
Adaptive Software Testing in the Context of an Improved Controlled Markov
Chain Model

Hai Hu, Chang-Hai Jiang and Kai-Yuan Cai1

Beijing University of Aeronautics and Astronautics, Beijing 100083, China
kycai@buaa.edu.cn

Abstract
Adaptive software testing is the counterpart of
adaptive control in software testing. It means that
software testing strategy should be adjusted on-
line by using the testing data collected during
software testing as our understanding of the
software under test improves. Previous studies
on adaptive testing rely on a simplified
Controlled Markov Chain (CMC) model for
software testing which employs several
unrealistic assumptions. In this paper we propose
a new adaptive software testing approach in the
context of an improved CMC model which aims
to eliminate such threats to validity. A new set of
basic assumptions on the software testing process
is proposed and several unrealistic assumptions
are replaced by more common situations in real
life software testing. The methodology of a new
adaptive testing strategy is also developed and
implemented. Experimental data are collected to
demonstrate the effectiveness of the new
methodology.

1. Introduction1
The strategy used for testing a software system
should be dynamic, because as testing proceeds
we may gain understanding of the software under
test. Adaptive testing first proposed in [6],
provides a way to accomplish this by applying
software cybernetics and controlled Markov
chains (CMC) to software testing.

Zt+1 At+1

Ht

Parameters
Estimation

Controller
(Testing Strategy)

Controlled
 Markov Chain

(Software under Test)

Database
History Ht

Figure 1 An Overview of Adaptive Testing

1 The work reported here is supported by the National
Science Foundation of China and Microsoft Research Asia
(Grant No. 60633010) and the 863 Programme of China
(Grant Nos. 2006AA01Z174 and Grant No. 2006AA01Z157).

Figure 1 gives a pictorial overview of the
adaptive testing--a topic of software cybernetic
which studies the interplay between software and
control. The software under test is viewed as a
controlled object which is modeled by a CMC,
and the testing strategy serves as the
corresponding controller. Together, they make
up a closed-loop feedback control system.
The basic structure of the adaptive testing
approach remains unchanged in this study.
However, several major improvements have been
carried out in the methodology to cope with the
change of basic assumptions in the improved
CMC model. The parameter estimation module
is re-designed to estimate a parameter matrix
instead of a vector. The decision making module
is also revised according to the new definition for
state of the software under test. And finally a
new recursive algorithm is devised in order to
reduce computational overhead.
The rest of this paper is organized as follows:
Section 2 formulates the improved CMC model for
software testing; Section 3 gives the new adaptive
testing methodology; Empirical studies and data are
reported in Section 4; conclusions and future
research plans are included in Section 5.

2. Related Studies
This paper is related to several topics in software
testing: first it is closely related to previous
works on adaptive testing; Cai proposed the
adaptive testing methodology in based on a
fixed-memory feedback mechanism to improve
the failure detecting efficiency of traditional
random testing. Hu extended the adaptive testing
approach to testing for software components in
[6]. Other studies include how to apply adaptive
testing for reliability assessment [2], or how to
improve the parameter estimation process.
However the above works all based on the
simplified controlled Markov chain model of
software testing which requires several
undesirable assumptions. [3] proposes an
improved model for software reliability testing
which intends to overcome these unrealistic
assumptions but only simulation results are

Annual IEEE International Computer Software and Applications Conference

0730-3157/08 $25.00 © 2008 IEEE

DOI

853

Annual IEEE International Computer Software and Applications Conference

0730-3157/08 $25.00 © 2008 IEEE

DOI 10.1109/COMPSAC.2008.186

853

Annual IEEE International Computer Software and Applications Conference

0730-3157/08 $25.00 © 2008 IEEE

DOI 10.1109/COMPSAC.2008.186

853

Authorized licensed use limited to: Louisiana State University. Downloaded on November 2, 2008 at 20:02 from IEEE Xplore. Restrictions apply.

presented and it gives no further investigation on
testing strategy.
The problem studied in this paper is also closely
related to the test case prioritization problem [9].
Elbaum et.al reported that in regression testing
feedback may play positive or negative role in
test case prioritization [5]. Do et.al presented an
empirical study on assessing the ability of
prioritization techniques to improve the rate of
fault detection of test case prioritization
techniques, measured relative to mutation faults
in [4]. The major difference between this work
and other test case prioritization techniques is the
prioritization is carried out on-the-fly as testing
proceeds, which means testing history
information is collected and used for future
decision making.
Other related studies include defect removal and
its impact on software testing. Okamura
proposed a new reliability estimation method that
considers defect removal [8]. This study presents
a rigorous model for the defect removal process
and its impact to the software under test, and
developed the according methodology for testing
and parameter estimation.

