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Abstract –  
Many applications require fast data transfer over high speed 

and long distance networks. However, standard TCP fails to fully 
utilize the network capacity in high-speed and long distance net-
works due to its conservative congestion control (CC) algorithm. 
Some works have been proposed to improve the connection’s 
throughput by adopting more aggressive loss-based CC algorithms, 
which may severely decrease the throughput of regular TCP flows 
sharing the network path. On the other hand, pure delay-based 
approaches may not work well if they compete with loss-based 
flows. In this paper, we propose a novel Compound TCP (CTCP) 
approach, which is a synergy of delay-based and loss-based ap-
proach. More specifically, we add a scalable delay-based compo-
nent into the standard TCP Reno congestion avoidance algorithm 
(a.k.a., the loss-based component). The sending rate of CTCP is 
controlled by both components. This new delay-based component 
can rapidly increase sending rate when the network path is under 
utilized, but gracefully retreat in a busy network when a bottle-
neck queue is built. Augmented with this delay-based component, 
CTCP provides very good bandwidth scalability and at the same 
time achieves good TCP-fairness. We conduct extensive packet 
level simulations and test our CTCP implementation on the Win-
dows platform over a production high-speed network link in the 
Microsoft intranet. Our simulation and experiments results verify 
the properties of CTCP. 
 

I. INTRODUCTION 

Moving bulk data quickly over high-speed data networks is a 
requirement for many applications. Currently, most of the ap-
plications use the Transmission Control Protocol (TCP) to 
transmit data over the Internet. TCP provides reliable data 
transmission with an embedded congestion control algorithm 
[1]. This effectively removes congestion collapses in the Inter-
net by adjusting the sending rate according to the available 
bandwidth of the network. However, it has been reported that 
TCP substantially underutilizes network bandwidth over high-
speed and long distance networks [2] due to its conservative 
congestion control behavior.  

Recent research has proposed many approaches to address 
this issue. One class of approaches modifies the in-
crease/decrease parameters of the TCP congestion avoidance 
algorithm (CAA) and makes it more aggressive. Like TCP, 
approaches in this category are loss-based that use packet loss 
as the only indication of congestion. Some typical proposals 
include HSTCP [2], STCP [3], and BIC-TCP [5]. Another class 
of approaches, by contrast, is delay-based, which deduce con-
gestion based on the round trip time (RTT) RTT variations, e.g., 
FAST TCP [4], and will gracefully reduce the sending rate 
upon the increase of RTT. All aforementioned approaches are 

shown to overcome TCP’s deficiencies in high bandwidth-delay 
networks to some extent. However, in this paper, we argue that 
besides the scalability property, a new high-speed protocol must 
be TCP-friendly as well in order to be deployed progressively in 
a production network. Here, we define the TCP-friendliness as 
that the new protocol should not reduce the performance of 
other regular TCP (Reno) flows competing on the same path. 
This means that the high-speed protocols should only make bet-
ter use of free available bandwidth, but not steal bandwidth 
from other flows. 

For existing loss-based high-speed solutions (e.g. [2][3][5]), 
it is essential to be highly aggressive to efficiently utilize the 
link capacity. However, this aggressiveness also causes severe 
unfairness to existing TCP (Reno) flows. This is because these 
aggressive high-speed flows will generate much more self-
induced packet losses and therefore reduce the throughput of 
regular TCP flows. On the other hand, delay-based approaches, 
although they can achieve high efficiency and good RTT fair-
ness in a network where the majority flows are delay-based, will 
suffer from significant low throughput if most competing flows 
are loss-based, e.g. TCP-Reno. The reason is that delay-based 
approaches reduce their sending rate when bottleneck queue 
builds up in order to avoid self-induced packet losses. However, 
this behavior will encourage loss-based flows to increase their 
sending rate further as they may observe less packet loss. As a 
consequence, the loss-based flows will obtain much more band-
width than their share, while delay-based flows may even be 
starved. 

