

Compound TCP: A Scalable and TCP-Friendly
Congestion Control for High-speed Networks

Kun Tan Jingmin Song
Microsoft Research Asia

Beijing, China
{kuntan, jmsong}@microsoft.com

Qian Zhang
DCS, Hong Kong Univ. of Sci. & Tech

Hong Kong
qianzh@cs.ust.hk

Murari Sridharan
Microsoft Corporation

One Microsoft way, Redmond, WA,
USA

muraris@microsoft.com

Abstract –
Many applications require fast data transfer over high speed

and long distance networks. However, standard TCP fails to fully
utilize the network capacity in high-speed and long distance net-
works due to its conservative congestion control (CC) algorithm.
Some works have been proposed to improve the connection’s
throughput by adopting more aggressive loss-based CC algorithms,
which may severely decrease the throughput of regular TCP flows
sharing the network path. On the other hand, pure delay-based
approaches may not work well if they compete with loss-based
flows. In this paper, we propose a novel Compound TCP (CTCP)
approach, which is a synergy of delay-based and loss-based ap-
proach. More specifically, we add a scalable delay-based compo-
nent into the standard TCP Reno congestion avoidance algorithm
(a.k.a., the loss-based component). The sending rate of CTCP is
controlled by both components. This new delay-based component
can rapidly increase sending rate when the network path is under
utilized, but gracefully retreat in a busy network when a bottle-
neck queue is built. Augmented with this delay-based component,
CTCP provides very good bandwidth scalability and at the same
time achieves good TCP-fairness. We conduct extensive packet
level simulations and test our CTCP implementation on the Win-
dows platform over a production high-speed network link in the
Microsoft intranet. Our simulation and experiments results verify
the properties of CTCP.

I. INTRODUCTION

Moving bulk data quickly over high-speed data networks is a
requirement for many applications. Currently, most of the ap-
plications use the Transmission Control Protocol (TCP) to
transmit data over the Internet. TCP provides reliable data
transmission with an embedded congestion control algorithm
[1]. This effectively removes congestion collapses in the Inter-
net by adjusting the sending rate according to the available
bandwidth of the network. However, it has been reported that
TCP substantially underutilizes network bandwidth over high-
speed and long distance networks [2] due to its conservative
congestion control behavior.

Recent research has proposed many approaches to address
this issue. One class of approaches modifies the in-
crease/decrease parameters of the TCP congestion avoidance
algorithm (CAA) and makes it more aggressive. Like TCP,
approaches in this category are loss-based that use packet loss
as the only indication of congestion. Some typical proposals
include HSTCP [2], STCP [3], and BIC-TCP [5]. Another class
of approaches, by contrast, is delay-based, which deduce con-
gestion based on the round trip time (RTT) RTT variations, e.g.,
FAST TCP [4], and will gracefully reduce the sending rate
upon the increase of RTT. All aforementioned approaches are

shown to overcome TCP’s deficiencies in high bandwidth-delay
networks to some extent. However, in this paper, we argue that
besides the scalability property, a new high-speed protocol must
be TCP-friendly as well in order to be deployed progressively in
a production network. Here, we define the TCP-friendliness as
that the new protocol should not reduce the performance of
other regular TCP (Reno) flows competing on the same path.
This means that the high-speed protocols should only make bet-
ter use of free available bandwidth, but not steal bandwidth
from other flows.

For existing loss-based high-speed solutions (e.g. [2][3][5]),
it is essential to be highly aggressive to efficiently utilize the
link capacity. However, this aggressiveness also causes severe
unfairness to existing TCP (Reno) flows. This is because these
aggressive high-speed flows will generate much more self-
induced packet losses and therefore reduce the throughput of
regular TCP flows. On the other hand, delay-based approaches,
although they can achieve high efficiency and good RTT fair-
ness in a network where the majority flows are delay-based, will
suffer from significant low throughput if most competing flows
are loss-based, e.g. TCP-Reno. The reason is that delay-based
approaches reduce their sending rate when bottleneck queue
builds up in order to avoid self-induced packet losses. However,
this behavior will encourage loss-based flows to increase their
sending rate further as they may observe less packet loss. As a
consequence, the loss-based flows will obtain much more band-
width than their share, while delay-based flows may even be
starved.

