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INFERENCE OF MONOTONE BOOLE [
FUNCTIONS lot) TP)&”‘EZPW au '
The goal in a classification problem is to uncov
system that places examples into two or more , ,
tually exclusive groups. Identifying a classificat; on
system is beneficial in several ways. First of ]
examples can be organized in a meaningful
which will make the exploration and retrie
examples belonging to specific group(s) mo:
ficient. The tree-like directory structure, used
personal computers in organizing files, is an e k
ple of a classification system which enables
to locate files quickly by traversing the direclgig
paths. A classification system can make the,
lations between the examples easy to under
and interpret. A poor classification strategy, on
other hand, may propose arbitrary, conf\;s
meaningless relations. An extracted classiﬁ
system can be used to classify new exam
an incomplete or stochastic system, its s
may pose questions whose answers may. get
the system or make it more accurate. t

A special type of classification proble
the Boolean function inference probletr;l
all the examples are represented by bi
1) attributes and each example belongs, i
two categories. Many other types of cl
problems may be converted into a Boo
tion inference problem. For example, &
gory classification problem may be conyehik
several two-category problems. In a. i
ion, example attributes can be conV!
set of binary variables.

conditions, algorithms.

.ti



ing the Boolean function inference prob-
f Boolean logic are directly

y properties o
fe. A Boolean function will assign a bi-

Ralue to each Boolean vector (example). See
a,n overview of Boolean functions. Usually,
¥lean function is expressed as a conjunction
. anctions, called the conjunctive normal form
. Or & disjunction of conjunctions, called the

Wfinctive normal form (DNF). CNF can be writ-

e z; is either the attribute or its negation, k
Wthe number of attribute disjunctions and pj 18
PR jth index set for the jth attribute disjunction.

")Iarly, DNF can be written as:

N =i

1Ep;

k

V

j=1

ft is well known that any Boolean function can
e written in CNF or DNF form. See [20] for
algorithm converting any Boolean expression
Finto CNF. Two functions in different forms are re-
' as long as they assign the

Fgarded as equivalent
to all the Boolean vectors.

?ame function values
| However, placing every example into the correct
Category is only one part of the task. The other
¥ part is to make the classification criteria mean-
f ingful and understandable. That is, an inferred
| Boolean function should be as simple as possible.

¥ One part of the Boolean function inference prob-

f tion power.

! lem that has received substantial research efforts
b is that of simplifying the representation of Boolean
e functions, while maintaining a general representa-

Inference of Monotone Boolean Functions.
' When the target function can be any Boolean func-
tion with n attributes, all of the 2" examples have
to be examined to reconstruct the entire function.
When we have a priorl knowledge about the sub-
class of Boolean functions the target function be-
longs to, on the other hand, it may be possible to
reconstruct it using a subset of the examples. Of-
ten one can obtain the function values on examples
one by one. That is, at each inference step, an €x-

n to an oracle, which,

ample is posed as a questio
t function value. A

in return, provides the correc
function, f, can be defined by its oracle Aj which,
when fed with a vector T = (T1,--- ,Tn), returns

its value f(x). The inference of a Boolean function

from questions and answers is known as interactive

learning of Boolean functions. In many cases, €s-
pecially when it is either difficult or costly to query
the oracle, it is desirable to pose as few questions as
possible. Therefore, the choice of examples should
be based on the previously classified examples.
The monotone Boolean functions form a sub-
set of the Boolean functions that have been exten-
sively studied not only because of their wide range
of applications (see 12}, 171, (8] and [24]) but also
their intuitive interpretation. Each attribute’s con-
tribution to a monotone function is either nonneg-
ative or nonpositive (not both): Furthermore, if all
of the attributes have nonnegative (or nonpositive)
offects on the function value then the underlying
monotone Boolean function is referred to as iso-
tone (respectively antitone). Any isotone function
can be expressed in DNF without using negated
attributes. In combinatorial mathematics, the set
of isotone Boolean functions is often represented
by the free distributive lattice (FDL). To formally
define monotone Boolean function, consider order-
ing the binary vectors as follows [21]):

DEFINITION 1 Let E™ denote the set of all binary

rs of length n; let T and y be two such vectors.
., @y) precedes vector
if and only if

vecto
Then, the vector T = (z1, .-
y = {(y1,-- ,yn) (denoted as Z < y)
z; <y forl < i < n. If, at the same time T # ¥,

then = strictly precedes Y (denoted as T < y). O
According to this definition, the order of vectors
in E? can be listed as follows:

(11) < (01) < (00)

and
(11) < (10) < (00) .