In this paper, we propose a new congestion control protocol 
for high-speed and long delay networks, which is scalable but at 
the same time maintains a good TCP-friendly property. Our new 
protocol is a synergy of both delay-based and loss-based con-
gestion avoidance approaches, which we name Compound TCP 
(CTCP). The key idea of CTCP is to add a scalable delay-based 
component into standard TCP. This delay-based component has 
a scalable window increasing rule that not only can efficiently 
probe the link capacity, but also reacts early to congestion by 
sensing the changes in RTT (i.e. if a bottleneck queue is sensed, 
the delay-based component gracefully reduces the sending rate.). 
This way, CTCP achieves good TCP fairness. 

 We conduct extensive packet level simulations using the NS 
2 simulator [11]. We have also implemented CTCP on a Win-
dows platform and made some preliminary experiments over a 
production high-speed backbone in the Microsoft intranet. The 
simulation and the experiments results suggest that CTCP is a 
promising algorithm to achieve both high link utilization and 
good TCP fairness. 

The rest of paper is organized as follows. In the next section, 



 

we briefly review some existing approaches for high-speed net-
works. Then, we propose our design of CTCP in Section III. 
We present performance evaluation of CTCP using simulations 
in Section IV. CTCP implementation and experimental results 
on a productive network are presented in Section V. We con-
clude the paper in Section VI. 

 

II. RELATED WORKS 

The standard TCP congestion avoidance algorithm employs 
an additive increase and multiplicative decrease (AIMD) 
scheme, which is very conservative to increase the congestion 
window (cwnd) (one Maximum Segment Size (MSS) per RTT) 
and very aggressive to decrease the window by half upon a 
packet loss. For a high-speed and long delay network, it will 
take standard TCP an unreasonably long time to recover the 
sending rate after a single loss event. Moreover, it is well-
known now that the average TCP congestion window is in-
versely proportional to the square root of the packet loss rate. 
Therefore, it requires an extremely small packet loss rate to 
sustain a large window, which may not be practical in real net-
works.  

One straightforward way to overcome this limitation is to 
modify TCP’s increase/decrease control rule in its congestion 
avoidance stage. More specifically, in the absence of packet 
loss, the sender increases cwnd more quickly and decreases it 
more gently upon a packet loss.  

STCP [3] alters TCP’s AIMD congestion avoidance scheme 
to MIMD (multiplicative increase and multiplicative decrease). 
Specifically, STCP increases cwnd by 0.01 MSS on every re-
ceived ACK and reduces cwnd to its 0.875 times upon a packet 
loss. HSTCP [2], on the other hand, still mimics the AIMD 
scheme, but with varying increase/decrease parameters. As 
cwnd increases from 38 packets to 83,333 packets, the decrease 
parameter reduces from 0.5 to 0.1, while the increase parameter 
increases accordingly. HSTCP is less aggressive than STCP, 
but is far more aggressive than the standard TCP. In [5], BIC-
TCP is proposed to use a binary increase scheme and switching 
to AIMD with constant parameters when cwnd is large. The 
BIC’s growth function can still be too aggressive for TCP, es-
pecially under short RTT or low speed networks. 

In a mixed network environment, the aggressive behavior of 
the above approaches may severely degrade the performance of 
regular TCP flows whenever the network path is already highly 
utilized. When an aggressive high-speed variant flow traverses 
the bottleneck link with other standard TCP flows, it may in-
crease its own share of bandwidth by reducing the throughput 
of other competing TCP flows, as the aggressive high-speed 
variants will cause much more self-induced packet losses on 
bottleneck links, and push back the throughput of the regular 
TCP flows.  