In this paper, we propose a new congestion control protocol
for high-speed and long delay networks, which is scalable but at
the same time maintains a good TCP-friendly property. Our new
protocol is a synergy of both delay-based and loss-based con-
gestion avoidance approaches, which we name Compound TCP
(CTCP). The key idea of CTCP is to add a scalable delay-based
component into standard TCP. This delay-based component has
a scalable window increasing rule that not only can efficiently
probe the link capacity, but also reacts early to congestion by
sensing the changes in RTT (i.e. if a bottleneck queue is sensed,
the delay-based component gracefully reduces the sending rate.).
This way, CTCP achieves good TCP fairness.

 We conduct extensive packet level simulations using the NS
2 simulator [11]. We have also implemented CTCP on a Win-
dows platform and made some preliminary experiments over a
production high-speed backbone in the Microsoft intranet. The
simulation and the experiments results suggest that CTCP is a
promising algorithm to achieve both high link utilization and
good TCP fairness.

The rest of paper is organized as follows. In the next section,

we briefly review some existing approaches for high-speed net-
works. Then, we propose our design of CTCP in Section III.
We present performance evaluation of CTCP using simulations
in Section IV. CTCP implementation and experimental results
on a productive network are presented in Section V. We con-
clude the paper in Section VI.

II. RELATED WORKS

The standard TCP congestion avoidance algorithm employs
an additive increase and multiplicative decrease (AIMD)
scheme, which is very conservative to increase the congestion
window (cwnd) (one Maximum Segment Size (MSS) per RTT)
and very aggressive to decrease the window by half upon a
packet loss. For a high-speed and long delay network, it will
take standard TCP an unreasonably long time to recover the
sending rate after a single loss event. Moreover, it is well-
known now that the average TCP congestion window is in-
versely proportional to the square root of the packet loss rate.
Therefore, it requires an extremely small packet loss rate to
sustain a large window, which may not be practical in real net-
works.

One straightforward way to overcome this limitation is to
modify TCP’s increase/decrease control rule in its congestion
avoidance stage. More specifically, in the absence of packet
loss, the sender increases cwnd more quickly and decreases it
more gently upon a packet loss.

STCP [3] alters TCP’s AIMD congestion avoidance scheme
to MIMD (multiplicative increase and multiplicative decrease).
Specifically, STCP increases cwnd by 0.01 MSS on every re-
ceived ACK and reduces cwnd to its 0.875 times upon a packet
loss. HSTCP [2], on the other hand, still mimics the AIMD
scheme, but with varying increase/decrease parameters. As
cwnd increases from 38 packets to 83,333 packets, the decrease
parameter reduces from 0.5 to 0.1, while the increase parameter
increases accordingly. HSTCP is less aggressive than STCP,
but is far more aggressive than the standard TCP. In [5], BIC-
TCP is proposed to use a binary increase scheme and switching
to AIMD with constant parameters when cwnd is large. The
BIC’s growth function can still be too aggressive for TCP, es-
pecially under short RTT or low speed networks.

In a mixed network environment, the aggressive behavior of
the above approaches may severely degrade the performance of
regular TCP flows whenever the network path is already highly
utilized. When an aggressive high-speed variant flow traverses
the bottleneck link with other standard TCP flows, it may in-
crease its own share of bandwidth by reducing the throughput
of other competing TCP flows, as the aggressive high-speed
variants will cause much more self-induced packet losses on
bottleneck links, and push back the throughput of the regular
TCP flows.

Another class of high speed protocols, like FAST TCP [4],
chooses to design a new congestion control scheme which takes
RTT variances as a congestion indicator. These delay-based
approaches are more-or-less derived from seminal work of TCP
Vegas [7]. One core idea of delay-based congestion avoidance

is that the increase of RTT is considered as early indicator of
congestion, and the sending rate is reduced to avoid self-
induced buffer overflow. In this way, they will not cause large
queueing delay and reduce packet losses. FAST TCP can be
viewed as a scalable version of TCP Vegas. FAST TCP incor-
porates multiplicative increase if the buffer occupied by the
connection at the bottleneck is far less than some pre-defined
threshold α , and switches to linear increase if it is near α .
Then, FAST tries to maintain the buffer occupancy around α
and reduces the sending rate if the delay is further increased.
However, previous work reveals that delay-based approaches
may not be able to obtain fair share when they are competing
with loss-based approaches like standard TCP [12][13]. This
can be explained as follows. Consider a delay-based flow, e.g.
Vegas or FAST, shares a bottleneck link with a standard TCP.
Since the delay-based flow tries to maintain a small number of
packets in the bottleneck queue, it will stop increasing its send-
ing rate when the delay reaches some value. However, the loss-
based flow will not react to the increase of delay, and continues
to increase the sending rate. This, observed by the delay-based
flow, is considered as congestion indication and therefore the
sending rate of the delay-based flow is further reduced. In this
way, the delay-based flow may obtain far less bandwidth than its
fair share.