Note that the vectors (01) and (10) are in a sense

incomparable.
Based on the order of the Boolean vectors, a

nondecreasing monotone (isotone) Boolean func-

tion can be defined as follows [21]:
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Inference of monotone Boolean functions

DEFINITION 2 A Boolean function f is said to be
an nondecreasing monotone Boolean function if
and only if for any vectors =,y € E", such that
z <y, then f(z) < f(y)- O

A nonincreasing monotone (antitone) Boolean
function can be defined in a similar fashion. As
the method used to infer an antitone Boolean func-
tion is the same as that of a isotone Boolean func-
tion, we will restrict our attention to the isotone
Boolean functions.

When analyzing a subclass of Boolean func-
tions, it is always informative to determine its size.
This may give some indications of how general the
functions are and how hard it is to infer them.
The number of isotone Boolean functions, ¥(n),
defined on E™ is sometimes referred to as the nth
Dedekind number after R. Dedekind, [6] who com-
puted it for n = 4. Since then it has been computed
for up to E®.

e U(1) =3,
e U(2) =6
e U(3) =20

o U(4) = 168 [6];

o U(5)=17,581 [4];

e U(6) = 7,828,354 [28];

o U(7) = 2,414,682, 040,998 [5];

e U(8) = 56,130,437,228,687,557,907,788

[29].

Wiedeman'’s algorithm [29] employed a Cray-2 pro-
cessor for 200 hours to compute the value for
n = 8. This gives a flavor of the complexity of com-
puting the exact number of isotone Boolean func-
tions. The computational infeasibility for larger
values of n provides the motivation for approxima-
tions and bounds. The best known bound on ¥(n)
is due to D. Kleitman, [12] and Kleitman and G.
Markowsky, [13]:

¥(n) < 2(Ln721)(1+c‘_°£1)

b

where c is a constant and [n/2] is the integer part
of n/2.

This bound, which is an improvement over the
first bound obtained by G. Hansel, [11], are also
based on the Hansel chains described below. Even
though these bounds can lead to good approxima-
tions for ¥(n), when n is large, the best known
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asymptotic is due to A.D. Korshunov, [15]:

2("72)6'“") for even n,
T(n)~ 4 (=
o\n2-172)t1e9(n)  for odd n,
where
n 1 n? n
f(n) = (n/2 - 1) <2n/2 T onis 2n+4> ’

g(n)

_ n 1 B n? _n
~\n/2-3/2 o(n+3)/2  9on+6  9n 4 3

n 1 n?
+ n/2—1/2 2(n+1)/2 T on+4 |

I. Shmulevich [24] achieved a similar but slightly
inferior asymptotic for even n in a simpler and“
more elegant manner, which led to some inter-""
esting distributional conjectures regarding isotone"“
Boolean functions. E

Even though the number of isotone Boolean
functions is large, it is a small fraction of the hum—j
ber of general Boolean functions, 22" This is the’
first hint towards the feasibility of efficiently in»-"
ferring monotone Boolean functions. Intuitively,}
one would conjecture that the generality of this|
class was sacrificed. That is true, however, a gen
eral Boolean function consists of a set of areas
where it is monotone. In fact, any Boolean function
q(x1,...,x,) can be represented by several nondeg
creasing g;(z) and nonincreasing h;(z) monotong
Boolean functions in the following manner [17]:,‘:

i) =/ | ) A\t

i

problems. Intuitively, the closer the target
tion is to a monotone Boolean function, the "'l'-"

stated. The approach in [17] allows one to U3
decrease the dialogue with an expert (oracle) '
restore a complex function of the form flv A
which is not necessarily monotone. 4



“e Shannon Functlon and the Hansel The-

en realizing that the number of isotone Boolean
W ctions is a small fraction of the total number
,f: general Boolean functions. In defining the most
mmon complexity measure for the Boolean func-

£ gorlthms which 1nfer f € M, and ¢(F, f) be the
fumber of questions to the oracle Ay required to
ofer f. The Shannon function ¢(n) can be intro-
duced as follows [14]:

FeA \ feM,

otn) = iy (uax o(F.)).

