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Abstract: The core of operations research is the development of approaches for optimal decison making. A
prominent classof such problemsismulti-criteriadecision making (MCDM). Thetypica MCDM problem dealswith
the evaluation of a set of alternatives in terms of a set of decision criteria. This paper provides a comprehensive
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1 Multi-Attribute Decision Making: A General Overview

Multi-Attribute Decision Making is the most well known branch of decision making. It isabranch of a
genera class of Operations Research (or OR) models which deal with decision problems under the presence of a
number of decision criteria. This super class of models is very often called multi-criteria decision making (or
MCDM). According to many authors (see, for instance, [Zimmermann, 1991]) MCDM is divided into
Multi-Objective Decision Making (or MODM) and Multi-Attribute Decision Making (or MADM).

MODM studies decision problems in which the decision space is continuous. A typical exampleis
mathematical programming problems with multiple objective functions. The first reference to this problem, aso
known as the "vector-maximum” problem, is attributed to [Kuhn and Tucker, 1951]. On the other hand, MADM
concentrates on problems with discrete decision spaces. In these problems the set of decision alternatives has been
predetermined.

Although MADM methods may bewidely diverse, many of them have certain aspectsin common [Chen and
Hwang, 1992]. These are the notions of alternatives, and attributes (or criteria, goals) as described next.

Alternatives:

Alternatives represent the different choices of action available to the decision maker. Usudly, the set of aternatives
is assumed to be finite, ranging from severa to hundreds. They are supposed to be screened, prioritized and
eventually ranked.

Multiple attributes:




Each MADM problem is associated with multiple attributes. Attributes are also referred to as "goals' or "decision
criteria”. Attributes represent the different dimensions from which the aternatives can be viewed.

In casesin which the number of attributesislarge (e.g., more than afew dozens), attributes may be arranged
inahierarchical manner. That is, some attributes may be major attributes. Each major attribute may be associated
with several sub-attributes. Similarly, each sub-attribute may be associated with several sub-sub-attributes and so
on. Although some MADM methods may explicitly consider ahierarchical structurein the attributes of a problem,
most of them assume a single level of attributes (e.g., no hierarchical structure).

Conflict among attributes:
Since different attributes represent different dimensions of the alternatives, they may conflict with each other. For
instance cost may conflict with profit, etc.

I ncommensurable units:

Different attributes may be associated with different units of measure. For instance, in the case of buying aused car,
the attributes "cost" and "mileage" may be measured in terms of dollars and thousands of miles, respectively. Itis
this nature of having to consider different units which makes MADM to be intrinsically hard to solve.

Decision weights:
Most of the MADM methods require that the attributes be assigned weights of importance. Usualy, these weights
are normalized to add up to one. How these weights can be determined is described in section 6.2.

Decision matrix:

An MADM problem can be easily expressed in matrix format. A decision matrix A isan (M x N) matrix in which
element a; indicates the performance of aternative A; when it is evaluated in terms of decision criterion C;, (for i =
123,..,M,andj =1,23,..., N). Itisasoassumed that the decision maker has determined the weights of relative
performance of the decision criteria(denoted asW, for j = 1,2,3,..., N). Thisinformationisbest summarizedinfigure
1. Giventhe previousdefinitions, then the general MADM problem can be defined asfollows [Zimmermann, 1991]:

Definition 1-1:

Let A={ A, fori=1,23,... ,M} bea (finite) set of decision alternativesand G = {g;, forj = 1,2,3,..., N} a (finite)
set of goals according to which the desirability of an action isjudged. Determine the optimal alternative A" with
the highest degree of desirability with respect to all relevant goals g.

Criteria
C, G, G, . Cy
Alt. W, W, W Wi
A a &, 3 N
A, axn =) Q3 PN
A a A3, A3 2N
A A A2 Az N

Figure1l: A Typical Decison Matrix.

Very often, however, in the literature the goals g, are aso called decision criteria, or just criteria (Since the



alternatives need to be judged (eva uated) in terms of these goals). Another equivalent term isattributes. Therefore,
theterms MADM and MCDM have been used very often to mean the same class of models (i.e., MADM). For these
reasons, in this paper we will use the terms MADM and MCDM to denote the same concept.

2 Classification of MCDM Methods

Asit was stated in the previous section, there are many MADM methods available in the literature. Each
method has its own characteristics. There are many ways one can classfy MADM methods. Oneway isto classify
them according to thetype of the datathey use. That is, we havedeter minigtic, stochastic, or fuzzy MADM methods
(for an overview of fuzzy MADM methods see [Chen and Hwang, 1992]). However, there may be situations which
involve combinations of all the above (such as stochastic and fuzzy data) data types.

Another way of classifying MADM methods is according to the number of decision makersinvolved in the
decision process. Hence, we have single decision maker MADM methods and gr oup decision making MADM (for
moreinformation on thelater class, theinterested reader may want to check the journal of Group Decison M aking).
In this paper we concentrate our attention on single decision maker deterministic MADM methods.

In [Chen and Hwang, 1992] deterministic -- single decision maker -- MADM methods were also classified
according to the type of information and the salient features of the information. The WSM, AHP, revised AHP,
WPM, and TOPSI S methods are the ones which are used mostly in practice today and are described in later sections.
Finally, it should be stated herethat there are many other aternativewaysfor classifying MADM methods[Chen and
Hwang, 1992]. However, the previous ones are the most widely used approachesin the MADM literature.