Another class of high speed protocols, like FAST TCP [4], 
chooses to design a new congestion control scheme which takes 
RTT variances as a congestion indicator. These delay-based 
approaches are more-or-less derived from seminal work of TCP 
Vegas [7]. One core idea of delay-based congestion avoidance 

is that the increase of RTT is considered as early indicator of 
congestion, and the sending rate is reduced to avoid self-
induced buffer overflow. In this way, they will not cause large 
queueing delay and reduce packet losses. FAST TCP can be 
viewed as a scalable version of TCP Vegas. FAST TCP incor-
porates multiplicative increase if the buffer occupied by the 
connection at the bottleneck is far less than some pre-defined 
threshold α , and switches to linear increase if it is near α . 
Then, FAST tries to maintain the buffer occupancy around α  
and reduces the sending rate if the delay is further increased. 
However, previous work reveals that delay-based approaches 
may not be able to obtain fair share when they are competing 
with loss-based approaches like standard TCP [12][13]. This 
can be explained as follows. Consider a delay-based flow, e.g. 
Vegas or FAST, shares a bottleneck link with a standard TCP. 
Since the delay-based flow tries to maintain a small number of 
packets in the bottleneck queue, it will stop increasing its send-
ing rate when the delay reaches some value. However, the loss-
based flow will not react to the increase of delay, and continues 
to increase the sending rate. This, observed by the delay-based 
flow, is considered as congestion indication and therefore the 
sending rate of the delay-based flow is further reduced. In this 
way, the delay-based flow may obtain far less bandwidth than its 
fair share.  

 

III. THE COMPOUND TCP 

The design of Compound TCP is to satisfy to efficiency re-
quirement and TCP friendliness requirement simultaneously. 
The key idea is that if the link is under-utilized, the high-speed 
protocol should be aggressive and increase the sending rate 
quickly. However, once the link is fully utilized, being aggres-
sive is no longer good, as it will only cause problems like TCP 
unfairness. We note that delay-based approaches already have 
this nice property of adjusting its aggressiveness based on the 
link utilization, which is observed by the end-systems from the 
increase in the packet delay. However, as mentioned in the pre-
vious section, the major weakness of delay-based approaches is 
that they are not competitive to loss-based approaches. And this 
weakness is difficult to be remedied by delay-based approaches 
themselves.  

Having made this observation, we propose to adopt a syner-
gic way that combines a loss-based approach with a delay-based 
approach for high speed congestion control. For easy under-
standing, let’s imagine application A communicates with appli-
cation B simultaneously using two flows. One is a standard loss-
based TCP flow, and the other is a delay-based flow. When the 
network is underutilized, A can get an aggregated communica-
tion throughput, with B, which is the sum of both flows. With 
the increase of the sending rate, a queue is built at the bottleneck, 
and the delay-based flow gradually reduces its sending rate. The 
aggregated throughput for the communication may gradually 
reduce but is bound by the standard TCP flow.  

Then, there comes the core idea of our novel CTCP, which 
incorporates a scalable delay-based component into the standard 
TCP congestion avoidance algorithm. This scalable delay-based 



 

component has a rapid window increase rule when the network 
is sensed to be under-utilized and gracefully reduces the send-
ing rate once the bottleneck queue is built. With this delay-
based component as an auto-tuning knob, Compound TCP is 
scalable yet TCP-friendly: 

1) CTCP can efficiently use the network resource and 
achieve high link utilization. In theory, CTCP can be very fast 
to obtain free network bandwidth, by adopting a rapid increase 
rule in the delay-based component, e.g. multiplicative increase. 
However, in this paper, we choose CTCP to have similar ag-
gressiveness to obtain available bandwidth as HSTCP.  

2) CTCP has good TCP-fairness. By employing the delay-
based component, CTCP can gracefully reduce the sending rate 
when the link is fully utilized. In this way, a CTCP flow will 
not cause more self-induced packet losses than a standard TCP 
flow, and therefore maintains fairness to other competing regu-
lar TCP flows. 

Note that CTCP also has improved RTT fairness compared 
to regular TCP. This is due to the delay-based component em-
ployed in the CTCP congestion avoidance algorithm [9]. It is 
known that delay-based flow, e.g. Vegas, has better RTT fair-
ness than the standard TCP. 