3. The Improved CMC Model for
Software Testing
The original CMC model for adaptive testing
faces several threats to validity:
• Software defects are equally detectable. This
is not true in real-life testing.
• The testing process stops when a defect is
detected. The defect is then removed
immediately. However this might not be true in
most testing schemes, a more commonly used
defect removal is batch debugging which
removes a number of bugs after a period of
testing.
In this paper, we try to develop an improved
CMC model for testing process to overcome
these limitations. More specifically, the test goal
is to detect and remove as many software defects
as possible with a certain number of test cases.
The improved model for software testing is
based on the following assumptions:
(1) The input domain or the given test suite, C,
of the software under test comprises m classes of
test cases, C1, C2, . . ., Cm, which may or may
not be disjoint.
(2) The software under test contains N defects at
the beginning of the testing process, in which
each of the defects is not equally detectable.
(3) The software testing process terminates when
M test actions have been taken, that is the
maximum number of allowed actions is M.

(4) Each of the N defects is in one of three
distinct states at any time: removed or absent
from the software under test, undetected by any
action, or detected but not removed from the
software under test, symbolically, let

()

0 if the th defect has been removed
 from the software at time ;
1 if the kth defect remains undetected at time ;
2 if the kth defect is detected but not removed
 from the software at time

k
t

k
t

Y t

t

=

(1) (2) ()
0 0 0

.

1,2,..., with ... 1Nk N Y Y Y

= = = = =

(5) The state of the software can then be denoted
by (1) (2) (), ,..., ,t

N
t t t tY Y Y Xξ = , where Xt denotes the

remaining number of test actions.
(6) There are m admissible actions at each time,
and there is a special action Am+1 which removes
a certain number defects from the software.
(7) Each action detects at most one defect and
incurs a cost ()

t tw Aξ , no matter whether it
triggers a failure or not; action Am+1 incurs no
cost. ()

t tw Aξ denotes the cost of taking the ith
action at state ξt.
(8) Action At

taken at state ξt gives a rebate
σξt(At) if it triggers a defect that has never been

detected, i.e., Yt
(j) = 1. A rebate is defined as the

“benefit” that a tester may receive due to the
detection of a failure. Action Am+1 does not
generate any rebate.
(9) Zt depends only on the software state ξt ,
where the probability of a test action detecting a
defect is determined by Θ:

(1) (2) ()
1 1 1

(1) (2) ()
2 2 2

(1) (2) ()

...

...

N

N

N
m m m

θ θ θ
θ θ θ

θ θ θ

 Θ =

%
"

Pr{Zt=1| At = i} =
()

1

N
k

i
k

θ
=
∑ ,Pr{Zt=0| At = i} = 1- ()

1

N
k

i
k

θ
=
∑ ;

Note that in the original CMC model, the
probability of action detecting a defect is denoted
by a vector []1 2' , , , mθ θ θΘ = … .
(10) Upon a total of d new failure being revealed,
the corresponding d failure-causing defects are
removed immediately and instantaneously from
the software under test, and no new defects are
introduced.
(11) The target state of the software is

[]0,0,...,0finξ = , it’s the absorbing state.
We have the following remarks on the above
assumptions:
(1) A major distinction of the present model
from the simplifying model is the extended
intermediate variable Yt which identifies the state

854854854

Authorized licensed use limited to: Louisiana State University. Downloaded on November 2, 2008 at 20:02 from IEEE Xplore. Restrictions apply.

of a defect. By adding a new status “2” for each
defect, detecting a defect does not necessarily
lead to a defect removal action; the “detected but
not removed” state is introduced to facilitate
batch debugging which removes a number of
defects at one time.
(2) Another major improvement is the extended
failure detection rate matrix Θ, which indicates
that defects are not equally detectable. However
θij might not be independent of each other
because in real-life software testing defects are
commonly found correlated.
(3) The generalized model reduces to the original
CMC model [1] if d = 1 and θjk ≡ θj; k =1, 2,…,N
and j = 1, 2, …, m.
(4) Assumption (9) gives the stopping criterion
of the testing process. Theoretically, testing stops
when all defects are detected and removed, i.e.,

[]0,0,...,0finξ = . However this is usually not
possible in real life testing since N is unknown to
the tester and there are always remaining bugs in
a released version of software..
The above assumptions define a controlled
Markov chain as shown in Figure 2. The state-
transition chart is much more complicated than
that of the original model because of the
introduction of different failure detection rates
with respect to defect. The state space increases
exponentially with the number of detected
defects.

