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Abstract 
Adaptive software testing is the counterpart of 
adaptive control in software testing. It means that 
software testing strategy should be adjusted on-
line by using the testing data collected during 
software testing as our understanding of the 
software under test improves. Previous studies 
on adaptive testing rely on a simplified 
Controlled Markov Chain (CMC) model for 
software testing which employs several 
unrealistic assumptions. In this paper we propose 
a new adaptive software testing approach in the 
context of an improved CMC model which aims 
to eliminate such threats to validity. A new set of 
basic assumptions on the software testing process 
is proposed and several unrealistic assumptions 
are replaced by more common situations in real 
life software testing. The methodology of a new 
adaptive testing strategy is also developed and 
implemented. Experimental data are collected to 
demonstrate the effectiveness of the new 
methodology. 

1. Introduction1 
The strategy used for testing a software system 
should be dynamic, because as testing proceeds 
we may gain understanding of the software under 
test. Adaptive testing first proposed in [6], 
provides a way to accomplish this by applying 
software cybernetics and controlled Markov 
chains (CMC) to software testing.  
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Figure 1 An Overview of Adaptive Testing 
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Figure 1 gives a pictorial overview of the 
adaptive testing--a topic of software cybernetic 
which studies the interplay between software and 
control. The software under test is viewed as a 
controlled object which is modeled by a CMC, 
and the testing strategy serves as the 
corresponding controller. Together, they make 
up a closed-loop feedback control system.  
The basic structure of the adaptive testing 
approach remains unchanged in this study. 
However, several major improvements have been 
carried out in the methodology to cope with the 
change of basic assumptions in the improved 
CMC model. The parameter estimation module 
is re-designed to estimate a parameter matrix 
instead of a vector. The decision making module 
is also revised according to the new definition for 
state of the software under test. And finally a 
new recursive algorithm is devised in order to 
reduce computational overhead. 
The rest of this paper is organized as follows: 
Section 2 formulates the improved CMC model for 
software testing; Section 3 gives the new adaptive 
testing methodology; Empirical studies and data are 
reported in Section 4; conclusions and future 
research plans are included in Section 5. 

2. Related Studies 
This paper is related to several topics in software 
testing: first it is closely related to previous 
works on adaptive testing; Cai proposed the 
adaptive testing methodology in based on a 
fixed-memory feedback mechanism to improve 
the failure detecting efficiency of traditional 
random testing. Hu extended the adaptive testing 
approach to testing for software components in 
[6]. Other studies include how to apply adaptive 
testing for reliability assessment [2], or how to 
improve the parameter estimation process. 
However the above works all based on the 
simplified controlled Markov chain model of 
software testing which requires several 
undesirable assumptions. [3] proposes an 
improved model for software reliability testing 
which intends to overcome these unrealistic 
assumptions but only simulation results are 
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presented and it gives no further investigation on 
testing strategy.  
The problem studied in this paper is also closely 
related to the test case prioritization problem [9]. 
Elbaum et.al reported that in regression testing 
feedback may play positive or negative role in 
test case prioritization [5]. Do et.al presented an 
empirical study on assessing the ability of 
prioritization techniques to improve the rate of 
fault detection of test case prioritization 
techniques, measured relative to mutation faults 
in [4]. The major difference between this work 
and other test case prioritization techniques is the 
prioritization is carried out on-the-fly as testing 
proceeds, which means testing history 
information is collected and used for future 
decision making.  
Other related studies include defect removal and 
its impact on software testing. Okamura 
proposed a new reliability estimation method that 
considers defect removal [8]. This study presents 
a rigorous model for the defect removal process 
and its impact to the software under test, and 
developed the according methodology for testing 
and parameter estimation. 