3 Some MCDM Application Areas

Some of the industrial engineering applications of MCDM include the use of decision analysisin integrated
manufacturing [Putrus, 1990], in the eval uation of technology investment decisions[Boucher and McStravic, 1991],
in flexible manufacturing systems [Wabalickis, 1988], layout design [Cambron and Evans, 1991], and also in other
engineering problems [Wang and Raz, 1991]. Asanillustrative application consider the case in which one wishes
to upgrade the computer system of a computer integrated manufacturing (CIM) facility. There is a number of
different configurations available to choose from. The different systems are the alternatives. A decision should also
consider issues such as: cost, performance characteristics (i.e., CPU speed, memory capacity, RAM size, etc.),
availahility of software, maintenance, expendability, etc. These may be some of the decision criteriafor this problem.
In the above problem we are interested in determining the best alternative (i.e., computer system). In some other
situations, however, one may be interested in determining the relative importance of al the alternatives under
congderation. For instance, if one is interested in funding a set of competing projects (which now are the
aternatives), then therelativeimportance of these projectsisrequired (so the budget can be distributed proportionally
to their relative importances).

Multi-criteria decison-making (MCDM) plays a critical role in many real life problems. It is not an
exaggeration to argue that almost any local or federal government, industry, or business activity involves, in oneway
or the other, the evaluation of a set of aternativesin terms of a set of decision criteria. Very often these criteriaare
conflicting with each other. Even more often the pertinent data are very expensive to collect.

4 Multi-Criteria Decision Making Methods
41 Background Information

With the continuing proliferation of decision methods and their modifications, it is important to have an
understanding of their comparative value. Each of the methods uses numeric techniques to help decision makers
choose among a discrete set of aternative decisions. Thisis achieved on the basis of the impact of the aternatives
on certain criteria and thereby on the overall utility of the decision maker(s).

Despite the criticism that multi-dimensional methods have received, some of them are widely used. The
weighted sum model (or WSM) is the earliest and probably the most widely used method. The weighted product
modd (or WPM) can be considered asamodification of the WSM, and has been proposed in order to overcome some
of its weaknesses. The analytic hierarchy process (or AHP), as proposed by Saaty [Saaty, 1980, 1983, 1990, and
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1994], isalater development and it has recently become increasingly popular. Professors Belton and Gear [1983]
suggested amodification to the AHP that appearsto be more powerful than the original approach. Some other widely
used methods are the ELECTRE [Benayoun, et al., 1966] and TOPSIS [Hwang and Y oon, 1981]. In the sub-section
that follows these methods are presented in detail.

4.2 Description of Some MCDM Methods
Therearethree stepsin utilizing any decision-making technique involving numerical analysis of alternatives:

1) Determining the relevant criteria and alternatives.

2) Attaching numerical measuresto therelativeimportance of the criteria and to theimpacts
of the alternatives on these criteria.

3) Processing the numerical values to determine a ranking of each alternative.

This section is only concerned with the effectiveness of the four methods in performing step 3. The central decision
problem examined in this paper is described asfollows. Givenisaset of M dternatives: A, A,, A,, ..., A, and aset
of N decision criteriaC,, C,, C,, ..., Cy and the data of a decision matrix as the one described in Figure 1. Then the
problem is to rank the aternatives in terms of their total preferences when al the decision criteria are considered
simultaneoudly.

421 TheWeighted Sum Mode

The weighted sum maodel (or WSM) is probably the most commonly used approach, especially in single
dimensional problems. If thereare M aternatives and N criteria then, the best alternative isthe one that satisfies (in
the maximization case) the following expression [Fishburn, 1967]:

N
Apga = max Y guw, for i=123 ., M (4-1)
i j=1

where: Aygy* isthe WSM score of the best alternative, N isthe number of decision criteria, a; isthe actua vaue of
the i-th aternative in terms of the j-th criterion, and W, is the weight of importance of the j-th criterion.

The assumption that governs this model isthe additive utility assumption. That is, the total value of each
aternativeis equa to the sum of products given as (4-1). In single-dimensional cases, in which all the units are the
same(e.g., dollars, feet, seconds), the WSM can be used without difficulty. Difficulty with thismethod emergeswhen
it is applied to multi-dimensional decision-making problems. Then, in combining different dimensions, and
consequently different units, the additive utility assumption isviolated and the result is equivalent to "adding apples
and oranges’'.

Example 4-1:
Suppose that an MCDM problem involves four criteria, which are expressed in exactly the same unit, and three
aternatives. The relative weights of the four criteriawere determined to be: W, =0.20, W, = 0.15, W, = 0.40, and
W, =0.25. The corresponding a; values are assumed to be as follows:
25 20 15 30
A = 10 30 20 30 |

30 10 30 10

Therefore, the data (i.e., decision matrix) for thisMCDM problem are as follows:

Criteria
C, C, C, C,



Alt.( 020 015 040 0.25)

A 25 20 15 30
A, 10 30 20 30
A; 30 10 30 10

When formula (4-1) is applied on the previous data, the scores of the three aternatives are:
A (WSM score) = 25x0.20 + 20x0.15 + 15x0.40 + 30x0.25 = 21.50.
Similarly, A,(WSM score) = 22.00,
and Ay (WSM score) = 20.00.
Therefore, the best alternative (in the maximization case) is alternative A, (because it has the highest WSM score;
22.00). Moreover, the following ranking isderived: A, > A, > A; (where">" standsfor "better than"). =

422 TheWeighted Product Mode

The weighted product model (or WPM) isvery similar to the WSM. The main differenceisthat instead of
addition in the moddl there is multiplication. Each aternative is compared with the others by multiplying a number
of ratios, one for each criterion. Each ratio is raised to the power equivalent to the relative weight of the
corresponding criterion. In general, in order to compare the alternatives A and A, , the following product (Bridgman
[1922] and Miller and Starr [1969]) has to be calcul ated:

N
RAJA) = 1‘{ (ag/a,)", (4-2)
i 2

where: N isthe number of criteria, a; isthe actual value of thei-th alternative in terms of the j-th criterion, and W,
isthe weight of importance of the j-th criterion.
If the term R(A« / A,) is greater than to one, then alternative A, is more desirable than alternative A, (in the
maximization case). The best alternative isthe one that is better than or at least equal to all the other aternatives.
The WPM issometimes called dimensonlessanalysis becauseits structure eliminates any units of measure.
Thus, the WPM can beused in single- and multi-dimensional decision-making problems. An advantage of the method
isthat instead of the actual valuesit can use relative ones. Thisis true because:

N

a.l Y a /

Kj i A
2 T T T o (+3)

Lj et Li
/ N
A rdlativevaluedy; iscaculated by using theformula: a; = &,/ Y a,, wherethea,/saretheactual values.
i1
Example 4-2:

Consider the problem presented in the previous example 4-1 (note that now the restriction to express al criteriain
terms of the same unit is not needed). When the WPM is applied, then the following values are derived:
R(AJ/A,) = (25/10)°% x (20/30)** x (15/20)°“° x (30/30)>% = 1.007 > 1.
Similarly, R(AJ/A) = 1.067 > 1,
and R(A/Ag) = 1.059 > 1.
Therefore, the best alternativeis A;, since it is superior to all the other alternatives. Moreover, the ranking of these
dternativesisasfollows. A, > A, > A, B



An alternative approach is one to use only products without ratios. That is, to use the following variant of
formula (4-2):

EZ

PA) = Tl(a)", (4-4)

[y

j =

Then, when the previous data are used, exactly the same ranking is derived.

4.2.3 TheAnalytic Hierarchy Process

The analytic hierarchy process (or AHP) ([Saaty, 1980, 1983, 1990, and 1994]) is based on decomposing
acomplex MCDM problem into a system of hierarchies (more on these hierarchies can be found in [Saaty, 1980]).
Thefinal step in the AHP deals with the structure of an MxN matrix (where M is the number of aternativesand N
is the number of criteria). This matrix is constructed by using the relative importances of the aternatives in terms
of each criterion. The vector (g, &5, &g, .., &) for eachi isthe principal eigenvector of an NxN reciprocal matrix
which is determined by pairwise comparisons of the impact of the M aternatives on thei-th criterion (more on this,
and some other related techniques, is presented in section 6).

Some evidenceis presented in [ Saaty, 1980] which supports the technique for liciting numerical evaluations
of qualitative phenomena from experts and decision makers. However, we are not concerned here with the possible
advantages and disadvantages of the use of pairwise comparisons and the eigenvector method for determining values
for thea;'s. Instead, we examine the method used in AHP to process the a; values after they have been determined.
The entry g, in the MxN matrix, represents the relative value of the alternative A, when it is considered in terms of

N
criterion C;. Inthe original AHP the sum Zaﬁ isequal to one.
i1

According to AHP the best aternative (in the maximization case) is indicated by the following relationship
(4-5):

N
Agp = max Y quw, for i=123 ., M (4-5)

Thesimilarity betweenthe WSM and the AHP isevident. The AHP usesrelative valuesinstead of actual ones. Thus,
it can be used in single- or multi-dimensional decision making problems.

Example 4-3:

Again, consider the data used in the previous two examples (note that as in the WPM case the restriction to express
all criteriain terms of the same unit isnot needed). The AHP usesa series of pairwise comparisons (moreon thiscan
be found in section 6) to determine the relative performance of each alternative in terms of each one of the decision
criteria. In other words, instead of the absolute data, the AHP would use the following relative data:

Criteria
C, C, C, C,
Alt.( 020 015 040 0.25)

A 25/65 20/55 15/65 30/65
A, 10/65 30/55 20/65 30/65
A; 30/65 5/55 30/65 5/65

That is, the columnsin the decision matrix have been normalized to add up to 1. When formula (4-5) is applied on
the previous data, the following scores are derived:
A.(AHP score) = (25/65)x0.20 + (20/55)%0.15 + (15/65)x0.40 + (30/65)*0.25 = 0.34.
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Similarly, A,(AHP score) = 0.35,

and  A;(AHP score) = 0.31.
Therefore, the best aternative (in the maximization case) is aternative A, (because it has the highest AHP score;
0.35). Moreover, thefollowing rankingisderived: A, > A; > A, B

424 TheRevised Analytic Hierarchy Process

Belton and Gear [1983] proposed a revised version of the AHP model. They demonstrated that an
inconsistency can occur when the AHP isused. They presented anumerical example which dealswith three criteria
and three alternatives. In that example the indication of the best aternative changes when an identical alternativeto
one of the nonoptimal aternativesisintroduced now creating four alternatives. According to the authorstheroot for
that inconsistency is the fact that the relative values for each criterion sum up to one. Instead of having the relative
valuesof thealternatives A, A, A, ..., Ay SUM up to one, they proposeto divide each relative value by the maximum
value of the relative values. In particular, they elaborated on the following example.

Example 4-4 (from [ Belton and Gear, 1983], p. 228):
Suppose that the actual data of an MCDM problem with three aternatives and three criteria are as follows:

Criteria
C, C, C,
Alt.( 1/3 1/3 1/3)

A1 9 8
A9 1 9
A1 1 1

Observethat in real life problems the decision maker may never know the previousreal data. Instead, he/she can use
the method of pairwise comparisons (as described in section 6) to derive the relative data. When the AHP is applied
on the previous data, the following decision matrix with the relative data is derived:



Criteria
C, C, Cs
Alt.( 1/3 1/3 1/3)

A Vi1 911 8/18
A, 911 111 9/18
A; Vi1 vi1 118

Therefore, it can be easily verified that the vector with thefinal AHP scores, is. (0.45, 0.47, 0.08). That is, the three
dternatives are ranked asfollows: A, > A, > A,.

Next, we introduce a new aternative, say A,, which isan identical copy of the existing alternative A, (i.e.,
A, . A,). Furthermore, it isalso assumed that the relative weights of importance of the three criteriaremain the same
(i.e., 1/3,1/3, 1/3). Whenthe new dternative A, isconsidered, it can be easily verified that the new decision matrix
isasfollows:

Criteria
C, C, Cs
Alt.( 1/3 1/3 1/3)

A 20 9/12 8/27
A, 920 112 927
A; V20 V12 V27
A, 920 112 927

Similarly as above, it can be verified that the vector with the final AHP scores, is: (0.37, 0.29, 0.06, 0.29). That is,
the four aternatives are ranked as follows. A, > A, . A, > A,. The authors claim that this result isin logica
contradiction with the previous result (in which A, > A)).