 

A. Architecture 
As explained earlier, CTCP is a synergy of a delay-based ap-

proach with a loss-based approach that implements a new scal-
able delay-based component within the standard TCP conges-
tion avoidance algorithm (called loss-based component). To do 
so, a new state variable is introduced, namely, dwnd (Delay 
Window), which controls this delay-based component in CTCP. 
The conventional congestion window, cwnd, remains un-
touched, which controls the loss-based component in CTCP. 
Then, the CTCP sending window now is controlled by both 
cwnd and dwnd. Specifically, the TCP sending window (called 
window hereafter) is now calculated as follows: 

),min( awnddwndcwndwin +=  ,         (1) 

where awnd is the advertised window from the receiver. 
The update of dwnd will be elaborated in detail in next sub-

section, while the update of cwnd is in the same way as in the 
regular TCP in the congestion avoidance phase, i.e., cwnd is 
increased by one MSS every RTT and halved upon a packet 
loss event. Therefore, the increment of cwnd on arrival of an 
ACK is: 

wincwndcwnd /1+= ,                   (2) 
where win is defined with equation (1). 
 

Slow-Start behavior of regular TCP at the start-up of a new 
connection does not change in CTCP. This is since we believe 
slow-start, which exponentially increases the window, is quick 
enough even for many fast and long distance environments we 
target [2]. We initially set dwnd to zero if the connection is in 
slow-start state, and the delay-based component is effective 
only when the connection is working at congestion avoidance 
phase. 

 

B. Design of delay-based congestion avoidance 
We design the delay-based congestion avoidance algorithm to 

have the following properties. Firstly, it should have an aggres-
sive, scalable increase rule when the network is sensed to be 
under-utilized. Secondly, it should also reduce the sending rate 
accordingly when the network is sensed to be fully utilized. By 
reducing its sending rate, the delay-based component yields 
ways for competing TCP flows to ensure TCP fairness of CTCP. 
Lastly, it should also react to packet losses. It is because packet 
losses may still be an indicator of heavy congestion, and hence 
reducing sending rate upon packet loss is a necessary conserva-
tive behavior to avoid congestion collapse. 

Our algorithm for delay-based component is derived from 
TCP Vegas. A state variable, called baseRTT, is maintained as 
an estimation of the transmission delay of a packet over the 
network path. When the connection is started, baseRTT is up-
dated by the minimal RTT that has been observed so far. An 
exponentially smoothed current RTT, sRTT, is also maintained. 
Note that both baseRTT and sRTT should be of high resolution. 
Then, the number of backlogged packets of the connection can 
be estimated by following algorithm: 

baseRTTActualExpectedDiff

RTTwinActual

baseRTTwinExpected

⋅−=
=

=

)(

/

/
. 

 
The Expected gives the estimation of throughput we get if we 

do not overrun the network path. The Actual stands for the 
throughput we really get. Then, (Expected – Actual) is the dif-
ference between the expected throughput and the actual 
throughput. When multiplying by baseRTT, it stands for the 
amount of data that injected into the network in last round but 
does not pass through the network in this round, i.e. the amount 
of data backlogged in the bottleneck queue. An early congestion 
is detected if the number of packets in the queue is larger than a 
threshold γ . If diff <γ , the network path is determined as un-
der-utilized; otherwise, the network path is considered as busy 
and delay-based component should gracefully reduce its win-
dow. 

The increase law of the delay-based component should make 
CTCP more scalable in high-speed and long delay pipes. In this 
paper, we choose the CTCP window evolution to have the bi-
nomial behavior. More specifically, when no congestion occurs 
(i.e. sensing neither queuing delay nor packet losses), the CTCP 
window increases as follows 

ktwintwintwin )()()1( ⋅+=+ α .           (3) 

If there is a loss, the window is multiplicatively decreased,  
 ( )β−⋅=+ 1)()1( twintwin .             (4) 

Parameters of α , β  and k are tunable to give out desirable 
scalability, smoothness and responsiveness, which will be dis-
cussed in detail in Section III.C. 