ξ0

ξ(1)
1 ξ(2)

1 ξ(i)
1 ξ(N)

1

…

()

1

1
N

k
At

k

θ
=

−∑

(1)
Atθ

(2)
Atθ ()i

Atθ
()N

Atθ

ξ(12)
2 ξ(32)

2 ξ(i2)
2 ξ(N2)

2 … ξ(k1)
2

…
(2)

Atθ

() (1)

1
1

N
k

At At
k

θ θ
=

− +∑ () (2)

1
1

N
k

At At
k

θ θ
=

− +∑ () ()

1
1

N
k i

At At
k

θ θ
=

− +∑
() ()

1

1
N

k N
At At

k

θ θ
=

− +∑

()k
Atθ

(1)
Atθ

(3)
Atθ ()i

Atθ

()N
Atθ

ξ(ki)
2

...…

…

Figure 2 State Transition Chart of the CMC

ξ0:[1,1,M]

2

(2)1 Aθ−

1

(1)
Aθ

1

(2)
Aθ

ξ1
(1): [2,1,M-1]

2

(1)1 Aθ−

ξ2:[2,2,M-2]

ξfin:[0,0,M-n]
n=3, 4… M

1 1

(2) (1)1 A Aθ θ− −

1

1

2

(2)
Aθ

2

(1)
Aθ

ξ1
(2): [1,2,M-1]

Figure 3 State Transition Chart (N=2 and d=2)

Figure 3 depicts a simple example of the Markov
Chain state transition chart, when N=2 and d = 2.
The problem we try to solve here is how to detect
as many defects as possible within M test actions.
Further let ω denote the testing strategy that is
adopted in the process of software testing. ω
specifies how test cases should be selected one
by one on-line during software testing. In
conventional software testing it may refer to a
partition testing strategy or a random testing
strategy. Here ω refers to the adaptive testing
strategy that we want to derive on the basis of the
theory of controlled Markov chains. In order to
solve the problem in context with the Control
Markov Chain theory, we define the expected
total cost of the software testing process as:

*

0

() [() ()]
t t t

M

t A t
t

J M E W A Aω ω ξ ξθ σ
=

= −∑ (1)
where Jω(M) is the total cost for all M actions
and ω is the testing strategy. Our objective is to
find a testing strategy that minimizes Jω(M).
Such a strategy uses M tests to maximize the
overall rebate while minimizing the total cost
incurred by executing these test cases.
Moreover let

* *() () ()

() 1, () 1; 0,
j j

iw i W i i

W i i j i
ξ ξ ξ

ξ ξ

θ σ
σ

= −

≡ ≡ ∀ ≠ ∀ (2)
Then the corresponding testing strategy detects
and removes as many defects as possible with the
M testing actions, note that detecting a defect
that has already been detected but not removed
does not generate any rebate thus it’s not
encouraged by the testing strategy. Also in
equation (1), θ∗

At is the probability of detecting a
new defect in state ξt. According to assumption
(1) through (9) we have

() () ()
*

1

(2) (); 1,2,...
()

0; 1

1 0
where () 0 0

1 0

N
k k k

i t t
kt

sign Y sign Y i m
A i

i m

x
sign x x

x

θ
θ =

 − − == =
 = +

>
= =
− <

∑
 (3)

From the theory of Controlled Markov Chains [6]
we can conclude that there exists a deterministic
stationary that minimizes Jω(M), According to
the method of successive approximation, let

*
1 1
() min () () ()

fin

n ni m
v w i q i vξ ξη

η ξ
ξ η+ ≤ ≤

≠

 = +

∑
 (4)

() lim ()nn
v vξ ξ

→∞
= (5)

We have the following proposition:

855855855

Authorized licensed use limited to: Louisiana State University. Downloaded on November 2, 2008 at 20:02 from IEEE Xplore. Restrictions apply.