3. The Improved CMC Model for 
Software Testing 
The original CMC model for adaptive testing 
faces several threats to validity: 
• Software defects are equally detectable. This 
is not true in real-life testing. 
• The testing process stops when a defect is 
detected. The defect is then removed 
immediately. However this might not be true in 
most testing schemes, a more commonly used 
defect removal is batch debugging which 
removes a number of bugs after a period of 
testing. 
In this paper, we try to develop an improved 
CMC model for testing process to overcome 
these limitations. More specifically, the test goal 
is to detect and remove as many software defects 
as possible with a certain number of test cases.  
The improved model for software testing is 
based on the following assumptions: 
(1) The input domain or the given test suite, C, 
of the software under test comprises m classes of 
test cases, C1, C2,  . . ., Cm, which may or may 
not be disjoint. 
(2) The software under test contains N defects at 
the beginning of the testing process, in which 
each of the defects is not equally detectable. 
(3) The software testing process terminates when 
M test actions have been taken, that is the 
maximum number of allowed actions is M. 

(4) Each of the N defects is in one of three 
distinct states at any time: removed or absent 
from the software under test, undetected by any 
action, or detected but not removed from the 
software under test, symbolically, let 

( )

0 if the th defect has been removed
   from the software at time ;
1  if the kth defect remains undetected at time ;
2 if the kth defect is detected but not removed
   from the software at time 
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(5) The state of the software can then be denoted 
by (1) (2) ( ), ,..., ,t

N
t t t tY Y Y Xξ =    , where Xt denotes the 

remaining number of test actions. 
(6) There are m admissible actions at each time, 
and there is a special action Am+1 which removes 
a certain number defects from the software.  
(7) Each action detects at most one defect and 
incurs a cost ( )

t tw Aξ , no matter whether it 
triggers a failure or not; action Am+1 incurs no 
cost. ( )

t tw Aξ denotes the cost of taking the ith 
action at state ξt. 
(8) Action At 

taken at state ξt gives a rebate 
σξt(At) if it triggers a defect that has never been 

detected, i.e., Yt
(j) = 1. A rebate is defined as the 

“benefit” that a tester may receive due to the 
detection of a failure. Action Am+1 does not 
generate any rebate. 
(9) Zt depends only on the software state ξt , 
where the probability of a test action detecting a 
defect is determined by Θ: 
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Note that in the original CMC model, the 
probability of action detecting a defect is denoted 
by a vector [ ]1 2' , , , mθ θ θΘ = … . 
(10) Upon a total of d new failure being revealed, 
the corresponding d failure-causing defects are 
removed immediately and instantaneously from 
the software under test, and no new defects are 
introduced.   
(11) The target state of the software is 

[ ]0,0,...,0finξ = , it’s the absorbing state. 
We have the following remarks on the above 
assumptions: 
(1) A major distinction of the present model 
from the simplifying model is the extended 
intermediate variable Yt which identifies the state 
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of a defect. By adding a new status “2” for each 
defect, detecting a defect does not necessarily 
lead to a defect removal action; the “detected but 
not removed” state is introduced to facilitate 
batch debugging which removes a number of 
defects at one time. 
(2) Another major improvement is the extended 
failure detection rate matrix Θ, which indicates 
that defects are not equally detectable. However 
θij might not be independent of each other 
because in real-life software testing defects are 
commonly found correlated. 
(3) The generalized model reduces to the original 
CMC model [1] if d = 1 and θjk ≡ θj; k =1, 2,…,N 
and j = 1, 2, …, m. 
(4) Assumption (9) gives the stopping criterion 
of the testing process. Theoretically, testing stops 
when all defects are detected and removed, i.e., 

[ ]0,0,...,0finξ = . However this is usually not 
possible in real life testing since N is unknown to 
the tester and there are always remaining bugs in 
a released version of software.. 
The above assumptions define a controlled 
Markov chain as shown in Figure 2. The state-
transition chart is much more complicated than 
that of the original model because of the 
introduction of different failure detection rates 
with respect to defect. The state space increases 
exponentially with the number of detected 
defects.  
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Figure 2 State Transition Chart of the CMC 
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Figure 3 State Transition Chart (N=2 and d=2) 

