Contents

Foreword				xxi
Preface				xxiii
Ack	Acknowledgements			
		C		
Cha	apter	1. Ent	terprise Data Mining: A Review and Research	
		Dir	rections, by T. W. Liao	1
1.	Intro	oduction	n	2
2.	The	Basics	of Data Mining and Knowledge Discovery	6
	2.1	Data n	nining and the knowledge discovery process	6
	2.2	Data n	nining algorithms/methodologies	9
	2.3	Data n	nining system architectures	12
	2.4	Data n	nining software programs	14
3.	3. Types and Characteristics of Enterprise Data			
4.	. Overview of the Enterprise Data Mining Activities			23
	4.1	Custor	mer related	23
	4.2	Sales	related	30
	4.3	Produ	ct related	37
	4.4	Produ	ction planning and control related	43
	4.5	Logist	gistics related	
	4.6	Proces	ss related	55
		4.6.1	For the semi-conductor industry	55
		4.6.2	For the electronics industry	63
		4.6.3	For the process industry	72
		4.6.4	For other industries	79
	4.7	Others	3	83
	4.8	Summ	nary	87
		4.8.1	Data type, size, and sources	87
		4.8.2	Data preprocessing	88
5.	5. Discussion			90

6.	Research Programs and Directions	91			
	6.1 On e-commerce and web mining	91			
	6.2 On customer-related mining	92			
	6.3 On sales-related mining	93			
	6.4 On product-related mining	94			
	6.5 On process-related mining	94			
	6.6 On the use of text mining in enterprise systems	95			
Ret	References				
Au	thor's Biographical Statement	109			
Ch	apter 2. Application and Comparison of Classification				
	Techniques in Controlling Credit Risk, by L. Yu,				
	G. Chen, A. Koronios, S. Zhu, and X. Guo	111			
1.	Credit Risk and Credit Rating	112			
2.	Data and Variables	115			
3.	Classification Techniques	115			
	3.1 Logistic regression	116			
	3.2 Discriminant analysis	117			
	3.3 K-nearest neighbors	119			
	3.4 Naïve Bayes	120			
	3.5 The TAN technique	121			
	3.6 Decision trees	122			
	3.7 Associative classification	124			
	3.8 Artificial neural networks	126			
	3.9 Support vector machines	129			
4.	An Empirical Study	131			
	4.1 Experimental settings	131			
	4.2 The ROC curve and the Delong-Pearson method	133			
	4.3 Experimental results	135			
5.	Conclusions and Future Work	139			
Ret	erences	140			
Au	thors' Biographical Statements	144			
Ch	apter 3. Predictive Classification with Imbalanced Enterprise				
	Data, by S. Daskalaki, I. Kopanas, and N. M. Avouris	147			
1.	Introduction	148			
2.	Enterprise Data and Predictive Classification	151			
3.	The Process of Knowledge Discovery from Enterprise Data	154			

The Process of Knowledge Discovery from Enterprise Data		
3.1	Definition of the problem and application domain	155
3.2	Creating a target database	156
3.3	Data cleaning and preprocessing	157

