 4. Here, we are using the compound-
actions a = 〈lockFrOut, unlockFrOut>, b = 〈open, close〉,
and c = 〈lockFrIn, unlockFrIn> to keep the tree small.
We briefly explain how we can determine the finite-state
model in Fig. 6(ii) from the partial behavior-tree using a
slight but useful variation of the machine-learning algo-
rithm in [1]. We say two nodes in the behavior-tree are
equivalent if the labeled subtrees at those nodes are identi-
cal based on the information in the partial behavior-tree. It
is clear that no two nodes among {1, 3, 4} are equivalent
to each other because they hav e different sets of child-



links. On the other hand, since we only know upto one
level below node 2 and node 1 matches with node 2 upto
one level, we conclude these nodes to be equivalent. (The
algorithm thus uses an "optimistic" approach in deciding
the equivalence of nodes.) For a similar reason, nodes 3
and 5 are equivalent and nodes 4 and 6 are equivalent.

1

2

a

⋅⋅⋅
a

⋅⋅⋅
b

3

b

⋅⋅⋅
a

⋅⋅⋅
b

4

c

5

b

6

c

⋅⋅⋅
a

⋅⋅⋅
b

⋅⋅⋅
c

⋅⋅⋅
b

⋅⋅⋅
c

(i) A partial behavior-tree for the model for
the door with two-sided lock; see Fig. 3.

1/2

a

3/5
b

4/6

c
c
b

⋅⋅⋅
a

⋅⋅⋅
b

(ii) A partial finite-state model derived from (i).

Figure 7. Determination of the model in Fig. 3
from a partial behavior-tree.

We now build the finite-state model by merging equiv-
alent nodes in Fig. 7(i). When we merge a node x with
one of its ancestor node y, we remove all subtrees at x
before the merging. Fig. 7(ii) show the result of merging
the equivalent node pair {1, 2} (which makes the link (1,
2) into the loop at node 1), and merging the equivalent
node pairs {3, 5} and {4, 6}. This leaves us the transitions
for a and b in the merged state "3/5" undetermined. To
complete the model, we develop the behavior-tree one or
more levels for the a-child and b-child of node 3 in Fig.
7(i). (If we simply follow the algorithm in [1], then we
would consider those two child nodes of 3 to be equivalent
and merge them into a single node, giving a new state in
Fig. 7(ii) and with no transition from that state.) It will be
seen that those child nodes are equivalent, respectively, to
nodes 1 and 3, and this would finally give us the model in
Fig. 6(ii). The model in Fig. 3 is then obtained as before.

The above discussion clear shows that finite-state
model building is a non-trivial task and requires a great-
deal of practice and a combination of different techniques.

4. Need for Better Design Theory

Because there are only a few scientific principles or
laws at present for designing a class-hierarchy, the training
in software design relies more on engineering methods
than a systematic algorithmic method. The existing rules-
of-thumb for software design are often expressed infor-
mally and their application requires significant skills and
creative thinking. We need better concepts in software
design to alleviate the difficulties in teaching software
design. One of the bottlenecks in software design is build-
ing a finite-state model, and we addressed that problem
above.

5. Conclusion

We hav e shown that the basic task of building a finite
state model for a software, which is the starting point for
many high-level design tasks (e.g., an architecture for the
software and a class-hierarchy for its object-oriented
implementation), can be a daunting task even when there
are just a few operations and a few constraints among
them. We hav e argued that the inherent complexity of the
information structure for a finite-state model prevents us
from building a finite-state model in an incremental fash-
ion. We hav e presented here a few techniques that can
partially alleviate this difficulty and that can be easily
taught in a class-room situation.

6. Reference

1. D. Angluin, Learning Regular Sets from Queries and
Counterexamples, Information and Computation,
75(1987), pp. 87-106.

2. M.S. Donovan, J.D. Bransford, and J. Pellegrino (eds.),
How people learn, National Research Council, 2000.

3. S. Kundu, Structuring software functional require-
ments for automated design and verification, Proc.
31st Annual IEEE Intern. Computer Software and
Applications Conference (COMPSAC-07), Beijing,
24-27 Jul, 2007 (nominated for best-appear award).

4. S. Kundu and G. Nigel, A formal approach to design-
ing a class-subclass structure using a partial order on
the functions, The 29th Intern. Computer Software &
Applications Conf., COMPSAC-05, Edinburgh, Scot-
land, Jul 26-28, 2005, pp. 213-220.

5. S. Kundu, Orthogonal decomposition of finite-state
behavior models: a basis for determining components
in software architectures, submitted for publication.

6. H.R. Lewis and C.H. Papadimitriou, Elements of the
theory of computation, Prentice-Hall, 1981.

7. L.C. Sarasin, Learning style perspectives, Atwood
Publ, 1998.