Figure 3 depicts a simple example of the Markov 
Chain state transition chart, when N=2 and d = 2. 
The problem we try to solve here is how to detect 
as many defects as possible within M test actions. 
Further let ω denote the testing strategy that is 
adopted in the process of software testing. ω 
specifies how test cases should be selected one 
by one on-line during software testing. In 
conventional software testing it may refer to a 
partition testing strategy or a random testing 
strategy. Here ω refers to the adaptive testing 
strategy that we want to derive on the basis of the 
theory of controlled Markov chains. In order to 
solve the problem in context with the Control 
Markov Chain theory, we define the expected 
total cost of the software testing process as:  

*

0

( ) [ ( ) ( )]
t t t

M

t A t
t

J M E W A Aω ω ξ ξθ σ
=

= −∑        (1) 
where Jω(M) is the total cost for all M actions 
and ω is the testing strategy. Our objective is to 
find a testing strategy that minimizes Jω(M). 
Such a strategy uses M tests to maximize the 
overall rebate while minimizing the total cost 
incurred by executing these test cases.  
Moreover let  

* *( ) ( ) ( )

( ) 1, ( ) 1; 0,
j j

iw i W i i

W i i j i
ξ ξ ξ

ξ ξ

θ σ
σ

= −

≡ ≡ ∀ ≠ ∀                       (2) 
Then the corresponding testing strategy detects 
and removes as many defects as possible with the 
M testing actions, note that detecting a defect 
that has already been detected but not removed 
does not generate any rebate thus it’s not 
encouraged by the testing strategy. Also in 
equation (1), θ∗

At is the probability of detecting a 
new defect in state ξt. According to assumption 
(1) through (9) we have 

( ) ( ) ( )
*

1

( 2) ( );  1,2,...
( )

0;                                                  1

1          0
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1       0
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i t t
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x
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>
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∑
 (3) 

From the theory of Controlled Markov Chains [6] 
we can conclude that there exists a deterministic 
stationary that minimizes Jω(M), According to 
the method of successive approximation, let  

*
1 1
( ) min ( ) ( ) ( )

fin
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η ξ
ξ η+ ≤ ≤

≠

  = + 
  

∑
                     (4) 

( ) lim ( )nn
v vξ ξ

→∞
=                                                    (5) 

We have the following proposition: 

855855855

Authorized licensed use limited to: Louisiana State University. Downloaded on November 2, 2008 at 20:02 from IEEE Xplore.  Restrictions apply.



( ) ( ){ }
( ) ( ) ( ) ( ){ }

*

1

* * ( ) * (0)
1 11

0;                                                                    if 0 

min  ;                                                 if 1

min  1  ; if 

t

t

t

t ti m

k
i t i ti m

X

v w i X

w i v v X

ξ

ξ

ξ

θ ξ θ ξ
≤ ≤

+ +≤ ≤

=

= =

+ + − 1t






 >

        (6) 

whereas ( )
1

k
tξ +

denotes the subsequent state of 
state ξt if test action At detects the kth defect, and 

(0)
1tξ +

denotes the subsequent state of ξt if At 
detects no defect at all. 
The above proposition clearly indicates how to 
test the software with the limited M test actions: 
at each time t the test action that minimizes the 
expected cost at state ξt should be taken, i.e.  
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  (7) 

In general, in order to decide the optimal test 
action at state ξt, all its possible subsequent states 
must be considered. Also defect detection rates 
θi

(k) must be acquired as a priori before an 
optimal action can be determined.  

4. Adaptive Testing Methodology 
Although Proposition (6) clearly defines the 
optimal strategy to test the software, there are 
several remaining problems before it can be 
apply to supervise real life testing as follows: 
• The set of subsequent states of ξt grows 
exponentially in proposition (6), thus the 
computational overhead may be unacceptable for 
online decision making. Also it’s against 
common rationale to use parameters at a time 
point to calculate all the possible future states.  
• Parameters θi