viii

Contents

	3.4	Data 1	reduction and projection	159
	3.5	Defin	ing the data mining function and performance measures	160
	3.6	Select	tion of data mining algorithms	163
	3.7	Exper	imentation with data mining algorithms	164
	3.8	Comb	ining classifiers and interpretation of the results	167
	3.9	Using	the discovered knowledge	171
4.	Dev	elopme	ent of a Cost-Based Evaluation Framework	171
5.	Ope	rationa	lization of the Discovered Knowledge: Design of an	
	Inte	lligent 1	Insolvencies Management System	178
6.	Sun	nmary a	nd Conclusions	181
Re	ferenc	ces		183
Au	thors	' Biogra	aphical Statements	187
Ch	apter	•4. Usi	ing Soft Computing Methods for Time Series	
		Fo	recasting, by PC. Chang and YW. Wang	189
1.	Intr	oductio	n	190
	1.1	Backg	ground and motives	190
	1.2	Objec	tives	191
2.	Lite	rature F	Review	191
	2.1	Tradit	tional time series forecasting research	191
	2.2	Neura	l network based forecasting methods	192
	2.3	Hybri	dizing a genetic algorithm (GA) with a neural network	
		for for	recasting	193
		2.3.1	Using a GA to design the NN architecture	193
		2.3.2	Using a GA to generate the NN connection weights	194
	2.4	Revie	w of sales forecasting research	194
3.	Prol	olem De	efinition	200
	3.1	Scope	e of the research data	200
	3.2	Chara	cteristics of the variables considered	200
		3.2.1	Macroeconomic domain	200
		3.2.2	Downstream demand domain	201
		3.2.3	Industrial production domain	202
		3.2.4	Time series domain	202
	3.3	The p	erformance index	202
4.	Met	hodolo	gy	203
	4.1	Data I	preprocessing	203
		4.1.1	Gray relation analysis	203
		4.1.2	Winter's exponential smoothing	207
	4.2	Evolv	ing neural networks (ENN)	209
		4.2.1	ENN modeling	209
		4.2.2	ENN parameters design	214

ix

	4.3	Weigh	nted evolving fuzzy neural networks (WEFuNN)	218
		4.3.1	Building of the WEFuNN	218
			4.3.1.1 The feed-forward learning phase	220
			4.3.1.2 The forecasting phase	226
		4.3.2	WEFuNN parameters design	227
5.	Exp	eriment	tal Results	229
	5.1	Winte	r's exponential smoothing	230
	5.2	The B	PN model	230
	5.3	Multi	ple regression analysis model	231
	5.4	Evolv	ing fuzzy neural network model (EFuNN)	232
	5.5	Evolv	ing neural network (ENN)	233
	5.6	Comp	arisons	235
6.	Con	clusion	S	236
Ref	ferenc	es		237
Ap	pendi	х		243
Au	thors'	Biogra	aphical Statements	246
Ch	anter	5 Dat	ta Mining Applications of Process Platform	
CII	apter	For	rmation for High Variety Production,	
		by .	J. Jiao and L. Zhang	247
1.	Bacl	kground	d	248
2.	Met	hodolog	gy	249
3.	Rou	ting Sir	milarity Measure	251
	3.1	Node	content similarity measure	251
		3.1.1	Material similarity measure	252
			3.1.1.1 Procedure for calculating similarities	
			between primitive components	253
			3.1.1.2 Procedure for calculating similarities	
			between compound components	257
		3.1.2	Product similarity measure	258
		3.1.3	Resource similarity measure	258
		3.1.4	Operation similarity and node content similarity	
			measures	259
		3.1.5	Normalized node content similarity matrix	260
	3.2	Tree s	structure similarity measure	261
	3.3	ROU	similarity measure	265
4.	ROU	J Clust	ering	265
5.	ROU	J Unifi	cation	267
	5.1	Basic	routing elements	267
	5.2	Maste	er and selective routing elements	267
	5.3	Basic	tree structures	268

5.4 Tree growing

269

Contents	xi
6. A Case Study6.1 The routing similarity measure	275 275
6.2 The ROU clustering	281
6.3 The ROU unification	282
7. Summary	283
References	284
Authors' Biographical Statements	286
Chapter 6. A Data Mining Approach to Production Control in	
Dynamic Manufacturing Systems,	
by HS. Min and Y. Yih	287
1. Introduction	288
2. Previous Approaches to Scheduling of Wafer Fabrication	291
3. Simulation Model and Solution Methodology	294
3.1 Simulation model	294
3.2 Development of a scheduler	298
3.2.1 Decision variables and decision rules	298
3.2.2 Evaluation criteria: system performance and status	300
3.2.3 Data collection: a simulation approach	300
3.2.4 Data classification: a competitive neural network	201
approach	301
3.2.5 Selection of decision rules for decision variables	306
4. An Experimental Study	306
4.1 Experimental design	300
4.2 Results and analyses	309
5. Related Studies	213
0. Conclusions	210
Authors? Discussional Statements	201
Autnors Biographical Statements	321
Chapter 7. Predicting Wine Quality from Agricultural Data with	
Single-Objective and Multi-Objective Data Mining	
Aigorithms, by M. Last, S. Einekave, A. Naor,	202
and V. Schoenfeld	323
1. Introduction	324 225
 Problem Description Information Naturally and the Information Crawle 	323
5. Information Networks and the information Graph	329
5.1 An extended classification task	329
5.2 Single-objective information networks	330
5.5 IVIUIU-ODJECUVE INFORMATION NETWORKS	330
5.4 Information graphs	338