An upper bound on the number of questions
‘ needed to restore a monotone Boolean function
;' is given by the following equation (known as the
§ Hansel theorem) [11]:

eln) = (Ln72J> (s + )

That is, if a proper question-asking strategy 1s ap-
plied, the total number of questions needed to infer
any monotone Boolean function should not exceed
¢(n). The Hansel theorem can be viewed as the
worst-case scenario analysis. Recall, from the pre-
vious section, that all of the 2" questions are nec-
essary to restore a general Boolean function. D.N.
Gainanov [9] proposed three other criteria for eval-
uating the efficiency of algorithms used to infer iso-
tone Boolean functions. One of them is the average
case scenario and the two others consider two dif-
ferent ways of normalizing the Shannon function
by the size of the target function.

Hansel Chains. The vectors in E™ can be placed
in chains (sequences of vectors) according to mono-
tonicity. The Hansel chains is a particular set of
chains that can be formed using a dimensionally
recursive algorithm [11]. It starts with the single
Hansel chain in E*:

H' = {{0), {1}

To form the Hansel chains in E?, three steps are
required, as follows:

1 Attach the element ‘0’ to the front of each vec-
tor in H! and get chain Cc?*™in = {{00},(01)}.

2 Attach the element ‘1’ to the front of each vec-
tor in H' and get chain C?™* = {(10),(11)}.

3  Move the last vector in C?™, i.e. vector (11},
to the end of 2™ H>! = {{00), (01),(11) };
H™? = {(10)}.

To form the Hansel chains in E®, these steps are
repeated:

1 C¥T™™ = {(000), (001), {011) };
C3,2min — {(010)}

9 (31lmax _ {(100), (101), (111)};
C3mex = {(110)}.

3 H>!' = {(000),(001),(011),(111)};
H*? = {(100), (101) };
H3% = {{010), (110)}.

Note that since there is only one vector in the
C32max chain it can be deleted after the vector
(110) is moved to C32™". This leaves the three
chains listed in Table 1. In general, the Hansel
chains in E™ can be generated recursively from
the Hansel chains in E*~! by following the three
steps described above.

chain # | vector in-chain index | vector
1 1 000
001
011
111
100
101
010
110

[S%]
[N IR RO N L) )

Table 1: Hansel chains for E3.

A nice property of the Hansel chains is that all
the vectors in a particular chain are arranged in
increasing order. That is, if the vectors V; and Vj
are in the same chain then V; < Vj (i.e., V; strictly
precedes Vi when j < k). Therefore, if the un-
derlying Boolean function is isotone, then one can
classify vectors within a chain easily. For example,
if a vector Vj is negative (i.e., f(V;) = 0), then all
the vectors preceding V; in the same chain are also
negative (i.e., f(Vi) = 0 for any k < j). Similarly,
if a vector Vj is positive, then all the vectors suc-
ceeding Vj in the same chain are also positive. The
monotone ordering of the vectors in Hansel chains
motivates the composition of an efficient question-
asking strategy discussed in the next section.
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Inference of monotone Boolean functions

Devising a Smart Question-Asking Strat-
egy. The most straightforward question-asking
strategy, which uses Hansel chains, sequentially
moves from chain to chain. Within each chain
one may also sequentially select vectors to pose
as questions. After an answer is given, the vectors
(in other chains also) that are classified as a result
of monotonicity are eliminated from further ques-
tioning. Once all the vectors have been eliminated,
the underlying function is revealed. The maximum
number of questions for this method, called the
sequential Hansel chains question-asking strategy,
will not exceed the upper limit ©(n), given in the
Hansel theorem, as long as the chains are searched
in increasing size.

Although the sequential question-asking strat-
egy is easy to implement and effective in reducing
the total number of questions, there is still room
for improvements. N.A. Sokolov [25] introduced
an algorithm that sequentially moves between the
Hansel chains in decreasing size and performs a
middle vector search of each chain. His algorithm
does not require storing all the Hansel chains since
at each iteration it only requires a single chain.
This advantage is obtained at the cost of asking
more questions than needed.

In an entirely different approach, Gainanov 9]
presented a heuristic that has been used in numer-
ous algorithms for inferring a monotone Boolean
function, such as in [3] and in [18]. This heuris-
tic takes as input an unclassified vector and finds
a border vector (maximal false or minimal true)
by sequentially questioning neighboring vectors.
The problem with most of the inference algorithms
based on this heuristic is that they do not keep
track of the vectors classified, only the resulting
border vectors. Note that for an execution of this

heuristic, all of the vectors questioned are not nec-
essarily covered by the resulting border vector, im-
plying that valuable information may be lost. In
fact, several border vectors may be unveiled dur-
ing a single execution of this heuristic, but only one
is stored. Many of these methods are designed to
solve large problems where it might be ineflicient
or even infeasible to store all of the information

gained within the execution of the heuristic. How-

ever, these methods are not efficient (not even for
small size problems), in terms of the number of
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queries they require.