When therevised AHP is applied on the last data, the following decision matrix is derived:

Criteria
C, C, Cs
Alt.( 1/3 1/3 1/3)

A 79 1 8/9
A, 1 79 1
A, Y9 19 19
Ay 1 79 1

The vector with thefinal scores, is: (2/3, 19/27, 1/9, 19/27). That is, the four alternatives are ranked asfollows: A,
.A,> A > A, Thelast ranking is, obvioudy, the desired one. ®

Therevised AHP was sharply criticized by Saaty [1990]. He claimed that identical alternatives should not
be considered in the decision process. However [Triantaphyllou and Mann, 1989] have demonstrated that similar
logical contradictions are possible with the original AHP, as well as with the revised AHP, when non-identical
alternatives are introduced.

425 TheELECTRE Method

The ELECTRE (for Elimination and Choice Translating Reality; English translation from the French
original) method was first introduced in [Benayoun, et al., 1966]. The basic concept of the ELECTRE method isto

8



deal with "outranking relations’ by using pairwise comparisons among alternatives under each one of the criteria
separately. The outranking relationship of A . Ay describesthat even whenthei-th alternative does not dominate the
j-th aternative quantitatively, then the decision maker may till take the risk of regarding A; as amost surely better
than A [Roy, 1973]. Alternatives are said to be dominated, if there is another alternative which excels them in one
or more attributes and equals in the remaining attributes.

The ELECTRE method beginswith pai rwise comparisonsof aternativesunder each criterion. Using physical
or monetary values g,(A) and g,(A) of the alternatives A and A, respectively, and introducing threshold levelsfor the
difference gi(A)-gi(AJ), the decison maker may declare that he/she is indifferent between the alternatives under
consideration, that he/she has aweak or astrict preference for one of the two, or that he/she is unable to express any
of these preferencerelations. Therefore, the set of binary relations of alternatives, the so-called outranking relations,
may be complete or incomplete. Next, the decision maker isrequested to assign weights or importance factorsto the
criteriain order to express their relative importance.

Through aseries of consecutive assessments of the outranking relations of the aternatives, ELECTRE dlicits
the so-called concordance index, defined as the amount of evidence to support the conclusion that A, outranks, or
dominates, A,, as well as the discordance, the counter-part of concordance index.

Finally, the ELECTRE method yieldsawhole system of binary outranking relations between the alternatives.
Because the system is not necessarily complete, the ELECTRE method is sometimes unable to identify the preferred
aternative. It only produces a core of leading alternatives. This method has a clearer view of alternatives by
eliminating | essfavorable ones, especially convenient whileencountering few criteriawith large number of alternatives
in adecision making problem [Lootsma, 1990]. The organization of the ELECTRE method is best illustrated in the
following steps [Benayoun, et al., 1966]:

Step 1. Normalizing the Decison Matrix
This procedure transforms various units in the decision matrix into dimensionless comparable units by using
the following equation:

S

X. = !
\ 2
P2t
i=1

Therefore, the normalized matrix X is defined as follows:

]

Xll

X1 K Xz oo Xy

X

1 X

13 e X

1N

Km1 Xvz Xmz - Xun|

where M isthe number of aternatives and N isthe number of criteria, and x; isthe new and dimensionless preference
measure of the i-th alternative in terms of the j-th criterion.

Step 2. Weighting the Nor malized Decision M atrix
The column of the X matrix is then multiplied by its associated weights which were assigned to the criteria
by the decision maker. Therefore, the weighted matrix, denoted as Y, is:
Y = XW,

where:



Yiu Y2 Yiz - Y WXy WoXpp WaXiz .o WXy

Yo Yoo Yoz - Yon WiXor WoXop WiXos .o WXy
Y = = \

Ymr Ymz Ymz -+ Yun| Wi Xpa WoXyp WaXyg - WXy

and:
W, 0 0 .. O]
0w, 0. 0
N

W = |’ " and also Swo o= 1.

) ) it1

0 00 .. w,

Step 3. Determine the Concor dance and Discor dance Sets

The concordance set C,, of two alternatives A, and A, where Msk, |1, is defined as the set of al criteriafor
which A ispreferred to A.. That is, the following is true:

Cy={J, suchthat: y; > y;}, for j=1,2,3,..,N.
The complementary subset is called the discordance set and it is described as follows:

Dy ={J, suchthat: y; <y}, for j=1,23, .., N.

Step 4. Construct the Concordance and Discordance Matrices

The relative value of the elements in the concordance matrix C is calculated by means of the concordance
index. The concordance index ¢, isthe sum of the weights associated with the criteria contained in the concordance
set. That is, the following is true:

Co = 2w, for j=1,23 .,N.
jeCy

The concordance index indicates the relative importance of alternative A, with respect to alternative A,.
Apparently, O < ¢4 < 1. Therefore, the concordance matrix C is defined as follows:

= Cp Gz - Gy
C21 - 023 CZM
Cc =
CM 1 CN|2 CM3 e

It should be noted here that the entries of matrix C are not defined when k= 1.
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The discordance matrix D expresses the degree that a certain alternative A, is worse than a competing
dternative A,. The dements d,, of the discordance matrix are defined as follows:

max |ykj - y|j|
do, = 2 . (4-6)
max |ykj - y|j|
j

The discordance matrix is defined as follows:

- d12 d13 : d1|v|

le d23 . d2|v|
D -=

_dMl dyp dyg - - ]

As before, the entries of matrix D are not defined when k=1.
It should aso be noted here that the previoustwo M x M matrices are not symmetric.