(k) must be acquired as a priori, 
which is not the case in real life testing, it’s 
impossible to obtain accurate defect detection 
rates. The dimension of Θ is also unknown 
because the total number of defects is usually an 
unknown variable to testers. 
In order to overcome these disadvantages, we 
developed a new adaptive testing methodology 
based on the original adaptive testing in [7] 
which adopts a recursive least square (RLSE) 
approach. 
4.1 Parameter Estimation 
There two unknown parameters that needs to be 
determined in proposition (6), N and Θ. The total 
number of defects N is required to construct the 
defect detection rate matrix Θ. However it might 
not be necessary. For example, suppose there are 
10 defects in the software and we have already 
detected 4 of them and none of the four defects is 
removed and we have d = 5. Since the 
undetected defects are equally unknown to tester, 
so the estimated defect detection rates for the 

remaining 6 parameters should be identical, 
i.e., θi

(5) =θi
(6) =..=θi

(10). It’s important to point 
out that this does not contradict with assumption 
(2) and (9) that defects are not equally detectable 
because these are only estimates of real defect 
detection rates and will be updated as testing 
proceeds. Note that the first detected defect 
locates in the first column of Θ and etc. Thus for 
decision making we only need to focus on 
column vectors θi

(1) to θi
(5) instead of the whole 

matrix. This means that the dimension of Θ can 
be limited to m × d instead of m × N which 
allows us to circumvent the parameter estimation 
problem of N which is itself a difficult problem 
for software engineering practitioners and 
scholars. Figure 4 depicts the defect detection 
rate matrix, whereas the dashed area is the 
reduced Θ. Note that parameters in the left 
painted region are equally unknown to tester and 
have identical estimates. 
 

 

   

( 1) ( ) ( 1) ( ) ( 1) ( )
1 1 1 1 1 1

( 1) ( ) ( 1) ( ) ( 1) ( )
2 2 2 1 2 2

( 1) ( ) ( 1) ( ) ( 1) ( )
1

                0

0 0
0 0

0
0 0

       

p p j p j p d p d N

p p j p j p d p d N

p p j p j p d p d N
m m m m m

θ θ θ θ θ θ
θ θ θ θ θ θ

θ θ θ θ θ θ

+ + + + + + +

+ + + + + + +

+ + + + + + +

 
 
 Θ =
 
 
 

… … … …
… … … …

# # # # … # # #
… … … …

 detected but not removed defectsremoved defects

    1                         1                                                                         

undetected defects

    p p j p j Np + + + +���	��
 � 	��	�
 ������� �������

 

Figure 4 Defect Detection Rate Matrix 
In order to obtain the estimates in Θ, a defect 
detection vector should be introduced, let  

[ ]1 2' , , , mθ θ θΘ = …                                     (8) 
where θi denotes the probability of detecting any 
defect (either previous detected or undetected) by 
taking action i. And it’s straight forward that 
there holds 

( )

1

,1
N

k
i i

k

i mθ θ
=

= ≤ ≤∑                                    (9) 

Suppose there are j detected but not removed 
defects and p already removed defects, then 

( ) ( 1)

1
0 ( )

j
k j

i i i
k p

p d jθ θ θ +

= +

= × + + − ×∑                   (10) 

Follow the RLSE approach, 'Θ  can be 
estimated online and experimental data proved 
its accuracy is desirable. Now there are two set 
of unknown variables, ( ) ( 1,2,..., )k

i k p jθ = +  the 
defect detection rates for detected but not 
removed defects, and ( 1)j

iθ +  the detection rate for 
each of the undetected defects. 
A natural estimation for ( ) ( 1,2,..., )k

i k p jθ = + is 
( ) number of detections of the th defect

number of test actions in class  applied
( 1,2,..., )

k
i

i

k
C

k p j

θ =

= +

             (11) 
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Note that this equation does not apply for 
undetected defects because the numerator always 
equals to zero.  
Finally we have the estimation algorithm for the 
failure detection rates of the undetected defects: 

( )

1( 1)

ˆ ˆ
ˆ

j
k

i i
k pj

i d p

θ θ
θ = ++

−
=

−

∑                             (12) 

where 
( )

1

ˆ
j

k
i

k p

θ
= +
∑ and îθ denotes the estimates 

of
( )

1

j
k

i
k p

θ
= +
∑ and iθ , respectively. 