One may look at each vector as carrying a ‘re-
ward’ value in terms of the number of other vec-
tors that will be classified concurrently. This re-
ward value is a random variable that takes on one
of two (one if the two values are the same) val-
ues depending on whether the vector is a positive
or a negative example of the target function. The
expected reward 1s somewhere between these two
possible values. If one wishes to maximize the ex-
pected number of classified vectors at each step,
the probabilities associated with each of these two
values need to be computed in addition to the ac-
tual values. Finding the exact probabilities is hard, A
while finding the reward values is relatively simple
for a small set of examples. 3

This is one of the undérlying ideas for '
inference algorithm termed the bi-
question-asking strat-

the new
nary search-Hansel chains
egy. This method draws its motivation, for cal-
culating and comparing the ‘reward’ values for
the middle vectors in each Hansel chain, from the 3
widely used binary search algorithm (see, for in- E
stance, [19]). Within a given chain, a binary search
will dramatically reduce the number of questions
(to the order of log, while the sequential search ;
is linear). Once the reward’ values of all the mid-
dle vectors have been found, the most promising 5
one will be posed as a question to the oracle. Be~
cause each vector has two values, selecting the’
most promising vector is subjective and several di
ferent evaluative criteria can be used.
The binary search-Hansel chains
asking strategy can be divided into the followi

steps:

1) Select the middle vector of the unclassi
vectors in each Hansel chain.

St
Calculate the reward values for each m'}ddl
vector. That is, calculate the number of
tors that can be classified as positive
noted as P) if it is positive and negative

noted as N) if it is negative.

2)

3) Select the most promising middle v
based on the (P, N) pairs of the middle
tors, and ask- the oracle for its membe

value.



Based on the answer in Step 3, eliminate all
he vectors that can be classified as a result
"of the previous answer and the property of

monotomc1ty

Redefine the middle vectors in each chain as
necessary.

nless all the vectors have been classified, go
back to Step 2.

"The inference of a monotone Boolean function
il E? by using the binary search-Hansel chains
@ ¥ stion-asking strategy is illustrated below. The
5 eC]_ﬁCS of Iteration 1, described below, are also
'own in Table 2. At the beginning of first itera-
Hion, the middle vectors in each Hansel chain (as
éscrlbed in Step 1) are selected and marked with
tﬁe ¢’ symbol in Table 2. Then, according to Step
2, the reward value for each one of these middle
' ectors is calculated. For instance, if (001) (the
second vector in chain 1) has a function value of 1,

' then the three vectors (000), (001) and (010) are
also classified as positive. That is, the value of P
 for vector (001) equals 4. Similarly, (000) will be
f classified as 0 if (001) is classified as 0 and thus its
t reward value N equals 2.

. Once the ‘reward’ values of all the middle vec-
A tors have been evaluated, the most promising mid-
i dle vector will be selected based on their (P, N)
b pairs. Here we choose the vector whose min(P, N)
value is the largest among the middle vectors. If
there is a tie, it will be broken randomly. Based on
this evaluative criterion, vector 2 is chosen in chain
1 and is marked with ‘<’ in the column ‘selected
middle vector with the largest min(P, N)’. After
receiving the function value of 1 for vector (001),
its value is placed in the ‘answer’ column. This
answer is used to eliminate all of the vectors suc-
ceeding (001). The middle vector in the remaining
chains are updated as needed. At least one more
iteration is required, as there still are unclassified
vectors.

After the second iteration, no unclassified vec-
tors are left in chains 1 and 2, and the middle
of these chains need not be considered anymore.
Therefore, an ‘X’ is placed in the column called
‘middle vector in the chain’ in Table 4. At the be-
ginning of the third iteration, the vector (010) is
chosen and the function value of the remaining two

vectors (010) and (110) are determined. At this
point all the vectors have been classified and the
question-asking process stops.

The algorithm posed a total of three questions in
order to classify all the examples. The final classifi-
cations listed in Table 5 corresponds to the mono-
tone Boolean function z3 \/ 3.