III. THE COMPOUND TCP

The design of Compound TCP is to satisfy to efficiency re-
quirement and TCP friendliness requirement simultaneously.
The key idea is that if the link is under-utilized, the high-speed
protocol should be aggressive and increase the sending rate
quickly. However, once the link is fully utilized, being aggres-
sive is no longer good, as it will only cause problems like TCP
unfairness. We note that delay-based approaches already have
this nice property of adjusting its aggressiveness based on the
link utilization, which is observed by the end-systems from the
increase in the packet delay. However, as mentioned in the pre-
vious section, the major weakness of delay-based approaches is
that they are not competitive to loss-based approaches. And this
weakness is difficult to be remedied by delay-based approaches
themselves.

Having made this observation, we propose to adopt a syner-
gic way that combines a loss-based approach with a delay-based
approach for high speed congestion control. For easy under-
standing, let’s imagine application A communicates with appli-
cation B simultaneously using two flows. One is a standard loss-
based TCP flow, and the other is a delay-based flow. When the
network is underutilized, A can get an aggregated communica-
tion throughput, with B, which is the sum of both flows. With
the increase of the sending rate, a queue is built at the bottleneck,
and the delay-based flow gradually reduces its sending rate. The
aggregated throughput for the communication may gradually
reduce but is bound by the standard TCP flow.

Then, there comes the core idea of our novel CTCP, which
incorporates a scalable delay-based component into the standard
TCP congestion avoidance algorithm. This scalable delay-based

component has a rapid window increase rule when the network
is sensed to be under-utilized and gracefully reduces the send-
ing rate once the bottleneck queue is built. With this delay-
based component as an auto-tuning knob, Compound TCP is
scalable yet TCP-friendly:

1) CTCP can efficiently use the network resource and
achieve high link utilization. In theory, CTCP can be very fast
to obtain free network bandwidth, by adopting a rapid increase
rule in the delay-based component, e.g. multiplicative increase.
However, in this paper, we choose CTCP to have similar ag-
gressiveness to obtain available bandwidth as HSTCP.

2) CTCP has good TCP-fairness. By employing the delay-
based component, CTCP can gracefully reduce the sending rate
when the link is fully utilized. In this way, a CTCP flow will
not cause more self-induced packet losses than a standard TCP
flow, and therefore maintains fairness to other competing regu-
lar TCP flows.

Note that CTCP also has improved RTT fairness compared
to regular TCP. This is due to the delay-based component em-
ployed in the CTCP congestion avoidance algorithm [9]. It is
known that delay-based flow, e.g. Vegas, has better RTT fair-
ness than the standard TCP.

A. Architecture
As explained earlier, CTCP is a synergy of a delay-based ap-

proach with a loss-based approach that implements a new scal-
able delay-based component within the standard TCP conges-
tion avoidance algorithm (called loss-based component). To do
so, a new state variable is introduced, namely, dwnd (Delay
Window), which controls this delay-based component in CTCP.
The conventional congestion window, cwnd, remains un-
touched, which controls the loss-based component in CTCP.
Then, the CTCP sending window now is controlled by both
cwnd and dwnd. Specifically, the TCP sending window (called
window hereafter) is now calculated as follows:

),min(awnddwndcwndwin += , (1)

where awnd is the advertised window from the receiver.
The update of dwnd will be elaborated in detail in next sub-

section, while the update of cwnd is in the same way as in the
regular TCP in the congestion avoidance phase, i.e., cwnd is
increased by one MSS every RTT and halved upon a packet
loss event. Therefore, the increment of cwnd on arrival of an
ACK is:

wincwndcwnd /1+= , (2)
where win is defined with equation (1).

Slow-Start behavior of regular TCP at the start-up of a new
connection does not change in CTCP. This is since we believe
slow-start, which exponentially increases the window, is quick
enough even for many fast and long distance environments we
target [2]. We initially set dwnd to zero if the connection is in
slow-start state, and the delay-based component is effective
only when the connection is working at congestion avoidance
phase.