Step 5. Determine the Concor dance and Discordance Dominance M atrices

The concordance dominance matrix is constructed by means of athreshold value for the concordance index.
For example, A, will only have a chance to dominate A, if its corresponding concordance index ¢, exceeds at least a
certain threshold value c. That is, the following is true:

G > G
The threshold value ¢ can be determined as the average concordance index. That is, the following relation

istrue

Ly ¥
= — = x C,,. 4-7)
MM - 1) T T
and k#l and |#k

Based on the threshold value, the concordance dominance matrix F is determined as follows:

fo=1, if ¢4 C

fo=0, if ¢y<c

Similarly, the discordance dominance matrix G is defined by using athreshold valued, whered is defined

asfollows:

1 M M
= — Y le dy., (4-8)

and gk| :1, |f dk| > g,
gkl :01 If dkl < g

Step 6. Deter mine the Agagregate Dominance Matrix
The elements of the aggregate dominance matrix E are defined as follows:

8y = fi X Oy (4-9)

Step 7. Eliminate the L ess Favorable Alternatives
From the aggregate dominance matrix, we could get a partial-preference ordering of the alternatives. If g,
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=1, then thismeansthat A, is preferred to A by using both concordance and discordance criteria.

If any column of the aggregate dominance matrix has at least one element equal to 1, this column is
"ELECTREally" dominated by the corresponding row. Therefore, we simply eliminate any column(s) which have
an element equal to 1. Then, the best dternative is the one which dominates al other alternatives in this manner.

4.2.6 TheTOPSISMethod

TOPSIS (the Techniquefor Order Preference by Smilarity to Ideal Solution) was devel oped by Hwang and
Yoon [1981] as an dternative to the ELECTRE method. The basic concept of this method is that the selected
alternative should have the shortest distance from the ideal solution and the farthest distance from the negative-ideal
solution in a geometrical sense.

TOPSIS assumes that each attribute has a tendency of monotonically increasing or decreasing utility.
Therefore, it is easy to locate the ideal and negative-ideal solutions. The Euclidean distance approach is used to
evaluatetherelative closeness of aternativesto theidea solution. Thus, the preference order of aternativesisyielded
through comparing these relative distances.

The TOPSIS method evaluates the following decision matrix which refersto M alternatives which are
evaluated in terms of N criteria:

X

llX

o X

13 . X

1N

X1 X K o Xy

Km1 Xwz Xvs - Xung

where x; denotes the performance measure of the i-th alternative in terms of the j-th criterion. For aclear view of
this method, the TOPSIS method is presented next as a series of successive steps.

Step 1. Construct the Normalized Decision Matrix
This processtriesto convert the various attribute dimensionsinto nondimensional attributes similarly aswith
the ELECTRE method. An element r;; of the normalized decision matrix R can be calculated as follows:

r - );j .
«’Eﬁ

Step 2. Construct the Weighted Normalized Decison Matrix
A set of weights W = (W, Wy, W, ..., W), (Where: =w = 1) defined by the decision maker is accommodated
to the decision matrix to generate the weighted normalized matrix V as follows:

(4-10)
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Wil Wolgp Walgg o Wylyy

Wilyy Wolpy Walos o Wylhy
VvV -

Wilwe Wolya Walyg - WMy

Step 3. Determinethe Ideal and the Negative-ideal Solutions
Theided A" and the negative-ideal A™ solutions are defined as follows:

A ={(maxy|jed), (miny|jed)i=123 .., M} =

| ={v1*,v2*,...l, Vi }. (4-12)
A ={(minvg|jed), (maxy|je)i=123 ..M} =

| ={ Vp-, Vyr, ..I.,vN-}. (4-12)

where: J={j =1,2,3, ..., N | associated with benefit criteria},
J={j =123, ..., N|j associated with cost criteria}.

For the benefit criteria, the decision maker wants to have a maximum value among the aternatives. For the
cost criteria, the decision maker wantsto have aminimum value among alternatives. Obviously, A" indicatesthe most
preferable aternative or ided solution. Similarly, A” indicates the least preferable aternative or negative-ideal
solution.

Step 4. Calculate the Separation Measure
The N-dimensional Euclidean distance method is next applied to measure the separation distances of each
alternative to the ideal solution and negative-ideal solution.

Se=(2(v-ve)?)? =123, M, (4-13)
where S. is the separation (in the Euclidean sense) of each aternative from the ideal solution.
S =(2(v;-w)A) 12123 .., M, (4-14)

where S. isthe separation (in the Euclidean sense) of each alternative from the negative-ideal solution.

Step 5. Calculate the Relative Closenessto the Ideal Solution
The relative closeness of an aternative A; with respect to the ideal solution A is defined as follows:
C.=8./(S+S8),0<C.<1,i=123, .., M. (4-15)
Apparently, C. =1,if A=A",and C. =0, if A = A.

Step 6. Rank the Preference Order

The best satisfied aternative can now be decided according to preference rank order of Ci.. Therefore, the
best alternative isthe one that has the shortest distance to theideal solution. The relationship of alternatives reveals
that any alternative which has the shortest distance to the ideal solution is guaranteed to have the longest distance to
the negative-ideal solution.
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5 Sensitivity Analysisof MCDM M ethods

Asitwasstated earlier, often datain MCDM problemsaredifficult to be quantified or are easily changeable.
Thus, often the decision maker needs to first estimate the data with some accuracy, and later estimate more critical
data with higher accuracy. In thisway, the decision maker can rank the alternatives with high confidence and not
overestimate non critical data. The above considerations lead to the need of performing a sensitivity analysison a
MCDM problem.

The objective of atypical sengitivity analysis of an MCDM problem isto find out when the input data (i.e.,
the a; and w; values) are changed into new values, how the ranking of the alternatives will change. In the literature
there has been some discussion on how to perform asensitivity anaysisin MCDM. Insua[1990] demonstrated that
decison making problems may be remarkably sensitive to some reasonable variations in the parameters of the
problems. His conclusion justified the necessity of sensitivity analysisin MCDM. Evans [1984], explored alinear
programming -like sengtivity analysis in the decison making problems consisting of a single set of decision
aternativesand states of nature. 1nhismethod, the optimal aternativeisrepresented asabounded convex polyhedron
in the probability state space. Using the geometric characteristics of the optimal regions, he defined the confidence
sphere of the optimal alternatives. The larger the confidence sphere, the less sensitive the optimal aternative will be
to the state probabilities.