3.4 Information graphs

4.	A Ca	ase Study: the Cabernet Sauvignon problem	342
	4.1	Data selection	342
	4.2	Data pre-processing	344
		4.2.1 Ripening data	344
		4.2.2 Meteorological measurements	347
	4.3	Design of data mining runs	349
	4.4	Single-objective models	350
	4.5	Multi-objective models	353
	4.6	Comparative evaluation	355
	4.7	The knowledge discovered and its potential use	357
5.	Rela	ted Work	358
	5.1	Mining of agricultural data	358
	5.2	Multi-objective classification models and algorithms	359
6.	Cone	clusions	361
Re	ferenc	es	362
Au	thors'	Biographical Statements	364

	Ex	cellence for High-Tech Industry through Data Minin	g
	and	d Digital Management, by CF. Chien and SC. Hsu	367
Intro	oductio	n	368
Kno	wledge	e Discovery in Databases and Data Mining	370
2.1	Proble	em types for data mining in the high-tech industry	373
2.2	Data 1	mining methodologies	374
	2.2.1	Decision trees	374
		2.2.1.1 Decision tree construction	375
		2.2.1.2 CART	379
		2.2.1.3 C4.5	380
		2.2.1.4 CHAID	382
	2.2.2	Artificial neural networks	383
		2.2.2.1 Associate learning networks	386
		2.2.2.2 Supervised learning networks	388
		2.2.2.3 Unsupervised learning networks	390
Арр	licatior	n of Data Mining in Semiconductor Manufacturing	393
3.1	Proble	em definition	393
3.2	Types	s of data mining applications	395
	3.2.1	Extracting characteristics from WAT data	396
	3.2.2	Process failure diagnosis of CP and engineering data	397
	3.2.3	Process failure diagnosis of WAT and engineering data	ı 398
	3.2.4	Extracting characteristics from semiconductor	
		manufacturing data	399
	Intro Kno 2.1 2.2 App 3.1 3.2	Ex and Introductio Knowledge 2.1 Proble 2.2 Data 1 2.2.1 2.2.2 Application 3.1 Proble 3.2 Types 3.2.1 3.2.2 3.2.3 3.2.4	Excellence for High-Tech Industry through Data Mining and Digital Management, by CF. Chien and SC. Hsu Introduction Knowledge Discovery in Databases and Data Mining 2.1 Problem types for data mining in the high-tech industry 2.2 Data mining methodologies 2.2.1 Decision trees 2.2.1.1 Decision tree construction 2.2.1.2 CART 2.2.1.3 C4.5 2.2.1.4 CHAID 2.2.2 Artificial neural networks 2.2.2.1 Associate learning networks 2.2.2.2 Supervised learning networks 2.2.2.3 Unsupervised learning networks 2.2.2.3 Unsupervised learning networks Application of Data Mining in Semiconductor Manufacturing 3.1 Problem definition 3.2 Types of data mining applications 3.2.1 Extracting characteristics from WAT data 3.2.3 Process failure diagnosis of CP and engineering data 3.2.4 Extracting characteristics from semiconductor manufacturing data