 
Considering there is already a loss-based component in CTCP, 

the delay-based component needs to be designed to only fill the 
gap, and the overall CTCP should follow the behavior defined 
in (3) and (4). We summarize the algorithm for the delay-based 



 

component as in (5) 
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where (.)+ is defined as max (., 0 ). The first line shows that in 
the increase phase, dwnd only needs to increase 

+−⋅ )1)(( ktwinα  packets, since the loss-based component 

(cwnd) will also increase by 1 packet. Similarly, when there is a 
loss, dwnd is set to the difference between the desired reduced 
window size and that can be provided by cwnd. The rule on the 
second line is important. It shows that dwnd does decrease 
when the queue is built, and this is the core for CTCP to pre-
serve good TCP fairness. Here, ζ  is a parameter that defines 
how rapidly the delay-based component should reduce this 
window when early congestion is detected. Note that dwnd will 
never be negative. Therefore, CTCP window is low-bounded 
by its loss-based component (i.e. a standard TCP). 

In the above control laws, we assume the loss is detected by 
three duplicate ACKs. If a retransmission timeout occurs, dwnd 
should be reset to zero and the delay-based component is dis-
abled. This is since after a timeout, the TCP sender is put into 
the slow-start state. After the CTCP sender exits the slow-start 
recovery state, the delay-based component may be enabled 
once more. Also, following the common practice of high-speed 
protocols, CTCP also reverts to standard TCP behavior when 
the window is small. Delay-based component only kicks in 
when win is larger than some threshold, 

lowW .  

C. Parameter Setting 

Our analysis [9] on CTCP has shown that if the network path 
is underutilized and the queue is neglectable, the response func-
tion of CTCP is  

( ) k
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,    (6) 

where p is the packet loss rate and R is the round trip time. 
 We intend to choose the CTCP parameters so it has similar 
aggressiveness to HSTCP when the network is underutilized. 
Therefore, by comparing equation (6) with the response func-
tion of HSTCP, we get 8.0=k ; 8/1=α ; and 2/1=β . Note 
that, it is rather difficult to implement an arbitrary power calcu-
lation using integer algorithm. Therefore, we choose k equal to 
0.75, which can be implemented with a fast integer algorithm of 
square root.  
 

The threshold γ  is also an important parameter. From the 
control law (5), we can see that it requires the connection to 
have at least γ  packets backlogged in the bottleneck queue to 
detect early congestion. In previous work [9], we empirically 
choose γ  to be a fixed value. In this paper, we propose an 
adaptive way that dynamically adjusts γ  based on the network 
configuration, which is named as gamma auto-tuning.  

 
Consider a simple network model in Figure 1.  Assume the 

bottleneck router buffer can contain B packets and there are m 
concurrent flows. So, the condition that the early detection of 
CTCP is less effective is: a) there are less than γ packets buffer 
allocated for each flow, or  

m

B>γ ;                     (7) 

and b) the delay-based component does kick in. This is equiva-
lent to the expected window of each flow is larger than 

lowW ,  

 
m

uTB
Wlow

+< ,                 (8) 

where Tu is the bandwidth delay production (BDP) of the link. 
We further assume that the buffer deployed in the bottleneck 

is a fraction of whole BDP, or uTB κ= . Simplifying equation 
(7) and (8), we get 

κ
κγ
+

⋅>
1lowW .               (9) 

 
Therefore, in order to avoid this case, we should have 

)
1

,max( min κ
κγγ
+

⋅= lowW .            (10) 

where parameter κ can be estimated using  

min

minmax

R

RR −=κ ,               (11) 

where Rmax is the maximal RTT while Rmin is the maximal RTT 
observed so far.  

u

B
T

 
Figure 1. A simple network model. 

 
 

IV. PERFORMANCE EVALUATION 

In this section, we present some performance results regard-
ing the efficiency and TCP-friendliness of CTCP. We use NS-2 
to conduct simulations on a typical dumbbell topology. The 
bottleneck link capacity is set to 1Gbps unless otherwise pointed 
out. Each simulation run lasts at least 150s. The parameter minγ  
is set to 3 packets and 

lowW  is 41 packets. 

 
 

1Gbps

10Gbps,
1ms

10Gbps,
1ms

 
Figure 2. The dumbbell topology. The bottleneck link capacity 

is set to 1Gbps. 
 