Masuda[1990] studied some sensitivity issues of the AHP method. In hispaper, hefocused on how changes
on entire columns of the decision making matrix may affect the values of the composite priorities of the alternatives.
In his method, he generated the sensitivity coefficient of the fina priority vector of the alternatives to each of the
column vectors in the decision matrix. A large coefficient means that the values of the final priorities of the
alternatives will change more greatly if there is a dight change in the corresponding column vector of the decision
matrix. However, that does not guarantee that a ranking reversal among the aternatives due to the change of the
column vectors is sure to happen. Finaly, Triantaphyllou and Sanchez [1997] proposed a unified approach for a
sengitivity analysisfor three magjor MCDM methods. These methodsare: the WSM, the WPM and the AHP (origina
and revised). Their approach examines the effect of the changes of asingle parameter (i.e., an a; or w; value) onthe
final rankings of the aternatives. That approach can be seen as an extension of Masuda's method with its focus on
theranking reversal of the alternativeswhich ismore useful in practical applications. Alsointhat paper, the authors
have done some empirical studiesto determine the most critical criterion (w) aswell asthe most critical performance
value (g;) in ageneral MCDM problem.

Sensitivity analysisisafundamental concept for the effective use and implementation of quantitativedecision
models [Dantzig, 1963]. It isjust too important to be ignored in the application of an MCDM method to ared life
problem.

6 Data Estimation for MCDM Problems

One of the most crucial steps in many decision making methods is the accurate estimation of the pertinent
data. This problemis particularly crucial in methods which need to elicit qualitative information from the decision
maker. Very often qualitative data cannot be known in terms of absolute values. For instance, what isthe worth of
thei-th alternativein terms of a political impact criterion? Although information about questionslike the previous
one may be vital in making the correct decision, it is very difficult, if not impossible, to quantify it correctly.
Therefore, many decision making methods attempt to determinether elativeimportance, or weight, of the alternatives
in terms of each criterion involved in a given decision making problem.

An approach based on pairwise comparisons which was proposed by Saaty (see, for instance, [Saaty, 1980
and 1983]) has long attracted the interest of many researchers. Pairwise comparisons are used to determine the
relative importance of each alternative in terms of each criterion. In this approach a decision maker has to express
hi’her opinion about the val ue of one single pairwise comparison at atime. Usually, the decision maker hasto choose
higher answer among 10-17 discrete choices. Each choiceis alinguistic phrase. Some examples of such linguistic
phrasesare: "Ais more important than B", or "A is of the same importance as B", or "Aisa little more important
than B", and so on. Thefocushereisnot onthewording of theselinguistic statements, but, instead, on the numerical
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values which should be associated with such statements.

The main problem with the pairwise comparisons is how to quantify the linguistic choices selected by the
decision maker during their evaluation. All the methods which use the pairwise comparisons approach eventually
expressthe qualitative answers of adecision maker into some numberswhich, most of thetime, areratios of integers.
A case in which pairwise comparisons are expressed as differences (instead of ratios) was used to define smilarity
relations and is described by Triantaphyllou in [1993]. The next section examines the issue of quantifying pairwise
comparisons. Since pairwise comparisonsare the keystone of these decision making processes, correctly quantifying
them is the most crucial step in multi-criteria decision making methods which use qualitative data.

Many of the previous problems are not bound only to the AHP. They are present with any method which has
to elicit information from pairwise comparisons. These problems can be divided into the following three categories:

() How to quantify the pairwise comparisons.
(i) How to process the resulted reciprocal matrices.
and  (iii) How to process the decision matrices.

Next we consider some of the main ideas related with pairwise comparisons. In the sub-sections that follow, we
consider each one of the previous challenges, and discuss some remedies which have been proposed.

6.1 Problem #1: On the Quantification of Pairwise Comparisons

Pairwise comparisons are quantified by using ascale. Such a scale is an one-to-one mapping between the
set of discrete linguistic choices available to the decision maker and a discrete set of numbers which represent the
importance, or weight, of the previouslinguistic choices. There are two major approachesin devel oping such scales.
Thefirst approach is based on the linear scale proposed by Saaty [1980] as part of the AHP. The second approach
was proposed by Lootsma in [1988 and 1990] and in [Lootsma, et al., 1990] and determines exponential scales.
Both approaches depart from some psychologica theories and develop the numbers to be used based on these
psychological theories.

6.1.1 Scales Defined on the Interval [9, /9]

In 1846 Weber stated hislaw regarding a stimulus of measurable magnitude. According to hislaw achange
insensation isnoticed if the stimulusisincreased by a constant percentage of the stimulusitself [Saaty, 1980]. That
is, people are unable to make choicesfrom aninfinite set. For example, people cannot distinguish between two very
close values of importance, say 3.00 and 3.02. Psychological experiments have aso shown that individuals cannot
simultaneously compare more than seven objects (plus or minustwo) [Miller, 1956]. Thisisthe main reasoning used
by Saaty to establish 9 asthe upper limit of hisscale, 1 asthelower limit and aunit difference between successive
scale values.

The values of the pairwise comparisons are determined according to the scale introduced by Saaty [1980].
According to thisscale (which wecall Scalel), the availablevaluesfor the pairwise comparisons are members of the
set:{9,8,7,6,5/4,3,2,1, 12 13, 14, 1/5 16, 1/7, 1/8, 1/9}. The above numbersillustrate that the values
for the pairwise comparisons can be grouped into the two intervals [9, 1] and [1, 1/9]. Asit was stated above, the
valuesintheinterval [9, 1] are evenly distributed, while the valuesin the interval [1, 1/9] are skewed to the right
end of thisinterval.