Conclusions.
proaches and some of the latest developments in

This paper described some ap-

the problem of inferring monotone Boolean func-
tions. As it has been described here, by using
Hansel chains in the sequential question-asking
strategy, the number of questions will not exceed
the upper bound stated in the Hansel theorem.
However, by combining the binary search of Hansel
chains with the notion of an evaluative criterion,
the number of questions asked can be further re-
duced. At present, the binary search-Hansel chains
question-asking strategy is only applied to Hansel
chains with a dimension of less than 10. However,
it is expected that this method can be applied to
infer monotone Boolean functions of larger dimen-
sions with slight modifications.

See also: Boolean and fuzzy relations;
Checklist paradigm semantics for fuzzy log-
ics; Alternative set theory; Finite complete
systems of many-valued logic algebras; Opti-
mization in Boolean classification problems;
Optimization in classifying text documents.
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chain # | index of | vector vector clas- | middle reward P | reward N | selected answer other vec-
vectors sified vector if the vec- | if the vec- | middle tors deter-
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membership of the vectors (100) and

chain # | index of | vector vector clas- | middle reward P | reward N | selected answer other vec-
vectors sified vector if the vec- | if the vec- | middle tors deter-
in  the in  the | toris pos- | tor is neg- | vector mined
chain chain itive ative with the
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min(P, N)
1 1 000 0
2 001 1 X
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2 1 100 0 X
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2 110 1
Table 4: Iteration 3.
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INFINITE HORIZON CONTROL AND DY-
NAMIC GAMES, /HDG

In economics or biology there is no natural end
time for a process. Nations as well as species have
a very long future to consider. A mathematical
abstraction for this phenomenon is the concept
of infinite time horizon simply defined as an un-
bounded time interval of the form [0, +o00). The
study of competing agents in a dynamic determin-
istic setting over a long time period can be cast
in the framework of an infinite horizon dynamic
game. This game is defined by the following ‘ob-
jects’:

o A system evolving over an infinite horizon is
characterized by a state x € X C R™0. Some
agents also called the players ¢ =1,...,pcan
influence the state’s evolution through the
choice of an appropriate control in an admis-
sible class. The control value at a given time
n for player 7 is denoted w;(n) € U; C R™:.

o The state evolution of such a dynamical sys-
tem may be described either as a difference
equation, if discrete time is used, or a differ-
ential equation in a continuous time frame-
work. For definiteness we fix our attention
here on a stationary difference equation and
merely remark that similar comments apply
for the case when other types of dynamical
systems are considered.

z(n +1) = f(z(n),u1(n), ..., up(n))

forn=0,1,..., where f: R™ x...xR™ —

R™0 is a given state transition function.
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e We assume that the agents can observe the

Two categories of difficulties have to be dealt with
when one studies infinite horizon dynamic games:

e the consideration of an unbounded time hori-

state of the system and remember the his-
tory of the system evolution up to the current
time n, that is, the sequence

hn = {z(0),u(0),...,u(n — 1),z(n)},

where u(n) denotes the controls chosen
by all players at period n (ie., u(n) =
(u1(n),...,up(n))). A policy or a strategy is a
way for each agent, to adapt his/her current
control choice to the history of the system,
that is a mapping v;: (n,h,) — U; which
tells player ¢ which control u;(n) € U; to se-
lect given that the time period is n and the
state history is h,,.

Once such a model is formulated the question
arises as to what strategy or policy should
each agent adopt so that his/her decision pro-
vides him/her with the most benefit. The de-
cision to adopt a good strategy is based on a
performance criterion defined over the life of
the agent (in this case [0, +00)), that is, for
each time horizon N the payoff to player i is
determined by

N
Ti(z,u) =Y Brgi(z(n),u(n)),
n=1

where z and u denote the state and control
evolutions over time, g;: R™ x --- x R™ —
R is a given reward function and §; € [0, 1] is
a discount factor for each player:=1,...,p.

zon gives rise to the possibility of having di-
verging values for the performance criterion
(i.e., tending to +oco on all possible evolu-
tions). This happens typically when there is
no discounting (3; = 1). A related issue is %
the stability vs. instability of the optimally 3
controlled system.

A second category of difficulties are a.ssoci-z
ated with the consideration of all possi_b‘le
actions and reactions of the different agen ‘
over time, since an infinite time horizon
always give any agent enough time to correc
his/her strategy choice, if necessary.
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