B. Design of delay-based congestion avoidance
We design the delay-based congestion avoidance algorithm to

have the following properties. Firstly, it should have an aggres-
sive, scalable increase rule when the network is sensed to be
under-utilized. Secondly, it should also reduce the sending rate
accordingly when the network is sensed to be fully utilized. By
reducing its sending rate, the delay-based component yields
ways for competing TCP flows to ensure TCP fairness of CTCP.
Lastly, it should also react to packet losses. It is because packet
losses may still be an indicator of heavy congestion, and hence
reducing sending rate upon packet loss is a necessary conserva-
tive behavior to avoid congestion collapse.

Our algorithm for delay-based component is derived from
TCP Vegas. A state variable, called baseRTT, is maintained as
an estimation of the transmission delay of a packet over the
network path. When the connection is started, baseRTT is up-
dated by the minimal RTT that has been observed so far. An
exponentially smoothed current RTT, sRTT, is also maintained.
Note that both baseRTT and sRTT should be of high resolution.
Then, the number of backlogged packets of the connection can
be estimated by following algorithm:

baseRTTActualExpectedDiff

RTTwinActual

baseRTTwinExpected

⋅−=
=

=

)(

/

/
.

The Expected gives the estimation of throughput we get if we

do not overrun the network path. The Actual stands for the
throughput we really get. Then, (Expected – Actual) is the dif-
ference between the expected throughput and the actual
throughput. When multiplying by baseRTT, it stands for the
amount of data that injected into the network in last round but
does not pass through the network in this round, i.e. the amount
of data backlogged in the bottleneck queue. An early congestion
is detected if the number of packets in the queue is larger than a
threshold γ . If diff <γ , the network path is determined as un-
der-utilized; otherwise, the network path is considered as busy
and delay-based component should gracefully reduce its win-
dow.

The increase law of the delay-based component should make
CTCP more scalable in high-speed and long delay pipes. In this
paper, we choose the CTCP window evolution to have the bi-
nomial behavior. More specifically, when no congestion occurs
(i.e. sensing neither queuing delay nor packet losses), the CTCP
window increases as follows

ktwintwintwin)()()1(⋅+=+ α . (3)

If there is a loss, the window is multiplicatively decreased,
 ()β−⋅=+ 1)()1(twintwin . (4)

Parameters of α , β and k are tunable to give out desirable
scalability, smoothness and responsiveness, which will be dis-
cussed in detail in Section III.C.

Considering there is already a loss-based component in CTCP,

the delay-based component needs to be designed to only fill the
gap, and the overall CTCP should follow the behavior defined
in (3) and (4). We summarize the algorithm for the delay-based

component as in (5)

()
()

−−⋅

≥⋅−

<−⋅+

=+
+

+

+

detected is loss if ,2/)1()(

 if ,)(

 if ,)1)(()(

)1(

cwndtwin

diffdifftdwnd

difftwintdwnd

tdwnd

k

β
γζ

γα
, (5)

where (.)+ is defined as max (., 0). The first line shows that in
the increase phase, dwnd only needs to increase

+−⋅)1)((ktwinα packets, since the loss-based component

(cwnd) will also increase by 1 packet. Similarly, when there is a
loss, dwnd is set to the difference between the desired reduced
window size and that can be provided by cwnd. The rule on the
second line is important. It shows that dwnd does decrease
when the queue is built, and this is the core for CTCP to pre-
serve good TCP fairness. Here, ζ is a parameter that defines
how rapidly the delay-based component should reduce this
window when early congestion is detected. Note that dwnd will
never be negative. Therefore, CTCP window is low-bounded
by its loss-based component (i.e. a standard TCP).

In the above control laws, we assume the loss is detected by
three duplicate ACKs. If a retransmission timeout occurs, dwnd
should be reset to zero and the delay-based component is dis-
abled. This is since after a timeout, the TCP sender is put into
the slow-start state. After the CTCP sender exits the slow-start
recovery state, the delay-based component may be enabled
once more. Also, following the common practice of high-speed
protocols, CTCP also reverts to standard TCP behavior when
the window is small. Delay-based component only kicks in
when win is larger than some threshold,

lowW .