Contents	xiii
3.3 A Hybrid decision tree approach for CP low yield diagnosis	400
3.4 Key stage screening	402
3.5 Construction of the decision tree	404
4. Conclusions	406
References	407
Authors' Biographical Statements	411
Chapter 9. Multivariate Control Charts from a Data Mining	
Perspective, by G. C. Porzio and G. Ragozini	413
1. Introduction	414
2. Control Charts and Statistical Process Control Phases	415
3. Multivariate Statistical Process Control	419
3.1 The sequential quality control setting	419
3.2 The hotelling T^2 control chart	421
4. Is the T^2 Statistic Really Able to Tackle Data Mining Issues?	424
4.1 Many data, many outliers	424
4.2 Questioning the assumptions on shape and distribution	430
5. Designing Nonparametric Charts When Large HDS Are Available:	
the Data Depth Approach	434
5.1 Data depth and control charts	436
5.2 Towards a parametric setting for data depth control charts	438
5.3 A Shewhart chart for changes in location and increases in scale	442
5.4 An illustrative example	443
5.5 Average run length functions for data depth control charts	446
5.6 A simulation study of chart performance	448
5.7 Choosing an empirical depth function	453
0. Final Remarks	454
References	456
Autnors Biographical Statements	462
Chapter 10. Data Mining of Multi-Dimensional Functional Data	
for Manufacturing Fault Diagnosis, by M. K. Jeong,	462
S. G. Kong, and O. A. Omitaomu	463
1. Introduction 2. Data Mining of Experiencel Data	464
2. Data Mining of Functional Data 2.1. Dimensionality reduction to the investigated by the	400
2.1 Dimensionality reduction techniques for functional data	403
2.2 INIUII-scale fault diagnosis	408 460
2.2.1 A case study: data mining of functional data	409
2.5 Motor shall misalignment prediction based on functional data	41Z 474
2.5.1 Techniques for predicting with high number of predictors	4/4
2.3.2 A case study: motor shaft misalignment prediction	4//

3.	Data	Mining in Hyperspectral Imaging	481
	3.1	A hyperspectral fluorescence imaging system	483
	3.2	Hyperspectral image dimensionality reduction	485
	3.3	Spectral band selection	490
	3.4	A case study: data mining in hyperspectral imaging	494
4.	Con	clusions	496
References			497
Aut	Authors' Biographical Statements		

Chapter 11. Maintenance Planning Using Enterprise Data Mining,

xiv

Ulla	apter	11. 10	antenance Flaming Using Enterprise Data Winnig,		
		by	L. P. Khoo, Z. W. Zhong, and H. Y. Lim	505	
1.	. Introduction				
2.	Rou	gh Sets	, Genetic Algorithms, and Tabu Search	508	
	2.1	Rough	1 sets	508	
		2.1.1	Overview	508	
		2.1.2	Rough sets and fuzzy sets	509	
		2.1.3	Applications	510	
		2.1.4	The strengths of the theory of rough sets	511	
		2.1.5	Enterprise information and the information system	512	
	2.2	Geneti	ic algorithms	516	
	2.3	Tabu s	search	520	
3.	The	Propos	ed Hybrid Approach	521	
	3.1	Backg	round	521	
	3.2	The ro	ough set engine	521	
	3.3	The ta	bu-enhanced GA engine	523	
	3.4	Rule o	organizer	528	
4.	A C	ase Stud	dy	528	
	4.1	Backg	round	528	
		4.1.1	Mounting bracket failures	531	
		4.1.2	The alignment problem	532	
		4.1.3	Sea/land inner/outer guide roller failures	532	
	4.2	Analy	sis using the proposed hybrid approach	532	
	4.3	Discus	ssion	537	
		4.3.1	Validity of the extracted rules	537	
		4.3.2	A comparative analysis of the results	538	
5.	Con	clusion	S	540	
Ref	References 54			541	
Aut	hors'	Biogra	phical Statements	544	