() (){ }
() () () (){ }

*

1

* * () * (0)
1 11

0; if 0

min ; if 1

min 1 ; if

t

t

t

t ti m

k
i t i ti m

X

v w i X

w i v v X

ξ

ξ

ξ

θ ξ θ ξ
≤ ≤

+ +≤ ≤

=

= =

+ + − 1t

 >

 (6)

whereas ()
1

k
tξ +

denotes the subsequent state of
state ξt if test action At detects the kth defect, and

(0)
1tξ +

denotes the subsequent state of ξt if At
detects no defect at all.
The above proposition clearly indicates how to
test the software with the limited M test actions:
at each time t the test action that minimizes the
expected cost at state ξt should be taken, i.e.

[]
(){ }
() () () (){ }

* * (1) (2) ()

1

* * () * (0)
1 11

,1 ; 0,0,...0,

arg min ; , ,..., ,1

arg min 1 ;otherwise

t t

t

t

N
t t t ti m

k
i t i ti m

i i m x

A w i Y Y Y

w i v v

ξ ξ

ξ

ξ

ξ

θ ξ θ ξ
≤ ≤

+ +≤ ≤

=

∀ ≤ ≤ =
 =

+ + −

 (7)

In general, in order to decide the optimal test
action at state ξt, all its possible subsequent states
must be considered. Also defect detection rates
θi

(k) must be acquired as a priori before an
optimal action can be determined.

4. Adaptive Testing Methodology
Although Proposition (6) clearly defines the
optimal strategy to test the software, there are
several remaining problems before it can be
apply to supervise real life testing as follows:
• The set of subsequent states of ξt grows
exponentially in proposition (6), thus the
computational overhead may be unacceptable for
online decision making. Also it’s against
common rationale to use parameters at a time
point to calculate all the possible future states.
• Parameters θi

(k) must be acquired as a priori,
which is not the case in real life testing, it’s
impossible to obtain accurate defect detection
rates. The dimension of Θ is also unknown
because the total number of defects is usually an
unknown variable to testers.
In order to overcome these disadvantages, we
developed a new adaptive testing methodology
based on the original adaptive testing in [7]
which adopts a recursive least square (RLSE)
approach.
4.1 Parameter Estimation
There two unknown parameters that needs to be
determined in proposition (6), N and Θ. The total
number of defects N is required to construct the
defect detection rate matrix Θ. However it might
not be necessary. For example, suppose there are
10 defects in the software and we have already
detected 4 of them and none of the four defects is
removed and we have d = 5. Since the
undetected defects are equally unknown to tester,
so the estimated defect detection rates for the

remaining 6 parameters should be identical,
i.e., θi

(5) =θi
(6) =..=θi

(10). It’s important to point
out that this does not contradict with assumption
(2) and (9) that defects are not equally detectable
because these are only estimates of real defect
detection rates and will be updated as testing
proceeds. Note that the first detected defect
locates in the first column of Θ and etc. Thus for
decision making we only need to focus on
column vectors θi

(1) to θi
(5) instead of the whole

matrix. This means that the dimension of Θ can
be limited to m × d instead of m × N which
allows us to circumvent the parameter estimation
problem of N which is itself a difficult problem
for software engineering practitioners and
scholars. Figure 4 depicts the defect detection
rate matrix, whereas the dashed area is the
reduced Θ. Note that parameters in the left
painted region are equally unknown to tester and
have identical estimates.

(1) () (1) () (1) ()
1 1 1 1 1 1

(1) () (1) () (1) ()
2 2 2 1 2 2

(1) () (1) () (1) ()
1

 0

0 0
0 0

0
0 0

p p j p j p d p d N

p p j p j p d p d N

p p j p j p d p d N
m m m m m

θ θ θ θ θ θ
θ θ θ θ θ θ

θ θ θ θ θ θ

+ + + + + + +

+ + + + + + +

+ + + + + + +

 Θ =

… … … …
… … … …

… # #
… … … …

 detected but not removed defectsremoved defects

 1 1

undetected defects

 p p j p j Np + + + +���	��
 � 	��	�
 ������� �������

Figure 4 Defect Detection Rate Matrix
In order to obtain the estimates in Θ, a defect
detection vector should be introduced, let

[]1 2' , , , mθ θ θΘ = … (8)
where θi denotes the probability of detecting any
defect (either previous detected or undetected) by
taking action i. And it’s straight forward that
there holds

()

1

,1
N

k
i i

k

i mθ θ
=

= ≤ ≤∑ (9)

Suppose there are j detected but not removed
defects and p already removed defects, then

() (1)

1
0 ()

j
k j

i i i
k p

p d jθ θ θ +

= +

= × + + − ×∑ (10)

Follow the RLSE approach, 'Θ can be
estimated online and experimental data proved
its accuracy is desirable. Now there are two set
of unknown variables, () (1,2,...,)k

i k p jθ = + the
defect detection rates for detected but not
removed defects, and (1)j

iθ + the detection rate for
each of the undetected defects.
A natural estimation for () (1,2,...,)k

i k p jθ = + is
() number of detections of the th defect

number of test actions in class applied
(1,2,...,)

k
i

i

k
C

k p j

θ =

= +

 (11)

856856856

Authorized licensed use limited to: Louisiana State University. Downloaded on November 2, 2008 at 20:02 from IEEE Xplore. Restrictions apply.