There is no good reason why for ascale defined on theinterval [9, /9] the values on the sub-interval [9, 1]
should be evenly distributed. An aternative scale could have the values evenly distributed in the interval [1, 1/9],
while the values in the interval [9, 1] could be simply the reciprocals of the values in the interval [1, 1/9]. This
consideration leads to the scale (which we call Scale?) with thefollowing values: {9, 9/2, 9/3, 9/4, 9/5, 9/6, 9/7, 9/8,
1, 8/9,7/9, 6/9, 5/9, 4/9, 3/9, 2/9, 1/9}. This scale was originally presented by Ma and Zheng in [1991]. In the
second scale each successive value on the interval [1, 1/9] is(1- 1/9) / 8 = /9 units apart. In thisway, the values
intheinterval [1, 1/9] are evenly distributed, while the valuesin [9, 1] are simply the reciprocals of the valuesin
[1, 1/9]. It should be stated here that the notion of having a scale with a group of values evenly distributed, is
followed in order to bein agreement with the same characteristic of the original Saaty scale. Asit will beseeninthe
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next section, other scales can be defined without having evenly distributed vaues.

Besidesthe second scale, many other scales can be generated. One way to generate new scalesisto consider
weighted versions between the previous two scales. That is, for the interval [1, 1/9] the values can be calculated
using the formula:

NewVaue = Value(Scalel) + (Vaue(Scale2) - Vaue(Scalel) )* («/100).
In the previous formula the values of « can range from O to 100. Then, the values in the interval [9, 1] are the
r ecipr ocals of the above values. For o = 0 Scalel is derived, whilefor « = 100 Scale? is derived.

6.1.2 Exponential Scales

A class of exponential scales has been introduced by Lootsma[1988 and 1990] and [Lootsma, et al ., 1990].
The development of these scalesis based on an observation in psychology about stimulus perception (denoted ase).
According to that observation, due to Roberts [1979], the difference e,,; - €, must be greater than or equal to the
smallest perceptible difference, which is proportional to e,. As a result of Robert's observation the numerical
equivalents of these linguistics choices need to satisfy the following relations:

e.n-6=ce, (whee e>0) or:

Gm=(l+e)e=(1+ef e =

.=Q+e)"™e, (Whee ,=1) or: g=¢€""
In the previous expressions the parameter y is unknown (or, equivaently, e is unknown), sincey =In(1 + ¢), and
eisthe basis of the natural logarithms (please note that e isjust the notation of avariable).

Another difference between exponential scales and the Saaty scaleisthe number of categoriesallowed by the
exponential scales. There are only four major linguistically distinct categories, plus three so-called threshold
categories between them. The threshold categories can be used if the decision maker hesitates between the main
categories. For amore detailed documentation on psychophysics we refer the reader to Marks [1974], Michon, et
al., [1769], Roberts [1979], Zwicker [1982], and Stevens and Hallowell Davis[1983]. The reader will find that the
sensory systems for the perception of tastes, smells, and touches follow the power law with exponents near 1.

6.1.3 Evaluating Different Scales

In order for different scalesto be evaluated, two evaluative criteriawere devel oped by Triantaphyllou, et al .,
in[1994]. Furthermore, a special class of pairwise matrices was also developed. These special matrices were then
used in conjunction with thetwo evaluative criteriain order to investigate some stability propertiesof different scales.

The most important observation of that study isthat the resultsillustrate very clearly that thereisno single
scale which isthe best scale for all cases. Similarly, the resultsillustrate that there is no single scale which is the
worst scale for all cases. However, according to these computational results, the best (or worst) scale can be
determined only if the number of the aternatives is known and the relative importance of the weights of the two
evaluative criteria has been assessed.

6.2 Problem #2: Processing Reciprocal Matrices with Pairwise Comparisons

At thispoint it isassumed that the decision maker has determined the values of al the pairwise comparisons.
That is, available are the values g; (for i,j = 1,2,3,...,N), where a; represents the relative performance of alternative
A whenitiscompared with aternative A intermsof asingle criterion. Given these values, the decision maker needs
to determine the relative weights, say W, (i = 1,2,3,...,N), of the aternatives in terms of the single criterion. Saaty
[1980] has proposed amethod which assertsthat the desired weights are the el ements of theright principal eigenvector
of the matrix with the pairwise comparisons. This method has been evaluated under a continuity assumption by
Triantaphyllou and Mann in [1990]. Moreover, other authors have proposed alternative approaches.

For instance, Chu, et al., in[1979] observed that, given the data a;;, the values W, to be estimated are desired
to have the following property:

a; = W/W,.

Thisisreasonable, since a; is meant to be the estimate of the ratio W/W,. Then, in order to get the estimates for the
W, given the data a;, they proposed the following constrained optimization problem:
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N N
minimze S= Y Y (@W - W)?

subject to: Y W, = 1,
i S1

and W, >0, forany i = 123,..,N.

They also gave an dternative expression S; that ismore difficult to solve numerically. Specifically, they proposed:

N N
minimize S = (a;

i WIw)z,
i-1j-1

In Federov, et al., [1982], avariation of the previous least-squares formulation was proposed. For the case
of only one decision maker the authors recommended to use the following models:

log aij = IOgVVi B IogV\/j + lPl(VVi’ ij)sl

and a; = W/W + T,(W, W)g,,

J'1

where W, and W, are the true (and thus unknown) weights, ¥,(X,Z) and Y,(X,Z) aregiven positive functions

(where X,Z > 0). The random errorse; are assumed to be independent with zero mean and unit variance. However,
they fail to give away of selecting the appropriate two previous positive functions.

In the following paragraphs we present the main idea which was originally described in Triantaphyllou, et
al., [1990]. In that treatment the assumption of the human rationality is made. According to that assumption the
decison maker isarational person. Rationa persons are defined here asindividualswho try to minimizetheir regret
[Simon, 1961], to minimizelosses, or to maximize profit [Writeand Tate, 1973]. Inthe present context, minimization
of regret of losses, or maximization of profit could be interpreted as the effort of the decision maker to minimize the
errorsinvolved in the pairwise comparisons.