Contents

Chapter 12. Data Mining Techniques for Improving Workflow			
	_	Model, by D. Gunopulos and S. Subramaniam	545
1.	Intr	oduction	546
2.	Workflow Models 5		
3.	Dise	covery of Models from Workflow Logs	552
4.	Maı	naging Flexible Workflow Systems	555
5.	Wo	rkflow Optimization Through Mining of Workflow Logs	557
	5.1	Repositioning decision points	557
	5.2	Prediction of execution paths	560
6.	Cap	turing the Evolution of Workflow Models	565
7.	App	lications in Software Engineering	566
	7.1	Discovering reasons for bugs in software processes	567
	7.2	Predicting the control flow of a software process for efficient	
		resource management	568
8.	Con	clusions	569
Re	feren	ces	569
Au	thors	'Biographical Statements	576
Ch	apter	r 13. Mining Images of Cell-Based Assays, by P. Perner	577
1.	Intr	oduction	578
2.	The	Application Used for the Demonstration of the System Capability	580
3.	Cha	llenges and Requirements for the Systems	582
4.	The	Cell-Interpret's Architecture	582
5.	Cas	e-Based Image Segmentation	584
	5.1	The case-based reasoning unit	585
	5.2	Management of case bases	587
6.	Fea	ture Extraction	588
	6.1	Our flexible texture descriptor	589
7.	The	Decision Tree Induction Unit	591
	7.1	The basic principle	591
	7.2	Terminology of the decision tree	592
	7.3	Subtasks and design criteria for decision tree induction	594
	7.4	Attribute selection criteria	597
		7.4.1 Information gain criteria and the gain ratio	598
		7.4.2 The Gini function	600
	7.5	Discretization of attribute values	601
		7.5.1 Binary discretization	603
		7.5.1.1 Binary discretization based on entropy	603
		7.5.1.2 Discretization based on inter- and intra-class	
		variance	604

XV

		7.5.2	Multi-in	terval discretization	605
			7.5.2.1	The basic (Search strategies) algorithm	606
			7.5.2.2	Determination of the number of intervals	606
			7.5.2.3	Cluster utility criteria	607
			7.5.2.4	MLD-based criteria	607
			7.5.2.5	LVQ-based discretization	608
			7.5.2.6	Histogram-based discretization	609
			7.5.2.7	Chi-Merge discretization	610
		7.5.3	The infl	uence of discretization methods on the resulting	
			decision	tree	612
		7.5.4	Discretiz	zation of categorical or symbolic attributes	614
			7.5.4.1	Manual abstraction of attribute values	614
			7.5.4.2	Automatic aggregation	615
	7.6	Prunir	ıg		615
		7.6.1	Overvie	w of pruning methods	617
		7.6.2	Cost-con	mplexity pruning	617
	7.7	Some	general re	emarks	618
8.	The	Case-B	ased Rea	soning Unit	621
9.	Con	cept Cl	ustering a	s Knowledge Discovery	623
10.	The	Overal	l Image N	Iining Procedure	627
	10.1	A case	e study		629
	10.2	Brains	storming a	and image catalogue	629
	10.3	The in	terviewir	ng process	630
	10.4	Collec	tion of in	nage descriptions into the database	630
	10.5 The image mining experiment			631	
	10.6 Review				
	10.7	Lesso	ns learned	1	635
11.	Con	clusion	s and Fut	ure Work	636
Ref	erenc	es			637
Aut	hor's	Biogra	phical St	atement	641
		14 0			
Cha	apter	14. St	ipport V	ector Machines and Applications,	(10)
4	.	by	T.B. Ir	afalis and O. O. Oladunni	643
1.	Intro	duction	1		644
2.	Func	lamenta	als of Sup	oport Vector Machines	646
	2.1	Linear	separabi	lity	646
	2.2	Linear	'insepara		649
	2.5	INONIII	iear sepai		032 654
	2.4	Nume	The AN	ng Daarblaa	034 654
		2.4.1	The AN	D problem	654
		2.4.2	The XO	K problem	656