C. Parameter Setting

Our analysis [9] on CTCP has shown that if the network path
is underutilized and the queue is neglectable, the response func-
tion of CTCP is

() k

k

k
k

kk p
k

R −

−
−

−

−−

⋅

−
−−

−−⋅⋅
=Λ

2

1

2

1
2

12

1

1

2

)1(1

)1(1

1 β

βα

, (6)

where p is the packet loss rate and R is the round trip time.
 We intend to choose the CTCP parameters so it has similar
aggressiveness to HSTCP when the network is underutilized.
Therefore, by comparing equation (6) with the response func-
tion of HSTCP, we get 8.0=k ; 8/1=α ; and 2/1=β . Note
that, it is rather difficult to implement an arbitrary power calcu-
lation using integer algorithm. Therefore, we choose k equal to
0.75, which can be implemented with a fast integer algorithm of
square root.

The threshold γ is also an important parameter. From the
control law (5), we can see that it requires the connection to
have at least γ packets backlogged in the bottleneck queue to
detect early congestion. In previous work [9], we empirically
choose γ to be a fixed value. In this paper, we propose an
adaptive way that dynamically adjusts γ based on the network
configuration, which is named as gamma auto-tuning.

Consider a simple network model in Figure 1. Assume the

bottleneck router buffer can contain B packets and there are m
concurrent flows. So, the condition that the early detection of
CTCP is less effective is: a) there are less than γ packets buffer
allocated for each flow, or

m

B>γ ; (7)

and b) the delay-based component does kick in. This is equiva-
lent to the expected window of each flow is larger than

lowW ,

m

uTB
Wlow

+< , (8)

where Tu is the bandwidth delay production (BDP) of the link.
We further assume that the buffer deployed in the bottleneck

is a fraction of whole BDP, or uTB κ= . Simplifying equation
(7) and (8), we get

κ
κγ
+

⋅>
1lowW . (9)

Therefore, in order to avoid this case, we should have

)
1

,max(min κ
κγγ
+

⋅= lowW . (10)

where parameter κ can be estimated using

min

minmax

R

RR −=κ , (11)

where Rmax is the maximal RTT while Rmin is the maximal RTT
observed so far.

u

B
T

Figure 1. A simple network model.

IV. PERFORMANCE EVALUATION

In this section, we present some performance results regard-
ing the efficiency and TCP-friendliness of CTCP. We use NS-2
to conduct simulations on a typical dumbbell topology. The
bottleneck link capacity is set to 1Gbps unless otherwise pointed
out. Each simulation run lasts at least 150s. The parameter minγ
is set to 3 packets and

lowW is 41 packets.

1Gbps

10Gbps,
1ms

10Gbps,
1ms

Figure 2. The dumbbell topology. The bottleneck link capacity

is set to 1Gbps.

A. Throughput under random packet loss

The first simulation is to verify the ability that CTCP can ef-
fectively utilize the network link capacity. We set the RTT to
100ms in this simulation and bottleneck buffer size is 1500
packets. We artificially add random losses on the bottleneck
link, and the packet loss rate varies from 10-2 to 10-6. For each
loss rate, we test 4 flows of CTCP, HSTCP, and regular TCP,
respectively. Figure 3 shows the throughput for each type of
TCP variant. We see that regular TCP can not scale well with
increased packet loss rate. It can only use up to 73% of the link
capacity even with a very low packet loss rate 10-6. CTCP and
HSTCP have much higher link utilization, and the link is fully
utilized when the loss rate is less than 10-6. CTCP has a bit
higher throughput than HSTCP. This is since the delay-based
component in CTCP introduces much less self-induced loss
compared to HSTCP.

0

200

400

600

800

1000

1200

0.000001 0.00001 0.0001 0.001 0.01

Link loss rate

T
hr

ou
gh

pu
t (

M
bp

s)

CTCP HSTCP TCP-Reno

Figure 3. Aggregated throughput under different link packet

loss rate. The X-axis shows the artificially introduced random
loss rates on the bottleneck link.

B. TCP fairness under random packet loss

To quantify the throughput reduction of the regular TCP
flows due to the introduction of CTCP flows, we define a new
metric to measure the TCP fairness, named bandwidth stolen.

Definition 1: bandwidth stolen. Let P be the aggregated
throughput of m regular TCP flows when they compete with
another l regular TCP flows. Let Q be the aggregated through-
put of m regular TCP flows when they compete with another l
high-speed protocol flows in the same network topology. Then,

P

QP
Bstolen

−= is the bandwidth stolen by high-speed protocol

flows from regular TCP flows.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.000001 0.00001 0.0001 0.001 0.01

Packet loss rate

B
an

dw
id

th
 S

to
le

n

HSTCP CTCP

Figure 4. Bandwidth stolen under different link packet loss rate.
The x-axis shows the artificially introduced random loss rates

on the bottleneck link.