 

A. Throughput under random packet loss 

The first simulation is to verify the ability that CTCP can ef-
fectively utilize the network link capacity. We set the RTT to 
100ms in this simulation and bottleneck buffer size is 1500 
packets. We artificially add random losses on the bottleneck 
link, and the packet loss rate varies from 10-2 to 10-6. For each 
loss rate, we test 4 flows of CTCP, HSTCP, and regular TCP, 
respectively. Figure 3 shows the throughput for each type of 
TCP variant. We see that regular TCP can not scale well with 
increased packet loss rate. It can only use up to 73% of the link 
capacity even with a very low packet loss rate 10-6. CTCP and 
HSTCP have much higher link utilization, and the link is fully 
utilized when the loss rate is less than 10-6. CTCP has a bit 
higher throughput than HSTCP. This is since the delay-based 
component in CTCP introduces much less self-induced loss 
compared to HSTCP. 
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Figure 3. Aggregated throughput under different link packet 

loss rate. The X-axis shows the artificially introduced random 
loss rates on the bottleneck link. 

 
 

B. TCP fairness under random packet loss 

To quantify the throughput reduction of the regular TCP 
flows due to the introduction of CTCP flows, we define a new 
metric to measure the TCP fairness, named bandwidth stolen. 

Definition 1: bandwidth stolen.  Let P be the aggregated 
throughput of m regular TCP flows when they compete with 
another l regular TCP flows. Let Q be the aggregated through-
put of m regular TCP flows when they compete with another l 
high-speed protocol flows in the same network topology. Then, 

P

QP
Bstolen

−=  is the bandwidth stolen by high-speed protocol 

flows from regular TCP flows. 
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Figure 4. Bandwidth stolen under different link packet loss rate. 
The x-axis shows the artificially introduced random loss rates 

on the bottleneck link. 
 

To calculate the bandwidth stolen, we first run eight regular 
TCP flows and record the average throughput as the baseline. 
Then, we run four high-speed flows against four regular TCP 
flows. We compare the average throughput of the regular TCP 
with the baseline. Figure 4 shows the bandwidth stolen of 
HSTCP and CTCP under different random link packet loss rates. 
The network setup is the same as previous simulation in Section 
IV.A. We can see that with the decrease of link packet loss rate, 
HSTCP becomes more aggressive and strongly pushes regular 
TCP back to gain more bandwidth. It is clearly shown in the 
figure that regular TCP flows have up to 63% throughput reduc-
tion. However, CTCP is much fairer to regular TCP and causes 
less than 10% throughput reduction. 

C. TCP fairness with various link speed 

In this simulation, we vary the bottleneck bandwidth from 
20Mbps to 1Gbps, and set RTT to 100ms. The bottleneck buff-
ers size is set to the BDP of the path. We run four high-speed 
flows against four regular TCP flows. Figure 5 shows the band-
width stolen of HSTCP and CTCP. With the increase of bottle-
neck bandwidth, HSTCP becomes more and more unfair to 
regular TCP as it becomes more aggressive. It causes the regular 
TCP flow to have up to 80% throughput reduction. In all tested 
cases, CTCP maintains TCP fairness very well.  
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Figure 5. Bandwidth stolen under different bottleneck link speed. 

 



 

D. TCP fairness with various bottleneck buffer size 

In this simulation, we maintain the bottleneck speed as 
1Gbps and RTT as 100ms, and vary the bottleneck buffer size 
from 300 packets (4% of BDP) to 6000 packets (72% of BDP). 
We run four high-speed flows against four regular TCP flows. 
Figure 6 shows the bandwidth stolen of HSTCP as well as 
CTCP. It shows that HSTCP constantly causes severe through-
put reduction of regular TCP flows and therefore unfair to regu-
lar TCP. CTCP, however, preserves excellent TCP fairness in 
the tested buffer range. Note that due to the adaptive γ  setting, 
CTCP can work well even if the bottleneck buffer is very small, 
e.g. 4% of BDP. 
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Figure 6. Bandwidth stolen with different buffer size at bottle-

neck router. 
 