Asit was stated in the previous paragraphs, in the inconsistent case, the entry a; of matrix Ais an estimate
of the real ratio W,/W.. Sinceit is an estimate, the following is true:

g; = (W/W)d;, fori,j=1,23, .., N. (5-1)
In the previous relation, d; denotes the deviation of a; from being a perfectly accurate judgment. Obvioudly, if d; =
1, the a; value was perfectly estimated. From the previous formulation, we conclude that the errorsinvolved inthese
pairwise comparisons are given by:

Sij = d” = 1,
or by using (5-1) above,

When the set of alternatives (or criteria) contains N elements, then N(N-1)/2 total pairwise comparisons need
to be estimated. The corresponding N(N-1)/2 errors are (after using relations (5-1) and (5-2)):
g; = a; W/W) -1, fori,j=1,23,..,N, andj > 1 (5-3)
Since the W;'s are relative weights which (in most cases) have to add up to 1, the following relation should also be
satisfied:

MZ

W, = 100, and W >0, for i =1,23 ..,N. (5-4)

I
[y

|
When the data (e.g., the pairwise comparisons) are perfectly consistent, then relations (5-3) and (5-4) can be written
asfollows:
BxW=h. (5-5)
The vector b has zero entries everywhere, except that the last entry isequal to 1; the matrix B has the following
structure (blank entries represent zeros):
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1 2 3 4 5 617 N-1 N
-1 a, 1
-1 a3 2
-1 a1,4 3
AYN-1
-1 a N N-1
-1 a3 1
B = -1 az,4 2
-1 a5 3
BHN-1
-1 N N-2
-1 a-1N 1
|1 1 1 1 1 11. .. 1 1

Theerror minimization issueisinterpreted in many cases (for instance, inregression analysisand in thelinear
|east-squares problem) as the minimization of the sum of squares of theresidual vector r = b - Bx W [Stewart, 1973].
In terms of the previous formulation (5-5), this meansthat, in areal-life situation (i.e., when errors are not zero any
more), the real intention of the decision maker is to minimize the following expression

f29) = |b - BWI3, (5-6)

which, apparently, expresses atypical linear |east-squares problem.

In [Triantaphyllou, et al., 1990] all the previous methods were tested in terms of an example originally
presented by Saaty in [1977] and also later used by other authors (e.g., Chu, et al., [1979] and [Federov, et al.,
1982]). Inthat test it was found that the proposed human rationality approach results in much smaller residuals.
Moreover, in the same study it was found, on thousands of randomly generated test problems, that the eigenvalue

approach may result in considerably higher residua values than the proposed | east-squares approach which usesthe
previous human rationality assumption.

6.3 Problem #3: Processing the Decison Matrices
In Triantaphyllou and Mann [1989] the AHP, revised AHP, weighted sum model (WSM) [Fishburn, 1967],
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and the weighted product model (WPM) [Miller and Starr, 1969] were examined in terms of two evaluative criteria.
That study focused on thelast step of any MCDM method which involvesthe processing of the final decision matrix.
That is, given the weights of relative performance of the decision criteria, and the performance of the aternativesin
terms of each one of the decision criteria, then determine what isthe ranking (or relative priorities) of the alternatives.

Asit was shown in Triantaphyllou and Mann [1989], however, these methods can give different answersto
the same problem. Sincethetruly best alternative isthe samer egar dless of the method chosen, an estimation of the
accuracy of each method is highly desirable. The most difficult problem that arises here is how one can evaluate a
multi-dimensional decision making method when the true best alternative is not known. Two evaluative criteriawere
introduced in [Triantaphyllou and Mann, 1989] for the above purpose.

The first evaluative criterion has to do with the premise that a method which is accurate in
multi-dimensional problems should also be accurate in single-dimensional problems. Thereisno reason for an
accurate multi-dimensional method to fail in giving accurate results in single-dimensional problems, since
single-dimensional problems are special cases of multi-dimensional ones. Because the first method, the WSM,
gives the most acceptable results for the majority of single-dimensional problems, the result of the WSM was used
asthe standard for evaluating the other three methods in this context.

The second evaluative criterion considers the premise that a desirable method should not change the
indication of the best alternativewhen an alter native (not the best) isreplaced by another worsealternative (given
that the importance of each criterion remains unchanged).

In Triantaphyllouand Mann [1989] the previoustwo eval uative criteriawereapplied on randomtest problems
with the numbers of decision criteria and alternatives taking the values 3, 5, 7, ..., 21. In those experiments it was
found that al the previous four MCDM methods were inaccurate. Furthermore, these results were used to form a
decision problem in which the four methods themselves were the alternatives. The decision criteria were derived by
considering the two evaluative criteria. To one's greatest surprise, one method would recommend ancther, rival
method, as being the best method! However, the final results seemed to suggest that the r evised AHP was the most
efficient MCDM method of the ones examined. Thiswasreported in Triantaphyllou and Mann [1989] asadecision
making paradox. Finaly, adifferent approach of evauating the performance of the AHP and the revised AHP is
described by Triantaphyllou and Mann in [1995]. In that treatment it was found that these two methods may yield
dramatically inaccurate results (more than 80% of the time on all the problems).

7 Concluding Remarks

There is no doubt that many real life problems can be dealt with as MCDM problems. Although the
mathematical proceduresfor processing the pertinent dataare rather smple, thereal challengeisin quantifying these
data. Thisisanon trivial problem. In matter of fact, it is not even awell defined problem. For these reasons, the
literature has an abundance of competing methods. The main problem is that often nobody can know what is the
optimal aternative. Operations research provides a systematic framework for dealing with such problems.

This paper discussed some of the challenges facing practitioners and theoreticians in some of the
methodological problemsin MCDM theory. Although it is doubtful that the "perfect* MCDM approach will ever
be found, it is always a prudent idea for the user to be aware of the main controversies in the field. Although the
search for finding the best MCDM method may never end, research in this area of decision makingisstill critical and
valuable.
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