To calculate the bandwidth stolen, we first run eight regular
TCP flows and record the average throughput as the baseline.
Then, we run four high-speed flows against four regular TCP
flows. We compare the average throughput of the regular TCP
with the baseline. Figure 4 shows the bandwidth stolen of
HSTCP and CTCP under different random link packet loss rates.
The network setup is the same as previous simulation in Section
IV.A. We can see that with the decrease of link packet loss rate,
HSTCP becomes more aggressive and strongly pushes regular
TCP back to gain more bandwidth. It is clearly shown in the
figure that regular TCP flows have up to 63% throughput reduc-
tion. However, CTCP is much fairer to regular TCP and causes
less than 10% throughput reduction.

C. TCP fairness with various link speed

In this simulation, we vary the bottleneck bandwidth from
20Mbps to 1Gbps, and set RTT to 100ms. The bottleneck buff-
ers size is set to the BDP of the path. We run four high-speed
flows against four regular TCP flows. Figure 5 shows the band-
width stolen of HSTCP and CTCP. With the increase of bottle-
neck bandwidth, HSTCP becomes more and more unfair to
regular TCP as it becomes more aggressive. It causes the regular
TCP flow to have up to 80% throughput reduction. In all tested
cases, CTCP maintains TCP fairness very well.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

20M 100M 300M 500M 1G

Bottleneck Link Speed (bps)

B
an

dw
id

th
 S

to
le

n

HSTCP CTCP

Figure 5. Bandwidth stolen under different bottleneck link speed.

D. TCP fairness with various bottleneck buffer size

In this simulation, we maintain the bottleneck speed as
1Gbps and RTT as 100ms, and vary the bottleneck buffer size
from 300 packets (4% of BDP) to 6000 packets (72% of BDP).
We run four high-speed flows against four regular TCP flows.
Figure 6 shows the bandwidth stolen of HSTCP as well as
CTCP. It shows that HSTCP constantly causes severe through-
put reduction of regular TCP flows and therefore unfair to regu-
lar TCP. CTCP, however, preserves excellent TCP fairness in
the tested buffer range. Note that due to the adaptive γ setting,
CTCP can work well even if the bottleneck buffer is very small,
e.g. 4% of BDP.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

300 600 1000 2000 3000 4000 5000 6000

Buffer size (packet)

B
an

dw
id

th
 S

to
le

n

HSTCP CTCP

Figure 6. Bandwidth stolen with different buffer size at bottle-

neck router.

E. Reverse traffic
As the primary design goal of CTCP is to improve the con-

nection’s throughput without reducing the performance of
competing regular TCP flows, we choose to use the increase of
round trip time as an indication of early congestion. However,
there are some concerns on the impacts of reverse traffic on
CTCP, as the reverse traffic will generally add delay in the
ACK path and therefore enlarge the RTT. In [14], Cottrell et al
finds delay-based protocol, e.g. FAST, is “very handicapped by
reverse traffic”. In this section, we also evaluate the perform-
ance of CTCP under similar situations.

In our simulation, the bottleneck bandwidth is 1Gbps, and
the round trip delay is 30ms. We set the bottleneck buffer on
both forward and the reverse path to be 750 packets. We run
one forward flow (CTCP, HSTCP and regular TCP, respec-
tively) with different number of reverse regular TCP flows.
Table 1 summarizes the results. The first column shows the
number of reverse flows. For each forward flow type, namely
HSTCP, CTCP and regular TCP, column FW shows the
throughput of forward flow; column R shows the aggregated
throughput of reverse flow; and column Sum shows the summa-
tion of all flows.

We can see that CTCP constantly has lower throughput than
HSTCP. This reflects that the reverse traffic has impact on
CTCP throughput as it creates a queue on the reverse path that
delays ACKs. However, CTCP still has improved throughput

compared to regular TCP. This is reasonable since CTCP is
lower bounded by its loss-based component, and the delay-
based component of CTCP reacts to the increase of RTT by
reducing only its dwnd.