E. Reverse traffic 
As the primary design goal of CTCP is to improve the con-

nection’s throughput without reducing the performance of 
competing regular TCP flows, we choose to use the increase of 
round trip time as an indication of early congestion. However, 
there are some concerns on the impacts of reverse traffic on 
CTCP, as the reverse traffic will generally add delay in the 
ACK path and therefore enlarge the RTT. In [14], Cottrell et al 
finds delay-based protocol, e.g. FAST, is “very handicapped by 
reverse traffic”. In this section, we also evaluate the perform-
ance of CTCP under similar situations.  

In our simulation, the bottleneck bandwidth is 1Gbps, and 
the round trip delay is 30ms. We set the bottleneck buffer on 
both forward and the reverse path to be 750 packets. We run 
one forward flow (CTCP, HSTCP and regular TCP, respec-
tively) with different number of reverse regular TCP flows. 
Table 1 summarizes the results. The first column shows the 
number of reverse flows. For each forward flow type, namely 
HSTCP, CTCP and regular TCP, column FW shows the 
throughput of forward flow; column R shows the aggregated 
throughput of reverse flow; and column Sum shows the summa-
tion of all flows. 

We can see that CTCP constantly has lower throughput than 
HSTCP. This reflects that the reverse traffic has impact on 
CTCP throughput as it creates a queue on the reverse path that 
delays ACKs. However, CTCP still has improved throughput 

compared to regular TCP. This is reasonable since CTCP is 
lower bounded by its loss-based component, and the delay-
based component of CTCP reacts to the increase of RTT by 
reducing only its dwnd.  

Another observation we have from the simulation is that the 
forward flow also impacts the reverse flows. This is shown by 
the aggregated throughput of reverse flows. The aggregated 
throughput of reverse flows with HSTCP is constantly less than 
that with CTCP or Regular TCP. For example, if the forward 
flow is HSTCP, the aggregated throughput of two reverse flows 
is 430Mbps, while this number is 662Mbps and 664Mbps, re-
spectively, if the forward flow is CTCP and regular TCP. More-
over, the summations of throughput of all flows including both 
forward and reverse traffic are, surprisingly, very similar in all 
tested cases (as shown in Column Sum). This suggests to us that 
aggressive behavior in the forward path, for HSTCP, “trades” 
some throughput of the reverse traffic to the forward throughput. 
We hypothesize this is because the aggressive forward flow will 
generate more ACKs on the reverse path, which are contending 
for the buffer with the reverse data packets1 and may create 
more packet losses in the reverse path. We plan to investigate 
this problem further in our future work. 

The queue on the reverse path suggests there is congestion on 
the reverse path. Whether or not to react to the reverse conges-
tion is under debate. However, based on the conservative design 
goal of CTCP, we believe reacting to both forward and back-
ward queue is a reasonable choice to be friendly to (both for-
ward and backward) regular TCP flows. 

 
 

Table 1. Throughput under reverse traffic. Column RF# presents 
the number of reverse flows. Column FW presents the through-
put of forward flow. Column R presents the aggregated 
throughput of reverse flows. Column Sum presents the sum of 
throughput including both forward and backward flows. The 
unit of data is in Mbps. 

HSTCP CTCP Regular TCP RF 
# FW R Sum FW R Sum FW R Sum 
1 818  338  1156  557  496  1053  491  531  1022  
2 705  430  1136  397  662  1059  357  664  1021  
4 653  442  1096  307  842  1133  291  827  1134  
8 648  437  1085  272  850  1121  243  876  1119  

16 480  619  1099  300  898  1198  271  900  1170  

 

V. EXPERIMENT ON A PRODUCTION NETWORK LINK 

We have implemented CTCP on the Microsoft Windows 
Platform by modifying the TCP/IP stack and we conduct some 
preliminary experiments over a production network link from 
Tukwila, WA, to the San Francisco Bay Area, California. The 
link is a part of the high-speed backbone of the Microsoft intra-
net. The link capacity is 1Gbps and the round trip delay is 

 
1 Many current routers allocate fixed memory slot for every packet. There-

fore, a small packet, like ACK, may occupy the same memory slot as a full 
sized data packet. 