The rationale behind the above algorithm is that 
information about detected defects which is 
known to the tester can be used to speculate 
information about the unknown defects. Also 
more complicated and accurate parameter 
estimation algorithm can be developed to 
improve accuracy. More details on the RLSE 
parameter estimation can be found in [7]. 
4.2 Adaptive Testing Strategy 
By using the certainty-equivalence principle or 
the method of substituting the estimates into 
optimal stationary controls, we treat Θ as the true 
values of the corresponding parameters and 
determine the optimal action based on these 
values. Consequently, we obtain the following 
adaptive control policy (adaptive software testing 
strategy): 
Step 1 Initialize parameters. Set 

0
ˆ ˆ , , 0 ,  an d  0 .X M j tΘ = Θ = = =

 If M = 1, then ( ){ }0

*
0 1

arg  min ;
i m

A w iξ≤ ≤
=   

  For other cases,  
 ( ) ( ) ( ) ( ){ }0

* * ( ) * (0)
0 1 11

arg  min 1k
i ii m

A w i v vξ θ ξ θ ξ
≤ ≤

= + + −  

Step 2 Observe the testing result by taking 
action At+1, i.e. whether a defect is 
detected. 

Step 3 Follow the parameters estimation 
algorithm in Section 3.1 to update Θ̂ .  

Step 4 Update the current software state by 
setting  X = X - 1. 

Step 5 Decide the optimal action. If X = 1, then 
( ){ }

1

*
0 1

arg min ;
Mi m

A w iξ −≤ ≤
=   . 

  For other cases, 
( ) ( ) ( ) ( ){ }* * ( ) * (0)

1 11
arg min 1

t

k
t i t i ti m

A w i v vξ θ ξ θ ξ+ +≤ ≤
= + + −  

Step 6 Observe the testing result by taking 
action At+1, i.e. whether a defect is 
detected. If so set 1j j= + . 

Step 7 If j d= then take action Am+1 to remove 
the detected d defects and set  

  1j j= + , ( ) 0,1 ,1k
i i m k dθ = ≤ ≤ ≤ ≤ . 

Step 8 If X = 0, then stop testing; otherwise go 
to Step 3. 

4.3 Reducing Computational Complexity 
A possible threat to the effectiveness of the 
above adaptive testing strategy is that in step 5 
the decision making process requires a recursive 
iteration to examine all possible subsequent 
states of the current state ξt. As pointed out in 
Section 3, the set of subsequent states of ξt grows 
exponentially, thus the computational overhead 
may be unacceptable for online decision making. 
Also it’s against common sense to use 
parameters at one time point to predict all 
possible future states. So it’s necessary to limit 
the depth of recursion to a small number. More 
specifically, instead of examining all possible 
future states till all M test actions are taken, only 
a number of future actions and their resulting 
states are examined.  
Following the above analysis, Proposition (6) is 
replaced by the following equation  

( )
( ){ }
( ) ( ) ( ) ( ){ }
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1

* * ( ) * (0)
1 11
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min  ;                                     if 
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w i v v
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ξ
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≤ ≤

+ +≤ ≤

=

<
=

+ + −

                               if tX s








≥

        (13) 

where s denotes the number of future test actions 
that will be examined, i.e., the recursion depth.  
5 Case Study 
In this section we present a case study to 
examine the effectiveness of the above Adaptive 
Testing (AT) strategy in context of the proposed 
improved CMC model.  
There are several variables in the improved 
model that affect the result of the experiments, 
which are: N, number of defects in the software; 
M, number of maximum allowed test cases; d, 
defect removal threshold and etc. The 
experiment scheme is designed to cover different 
combinations of these factors with different 
values. Two versions of the SPACE program [8] 
with different number of active defects are used 
to simulate software in different phases of testing. 
To compare the defect detecting (removing) 
performance between AT and RT, the total 
number of detected (removed) defect Td in each 
scenario is tabulated in Table 1. Note that in 
order to avoid bias, each scenario is 
experimented 100 times and the average Td over 
100 is calculated and presented in Table . Data 
show that AT outperforms RT in nine out of 
twelve scenarios. 
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Table 1 Average Number of Defect Detected 
(removed) Td  