xvi

3.	Lea	st Squares Support Vector Machines	657
4.	Mul	ti-Classification Support Vector Machines	662
	4.1	The one-against-all (OAA) method	662
	4.2	The one-against-one (OAO) method	664
	4.3	Pairwise multi-classification support vector machines	665
	4.4	Further techniques based on central representation of the	
		version space	672
5.	Son	ne Applications	674
	5.1	Enterprise modeling (novelty detection)	674
	5.2	Non-enterprise modeling application (multiphase flow)	679
6.	Con	clusions	681
References			682
Au	thors	Biographical Statements	689
CI.		15 A Comment (Marticella David I complete Matheda	
Ch	apter	15. A Survey of Manifold-Based Learning Methods,	(01
1	Tata	by A. Huo, A. Ni, and A. K. Smith	691
1.	Intro	oduction	092 604
Ζ.	Surv	Crown 1. Drivering learning analysis (DCA)	094 605
	2.1	Group 1: Principal component analysis (PCA)	093
	2.2	Group 2: Semi-classical methods: multidimensional	(07
		scaling (MDS)	697
	2.2	2.2.1 Solving MDS as an eigenvalue problem	698
	2.3	Group 3: Manifold searching methods	699
		2.3.1 Generative topographic mapping (GTM)	699 701
		2.3.2 Locally linear embedding (LLE)	701
	2.4	2.3.3 ISOMAP	703
	2.4	Group 4: Methods from spectral theory	704
		2.4.1 Laplacian eigenmaps	/04
	2.5	2.4.2 Hessian eigenmaps	/06
2	2.5	Group 5: Methods based on global alignment	707
3.	Uni	fication via the Null-Space Method	708
	3.1	LLE as a null-space based method	709
	3.2	LTSA as a null-space based method	711
	3.3	Comparison between LTSA and LLE	712
4.	Prin	ciples Guiding the Methodological Developments	713
	4.1	Sufficient dimension reduction	713
	4.2	Desired statistical properties	714
		4.2.1 Consistency	714
		4.2.2 Rate of convergence	715
		4.2.3 Exhaustiveness	715
		4.2.4 Robustness	716

xvii

Contents

	4.3	Initial results	716
		4.3.1 Formulation and related open questions	716
		4.3.2 Consistency of LTSA	718
5.	Exai	mples and Potential Applications	722
	5.1	Successes of manifold based methods on synthetic data	722
		5.1.1 Examples of LTSA recovering implicit parameterization	722
		5.1.2 Examples of Locally Linear Projection (LLP) in denoising	724
	5.2	Curve clustering	725
	5.3	Image detection	728
		5.3.1 Formulation	731
		5.3.2 Distance to manifold	732
		5.3.3 SRA: the significance run algorithm	733
		5.3.4 Parameter estimation	734
		5.3.4.1 Number of nearest neighbors	734
		5.3.4.2 Local dimension	734
		5.3.5 Simulations	736
		5.3.6 Discussion	738
	5.4	Application on the localization of sensor networks	738
6. Conclusions 74			740
References 7-			741
Authors' Biographical Statements 74.			745
Cha	Chapter 16. Predictive Regression Modeling for Small Enterprise		
		Data Sets with Bootstrap, Clustering, and Bagging,	
	-	by C. J. Feng and K. Erla	747
1.	Intro	oduction	748
2.	Liter	rature Review	750
	2.1	Tree-based classifiers and the bootstrap 0.632 rule	750
	2.2	Bagging	751
3.	Met	hodology	753
	3.1	The data modeling procedure	753
	3.2	Bootstrap sampling	753
	3.3	Selecting the best subset regression model	756
	3.4	Evaluation of prediction errors	758
		3.4.1 Prediction error evaluation	758
	2.5	3.4.2 The 0.632 prediction error	759
	3.5	Cluster analysis	760
4	3.6	Bagging	/60
4.	A C	omputational Study	/61
	4.1	I ne experimental data	761 761
	4.2	Computational results	/61

Contents	xix
5. Conclusions	770
References	771
Authors' Biographic Statements	774
Subject Index	775
List of Contributors	779
About the Editors	785