 

around 30ms. There is some light-loading of cross-traffic on 
this link. Since we can not control the traffic on the network, 
the data presented below is the average of at least 5 runs for 
experiments. 

 

A. Throughput 

 
We first test the throughput of CTCP over that link. We 

separately test regular TCP and CTCP with one, two and three 
concurrent flows. Figure 7 shows the throughput results of the 
experiments. We can see CTCP generally improves the 
throughput by 28% to 52% compared to regular TCP. 
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Figure 7. The aggregated throughput. The x-axis shows the 

number of concurrent flows. 
 

B. TCP friendliness 
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Figure 8. The bandwidth stolen of CTCP with and without 
gamma auto-tuning. The markers on x-axis, 1:n, mean that 

there are one regular flow and n CTCP flows.  
 
 

We conduct the following experiment to validate the TCP 
friendliness property of our CTCP implementation. We run one 
regular TCP flow simultaneously with several CTCP flows. 
Then, we measure the bandwidth reduction of the regular TCP 

flow with the increasing number of CTCP flows. Figure 8 shows 
the bandwidth stolen of CTCP with and without automatic 
gamma tuning. The dotted line presents the bandwidth stolen of 
CTCP with fixed gamma, as proposed in [9]. With the increase 
of concurrent CTCP flows, CTCP becomes more unfair to regu-
lar TCP. This is since the buffer provisioned on the network link 
is only about 10% of its BDP. In this case, the pre-configured 
γ =30 is much too high. With only a few concurrent flows, the 
average buffer size occupied by a flow is less than γ , and there-
fore the delay-based component in CTCP does not work well.  

However, with gamma auto-tuning, CTCP automatically 
tunes a smaller γ  based on the size of buffer provisioned on the 
link. Therefore, CTCP keeps good TCP friendliness even with 
more concurrent flows. Note that if there are a large number of 
flows sharing the bottleneck, the average size of a buffer occu-
pied by a flow will eventually be less than γ , even with auto-
tuning. However, in this case, the aggressiveness of CTCP is 
also reduced, since the average window size of a flow is much 
smaller.  As a consequence, it still keeps good TCP-friendliness. 
 

C. Reverse traffic 

We also repeat the experiments with reverse traffic on the 
production network link. The results are presented in Figure 9. 
It shows that CTCP does improve the performance of TCP even 
with the presence of many reverse flows. These results are con-
sistent with the simulation results presented in Section IV.E. 
 

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

1:1 1:2 1:4 1:8 1:16

T
hr

ou
gh

pu
t 

(M
bp

s)

TCP CTCP

 
Figure 9. The throughput of the forward flow (CTCP and regu-
lar TCP, respectively) with reverse traffic. The markers on x-
axis, 1:n, mean that there are one forward flow and n reverse 

regular TCP flows. 
 

VI. CONCLUSIONS 

In this paper, we present a novel congestion control algorithm 
for high-speed and long delay networks. Our Compound TCP 
approach combines a scalable delay-based component with a 
standard TCP loss-based component. The delay-based compo-
nent can efficiently use free bandwidth with its scalable increas-
ing law. When the network is congested, the delay-based com-
ponent will gracefully reduce the sending rate, but the loss-



 

based component keeps the throughput of CTCP lower 
bounded by TCP Reno. This way, CTCP will not be timid, nor 
induce more self-induced packet losses than a single TCP Reno 
flow, and therefore achieves good TCP fairness. We conducted 
extensive packet level simulations to evaluate the performance 
of CTCP. We also implemented CTCP on the Windows plat-
form and conducted preliminary tests over a production high-
speed network link in the Microsoft intranet. Our simulation 
and experiments results verify that CTCP can effectively utilize 
the link capacity, while at the same time maintaining excellent 
TCP fairness. 
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