Note that this equation does not apply for
undetected defects because the numerator always
equals to zero.
Finally we have the estimation algorithm for the
failure detection rates of the undetected defects:

()

1(1)

ˆ ˆ
ˆ

j
k

i i
k pj

i d p

θ θ
θ = ++

−
=

−

∑ (12)

where
()

1

ˆ
j

k
i

k p

θ
= +
∑ and îθ denotes the estimates

of
()

1

j
k

i
k p

θ
= +
∑ and iθ , respectively.

The rationale behind the above algorithm is that
information about detected defects which is
known to the tester can be used to speculate
information about the unknown defects. Also
more complicated and accurate parameter
estimation algorithm can be developed to
improve accuracy. More details on the RLSE
parameter estimation can be found in [7].
4.2 Adaptive Testing Strategy
By using the certainty-equivalence principle or
the method of substituting the estimates into
optimal stationary controls, we treat Θ as the true
values of the corresponding parameters and
determine the optimal action based on these
values. Consequently, we obtain the following
adaptive control policy (adaptive software testing
strategy):
Step 1 Initialize parameters. Set

0
ˆ ˆ , , 0 , an d 0 .X M j tΘ = Θ = = =

 If M = 1, then (){ }0

*
0 1

arg min ;
i m

A w iξ≤ ≤
=

 For other cases,
 () () () (){ }0

* * () * (0)
0 1 11

arg min 1k
i ii m

A w i v vξ θ ξ θ ξ
≤ ≤

= + + −

Step 2 Observe the testing result by taking
action At+1, i.e. whether a defect is
detected.

Step 3 Follow the parameters estimation
algorithm in Section 3.1 to update Θ̂ .

Step 4 Update the current software state by
setting X = X - 1.

Step 5 Decide the optimal action. If X = 1, then
(){ }

1

*
0 1

arg min ;
Mi m

A w iξ −≤ ≤
= .

 For other cases,
() () () (){ }* * () * (0)

1 11
arg min 1

t

k
t i t i ti m

A w i v vξ θ ξ θ ξ+ +≤ ≤
= + + −

Step 6 Observe the testing result by taking
action At+1, i.e. whether a defect is
detected. If so set 1j j= + .

Step 7 If j d= then take action Am+1 to remove
the detected d defects and set

 1j j= + , () 0,1 ,1k
i i m k dθ = ≤ ≤ ≤ ≤ .

Step 8 If X = 0, then stop testing; otherwise go
to Step 3.

4.3 Reducing Computational Complexity
A possible threat to the effectiveness of the
above adaptive testing strategy is that in step 5
the decision making process requires a recursive
iteration to examine all possible subsequent
states of the current state ξt. As pointed out in
Section 3, the set of subsequent states of ξt grows
exponentially, thus the computational overhead
may be unacceptable for online decision making.
Also it’s against common sense to use
parameters at one time point to predict all
possible future states. So it’s necessary to limit
the depth of recursion to a small number. More
specifically, instead of examining all possible
future states till all M test actions are taken, only
a number of future actions and their resulting
states are examined.
Following the above analysis, Proposition (6) is
replaced by the following equation

()
(){ }
() () () (){ }

*

1

* * () * (0)
1 11

0; if 0

min ; if

min 1 ;

t

t

t

ti m
t k

i t i ti m

X

w i X s
v

w i v v

ξ

ξ

ξ
θ ξ θ ξ

≤ ≤

+ +≤ ≤

=

<
=

+ + −

 if tX s

≥

 (13)

where s denotes the number of future test actions
that will be examined, i.e., the recursion depth.
5 Case Study
In this section we present a case study to
examine the effectiveness of the above Adaptive
Testing (AT) strategy in context of the proposed
improved CMC model.
There are several variables in the improved
model that affect the result of the experiments,
which are: N, number of defects in the software;
M, number of maximum allowed test cases; d,
defect removal threshold and etc. The
experiment scheme is designed to cover different
combinations of these factors with different
values. Two versions of the SPACE program [8]
with different number of active defects are used
to simulate software in different phases of testing.
To compare the defect detecting (removing)
performance between AT and RT, the total
number of detected (removed) defect Td in each
scenario is tabulated in Table 1. Note that in
order to avoid bias, each scenario is
experimented 100 times and the average Td over
100 is calculated and presented in Table . Data
show that AT outperforms RT in nine out of
twelve scenarios.