Another observation we have from the simulation is that the
forward flow also impacts the reverse flows. This is shown by
the aggregated throughput of reverse flows. The aggregated
throughput of reverse flows with HSTCP is constantly less than
that with CTCP or Regular TCP. For example, if the forward
flow is HSTCP, the aggregated throughput of two reverse flows
is 430Mbps, while this number is 662Mbps and 664Mbps, re-
spectively, if the forward flow is CTCP and regular TCP. More-
over, the summations of throughput of all flows including both
forward and reverse traffic are, surprisingly, very similar in all
tested cases (as shown in Column Sum). This suggests to us that
aggressive behavior in the forward path, for HSTCP, “trades”
some throughput of the reverse traffic to the forward throughput.
We hypothesize this is because the aggressive forward flow will
generate more ACKs on the reverse path, which are contending
for the buffer with the reverse data packets1 and may create
more packet losses in the reverse path. We plan to investigate
this problem further in our future work.

The queue on the reverse path suggests there is congestion on
the reverse path. Whether or not to react to the reverse conges-
tion is under debate. However, based on the conservative design
goal of CTCP, we believe reacting to both forward and back-
ward queue is a reasonable choice to be friendly to (both for-
ward and backward) regular TCP flows.

Table 1. Throughput under reverse traffic. Column RF# presents
the number of reverse flows. Column FW presents the through-
put of forward flow. Column R presents the aggregated
throughput of reverse flows. Column Sum presents the sum of
throughput including both forward and backward flows. The
unit of data is in Mbps.

HSTCP CTCP Regular TCP RF
FW R Sum FW R Sum FW R Sum
1 818 338 1156 557 496 1053 491 531 1022
2 705 430 1136 397 662 1059 357 664 1021
4 653 442 1096 307 842 1133 291 827 1134
8 648 437 1085 272 850 1121 243 876 1119

16 480 619 1099 300 898 1198 271 900 1170

V. EXPERIMENT ON A PRODUCTION NETWORK LINK

We have implemented CTCP on the Microsoft Windows
Platform by modifying the TCP/IP stack and we conduct some
preliminary experiments over a production network link from
Tukwila, WA, to the San Francisco Bay Area, California. The
link is a part of the high-speed backbone of the Microsoft intra-
net. The link capacity is 1Gbps and the round trip delay is

1 Many current routers allocate fixed memory slot for every packet. There-

fore, a small packet, like ACK, may occupy the same memory slot as a full
sized data packet.

around 30ms. There is some light-loading of cross-traffic on
this link. Since we can not control the traffic on the network,
the data presented below is the average of at least 5 runs for
experiments.

A. Throughput

We first test the throughput of CTCP over that link. We

separately test regular TCP and CTCP with one, two and three
concurrent flows. Figure 7 shows the throughput results of the
experiments. We can see CTCP generally improves the
throughput by 28% to 52% compared to regular TCP.

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

1 2 3

Concurrent flow number

A
gg

re
ga

te
d

th
ro

ug
hp

ut
 (

M
bp

s)

TCP CTCP

Figure 7. The aggregated throughput. The x-axis shows the

number of concurrent flows.

B. TCP friendliness

0.0

0.2

0.4

0.6

0.8

1.0

1:1 1:2 1:4 1:8 1:16

B
an

dw
id

th
 s

to
le

n

CTCP (Gamma autotuning) CTCP (Fixed Gamma)

Figure 8. The bandwidth stolen of CTCP with and without
gamma auto-tuning. The markers on x-axis, 1:n, mean that

there are one regular flow and n CTCP flows.

We conduct the following experiment to validate the TCP
friendliness property of our CTCP implementation. We run one
regular TCP flow simultaneously with several CTCP flows.
Then, we measure the bandwidth reduction of the regular TCP

flow with the increasing number of CTCP flows. Figure 8 shows
the bandwidth stolen of CTCP with and without automatic
gamma tuning. The dotted line presents the bandwidth stolen of
CTCP with fixed gamma, as proposed in [9]. With the increase
of concurrent CTCP flows, CTCP becomes more unfair to regu-
lar TCP. This is since the buffer provisioned on the network link
is only about 10% of its BDP. In this case, the pre-configured
γ =30 is much too high. With only a few concurrent flows, the
average buffer size occupied by a flow is less than γ , and there-
fore the delay-based component in CTCP does not work well.

However, with gamma auto-tuning, CTCP automatically
tunes a smaller γ based on the size of buffer provisioned on the
link. Therefore, CTCP keeps good TCP friendliness even with
more concurrent flows. Note that if there are a large number of
flows sharing the bottleneck, the average size of a buffer occu-
pied by a flow will eventually be less than γ , even with auto-
tuning. However, in this case, the aggressiveness of CTCP is
also reduced, since the average window size of a flow is much
smaller. As a consequence, it still keeps good TCP-friendliness.