 
However data in the above table shows that AT 
slightly outperforms RT in terms of total number 
of detected (removed) defect. So it’s also 
important to investigate the testing process and 
defect removal process, so one of the defect 
removal processes is depicted in Figure 5. The 
horizontal axle denotes the times of defect 
removal. The vertical axle denotes the 
cumulative number of test cases consumed for 
each defect removal. For example, 11th point of 
the random curve has a value of 300, which 
means it takes 300 test cases for RT to begin the 
11th defect removal, i.e., detects 11 x 3 = 33 
defects. 

 
Figure 5  Defect Removal Curve 

The above figure clearly depicts that AT 
consumes less test cases than RT to detect and 
remove defects throughout the testing process. 
The advantage increases as more defects are 
detected and removed.  
6 Conclusions 
In this paper we propose a new model for 
software testing that aim to reduce unrealistic 
assumptions adopted by previous models. Two 
major changes are made in the proposed model: 
first, we introduce batch debugging which no 
longer requires bugs to removed immediately 
upon detection; secondly, the assumption that all 
bugs are equally detectable is removed, i.e., each 
bug has its own detection rate now.  
A new adaptive software testing strategy is 
devised and implemented to incorporate the 
above changes. Experimental data on the SPACE 
program are collected and shows that under 
different scenarios, AT outperforms the 
traditional RT in both number of 
detected/removed defects and the cost of the 
testing process.  

Many future topics can be discussed, such as: 
more experiments on more general object 
programs; comparison with more advanced 
testing strategies; and further extend the 
assumptions to make it even more practical for 
real-life testing. 
7 References 
[1] K. Y. Cai, B. Gu, H. Hu, and Y. C. Li, “Adaptive 
software testing with fixed-memory feedback”, 
Journal of Systems and Software, vol.80(8), Aug 2007, 
pp. 1328-1348. 
[2] K. Y. Cai, C. H. Jiang, H. Hu, and C. G. Bai, “An 
Experimental Study of Adaptive Testing for Software 
Reliability Assessment”, Journal of Systems and 
Software,  available online, Dec 2007. 
[3] K. Y. Cai, Z. Dong, K. Li and C. G. Bai, “A 
Mathematical Modeling Framework For Software 
Reliability Testing”, International Journal of General 
Systems, vol.36(4), 2006, pp. 399-463(65). 
[4] H. Do and G. Rothermel, "On the Use of Mutation 
Faults in Empirical Assessments of Test Case 
Prioritization Techniques," IEEE Trans. on Software 
Engineering, vol.32 (9), Sept 2006, pp.733-752. 
[5] S. Elbaum, A. Malishevsky, and G. Rothermel, 
“Test Case Prioritization: A Family of Empirical 
Studies”, IEEE Trans. on Software Engineering, vol. 
28, Feb 2002, pp.159-182. 
[6] O. Hernandez-Lerma, Adaptive Markov Control 
Processes, Springer-Verlag, 1989. 
[7] H. Hu, W. E. Wong, C. H. Jiang, and K. Y. Cai, 
“A Case Study of the Recursive Least Squares 
Estimation Approach to Adaptive Testing for Software 
Components”, Proceedings of the Fifth international 
Conference on Quality Software (QSIC’05), 
Washington, DC, pp. 135-141. 
[8] H. Okamura, H. Furumura and T. Dohi, “On the 
Effect of Fault Removal in Software Testing - 
Bayesian Reliability Estimation Approach”, 
Proceedings of the 17th International Symposium on 
Software Reliability Engineering ISSRE '06, Nov 2006, 
pp.247-255. 
[9] G. Rothermel, R. H. Untch, C. Y. Chu and M. J. 
Harrold, “Prioritizing test cases for regression testing”, 
IEEE Trans. on Software Engineering, vol.27(10), Oct 
2002, pp.929-948. 

858858858

Authorized licensed use limited to: Louisiana State University. Downloaded on November 2, 2008 at 20:02 from IEEE Xplore.  Restrictions apply.