857857857

Authorized licensed use limited to: Louisiana State University. Downloaded on November 2, 2008 at 20:02 from IEEE Xplore. Restrictions apply.

Table 1 Average Number of Defect Detected
(removed) Td

However data in the above table shows that AT
slightly outperforms RT in terms of total number
of detected (removed) defect. So it’s also
important to investigate the testing process and
defect removal process, so one of the defect
removal processes is depicted in Figure 5. The
horizontal axle denotes the times of defect
removal. The vertical axle denotes the
cumulative number of test cases consumed for
each defect removal. For example, 11th point of
the random curve has a value of 300, which
means it takes 300 test cases for RT to begin the
11th defect removal, i.e., detects 11 x 3 = 33
defects.

Figure 5 Defect Removal Curve

The above figure clearly depicts that AT
consumes less test cases than RT to detect and
remove defects throughout the testing process.
The advantage increases as more defects are
detected and removed.
6 Conclusions
In this paper we propose a new model for
software testing that aim to reduce unrealistic
assumptions adopted by previous models. Two
major changes are made in the proposed model:
first, we introduce batch debugging which no
longer requires bugs to removed immediately
upon detection; secondly, the assumption that all
bugs are equally detectable is removed, i.e., each
bug has its own detection rate now.
A new adaptive software testing strategy is
devised and implemented to incorporate the
above changes. Experimental data on the SPACE
program are collected and shows that under
different scenarios, AT outperforms the
traditional RT in both number of
detected/removed defects and the cost of the
testing process.

Many future topics can be discussed, such as:
more experiments on more general object
programs; comparison with more advanced
testing strategies; and further extend the
assumptions to make it even more practical for
real-life testing.
7 References
[1] K. Y. Cai, B. Gu, H. Hu, and Y. C. Li, “Adaptive
software testing with fixed-memory feedback”,
Journal of Systems and Software, vol.80(8), Aug 2007,
pp. 1328-1348.
[2] K. Y. Cai, C. H. Jiang, H. Hu, and C. G. Bai, “An
Experimental Study of Adaptive Testing for Software
Reliability Assessment”, Journal of Systems and
Software, available online, Dec 2007.
[3] K. Y. Cai, Z. Dong, K. Li and C. G. Bai, “A
Mathematical Modeling Framework For Software
Reliability Testing”, International Journal of General
Systems, vol.36(4), 2006, pp. 399-463(65).
[4] H. Do and G. Rothermel, "On the Use of Mutation
Faults in Empirical Assessments of Test Case
Prioritization Techniques," IEEE Trans. on Software
Engineering, vol.32 (9), Sept 2006, pp.733-752.
[5] S. Elbaum, A. Malishevsky, and G. Rothermel,
“Test Case Prioritization: A Family of Empirical
Studies”, IEEE Trans. on Software Engineering, vol.
28, Feb 2002, pp.159-182.
[6] O. Hernandez-Lerma, Adaptive Markov Control
Processes, Springer-Verlag, 1989.
[7] H. Hu, W. E. Wong, C. H. Jiang, and K. Y. Cai,
“A Case Study of the Recursive Least Squares
Estimation Approach to Adaptive Testing for Software
Components”, Proceedings of the Fifth international
Conference on Quality Software (QSIC’05),
Washington, DC, pp. 135-141.
[8] H. Okamura, H. Furumura and T. Dohi, “On the
Effect of Fault Removal in Software Testing -
Bayesian Reliability Estimation Approach”,
Proceedings of the 17th International Symposium on
Software Reliability Engineering ISSRE '06, Nov 2006,
pp.247-255.
[9] G. Rothermel, R. H. Untch, C. Y. Chu and M. J.
Harrold, “Prioritizing test cases for regression testing”,
IEEE Trans. on Software Engineering, vol.27(10), Oct
2002, pp.929-948.

858858858

Authorized licensed use limited to: Louisiana State University. Downloaded on November 2, 2008 at 20:02 from IEEE Xplore. Restrictions apply.