C. Reverse traffic

We also repeat the experiments with reverse traffic on the
production network link. The results are presented in Figure 9.
It shows that CTCP does improve the performance of TCP even
with the presence of many reverse flows. These results are con-
sistent with the simulation results presented in Section IV.E.

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

1:1 1:2 1:4 1:8 1:16

T
hr

ou
gh

pu
t

(M
bp

s)

TCP CTCP

Figure 9. The throughput of the forward flow (CTCP and regu-
lar TCP, respectively) with reverse traffic. The markers on x-
axis, 1:n, mean that there are one forward flow and n reverse

regular TCP flows.

VI. CONCLUSIONS

In this paper, we present a novel congestion control algorithm
for high-speed and long delay networks. Our Compound TCP
approach combines a scalable delay-based component with a
standard TCP loss-based component. The delay-based compo-
nent can efficiently use free bandwidth with its scalable increas-
ing law. When the network is congested, the delay-based com-
ponent will gracefully reduce the sending rate, but the loss-

based component keeps the throughput of CTCP lower
bounded by TCP Reno. This way, CTCP will not be timid, nor
induce more self-induced packet losses than a single TCP Reno
flow, and therefore achieves good TCP fairness. We conducted
extensive packet level simulations to evaluate the performance
of CTCP. We also implemented CTCP on the Windows plat-
form and conducted preliminary tests over a production high-
speed network link in the Microsoft intranet. Our simulation
and experiments results verify that CTCP can effectively utilize
the link capacity, while at the same time maintaining excellent
TCP fairness.

VII. ACKNOWLEDGEMENTS

The authors are grateful to Les Cottrell for his constructive
comments and generous help for improving the presentation of
this paper. The authors also would like to thank the anonymous
reviewers for their insightful comments and suggestions.

REFERENCES
[1] M. Allman, V. Paxson and W. Stevens, “TCP Congestion Control”, RFC

2581, April 1999.
[2] S. Floyd, “HighSpeed TCP for Large Congestion Windows”, RFC 3649,

December 2003.

[3] Tom Kelly, “Scalable TCP: Improving Performance in HighSpeed Wide
Area Networks”, in First International Workshop on Protocols for Fast
Long Distance Networks, Geneva, February 2003.

[4] C. Jin, D. Wei and S. Low, “FAST TCP: Motivation, Architecture, Algo-
rithms, Performance”, In Proc IEEE Infocom 2004.

[5] L. Xu, K. Harfoush and I. Rhee, “Binary Increase Congestion Control
(BIC) for Fast Long-Distance Networks”, In Proc. IEEE InfoCOM 2004.

[6] B. Allcock, J. Bester, J. Bresnahan, A. L. Chervenak, I. Foster, C. Kes-
selman, S. Meder, V. Nefedova, D. Quesnel, and S. Tuecke, “Data man-
agement and transfer in high performance computational grid environ-
ments”, Parallel Computing, May 2002.

[7] L. Brakmo, S. O'Malley, and L. Peterson, “TCP Vegas: New techniques
for congestion detection and avoidance”, in Proceedings of the
SIGCOMM '94 Symposium, Aug. 1994.

[8] D. Bansal and H. Balakrishnan, “Binomial Congestion Control Algo-
rithms”, in Proc Infocom 2001.

[9] Kun Tan, Jingmin Song, Qian Zhang, “A Compound TCP Approach for
Fast Long Distance Networks”, Microsoft Technical Report, 2005.

[10] S. Floyd and K. Fall, “Promoting the Use of End-to-End Congestion Con-
trol in the Internet”, IEEE/ACM Trans. on Networking, August 1999.

[11] The Network Simulation - NS2. Available at
http://www.isi.edu/nsnam/ns/

[12] T. Bonald, “Comparison of TCP Reno and TCP Vegas via fluid approxi-
mation”, Performance Evaulation, 36(37):307-332, 1999.

[13] J. Mo, R.J. La, V. Anantharam, and J.Walrand, “Analysis and Compari-
son of TCP Reno and Vegas”, in Proceedings of INFOCOM ’99, March
1999.

[14] R. L. Cottrell, H. Bullot, and R. Hughes-Jones, “Evaluation of Advanced
TCP stacks on Fast Long-Distance production Networks”, in workshop of
Protocols for Fast Long Distance networks, 2004.

