
1

Inference of Monotone Boolean Functions

EVANGELOS TRIANTAPHYLLOU, VETLE I. TORVIK and JIEPING LU

Department of Industrial and Manufacturing Systems Engineering

3128 CEBA Building

Louisiana State University

Baton Rouge, LA 70803-6409

U.S.A.

E-mail: ietrian@lsuvm.sncc.lsu.edu, vtorvik@unix1.sncc.lsu.edu,   

Web URL:  http://www.imse.lsu.edu/vangelis

Keywords and Phrases:

Boolean function, monotone boolean functions, isotone boolean function, antitone boolean function,

classification problems, boolean function inference problem, free distributive lattice, Conjunctive

Normal Form (CNF), Disjunctive Normal Form (DNF), interactive learning of boolean functions,

Shannon function, Hansel theorem, pattern recognition/classification approaches, Hansel chains,

optimal question-asking strategy, sequential Hansel chains question-asking strategy, binary

search/Hansel chains question-asking strategy, binary search. 

Published in:Published in:
Encyclopedia of Optimization, (P.M. Pardalos and C. Fludas, Eds.), pp. xxx-xxx, 1998 (in
print).



2

1. Introduction to the Boolean Function Inference Problem

The goal in a classification problem is to uncover a system that places examples into two or more

mutually exclusive groups.  Identifying a classification system is beneficial in several ways.  First of all,

examples can be organized in a meaningful way, which will make the exploration and retrieval of examples

belonging to specific group(s) more efficient.  The tree-like directory structure, used by personal computers

in organizing files, is an example of a classification system which enables users to locate files quickly by

traversing the directory paths.  A classification system can make the relations between the examples easy to

understand and interpret.  A poor classification strategy, on the other hand, may propose arbitrary, confusing

or meaningless relations.  An extracted classification system can be used to classify new examples.  For an

incomplete or stochastic system, its structure may pose questions whose answers may generalize the system

or make it more accurate.

A special type of classification problem, called the boolean function inference problem, is when

all the examples are represented by binary (0 or 1) attributes and each example belongs to one of two

categories.  Many other types of classification problems may be converted into a boolean function inference

problem. For example, a multi-category classification problem may be converted into several two-category

problems.  In a similar fashion, example attributes can be converted into a set of binary variables.

In solving the boolean function inference problem many properties of boolean logic are directly

applicable.  A boolean function will assign a binary value to each boolean vector (example). See

[Schneeweiss, 1989] for an overview of boolean functions.   Usually, a boolean function is expressed as a

conjunction of disjunctions, called the Conjunctive Normal Form (CNF), or a disjunction of conjunctions,

called the Disjunctive Normal Form (DNF). CNF can be written as:

¹
k

j'1

(»
i0Dj

xi),

where xi is either the attribute or its negation, k is the number of attribute disjunctions and Dj is the j-th index

set for the j-th attribute disjunction.  Similarly, DNF can be written as:
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It is well known that any boolean function can be written in CNF or DNF form.  Peysakh [1987]

presented an algorithm for converting any boolean expression into CNF.  Two functions in different forms

are regarded as equivalent as long as they assign the same function values to all the boolean vectors.

However,  placing every example into the correct category is only one part of the task.  The other part is to

make the classification criteria meaningful and understandable.  That is, an inferred boolean function should

be as simple as possible.  One part of the boolean function inference problem that has received substantial

research efforts is that of simplifying the representation of boolean functions, while maintaining a general

representation power.

2. Inference of Monotone Boolean Functions

When the target function can be any boolean function with n attributes, all of the 2n examples have

to be examined to reconstruct the entire function.  When we have a priori knowledge about the subclass of

boolean functions the target function belongs to, on the other hand, it may be possible to reconstruct it using

a subset of the examples.  Often one can obtain the function values on examples one by one. That is, at each

inference step, an example is posed as a question to an oracle, which, in return, provides the correct function

value. A function,  f,  can be defined by its oracle Af  which, when fed with a vector x = <x1, x2, x3, ..., xn>,

returns its value f (x).  The inference of a boolean function from questions and answers is known as

interactive learning of boolean functions.  In many cases, especially when it is either difficult or costly to

query the oracle, it is desirable to pose as few questions as possible. Therefore, the choice of examples should

be based on the previously classified examples.

Monotone boolean functions is a subset of boolean functions that have been extensively studied not

only because of their wide range of applications (see [Eiter and Gottlob, 1995], [Ibaraki and Bioch, 1995],

[Fredman and Khachiyan, 1996] and [Shmulevich, 1997]) but also their intuitive interpretation.  Each

attribute’s contribution to a monotone function is either non-negative or non-positive (not both).
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Furthermore, if all of the attributes have non-negative (or non-positive) effects on the function value then the

underlying monotone boolean function is referred to as isotone (respectively antitone).  Any isotone function

can be expressed in DNF and CNF without using negated attributes. In combinatorial mathematics, the set

of isotone boolean functions is often represented by the free distributive lattice (FDL).  To formally define

monotone boolean function, consider ordering the binary vectors as follows [Rudeanu, 1974]:

Let En denote the set of all binary vectors of length n; let x and y be two such vectors. Then, the vector x =

<x1, x2, ..., xn> precedes  vector y = <y1, y2, ..., yn> (denoted as x˜y) if and only if xi # yi  for 1#i#n.  If, at

the same time x…y, then x strictly precedes  y (denoted as x—y).

According to this definition, the order of vectors in E2 can be listed as follows:

 <11> ™ <01> ™ <00>
and

 <11> ™ <10> ™ <00>.

Note that the vectors  <01> and  <10> are in a sense incomparable.

Based on the order of the boolean vectors, a non-decreasing monotone (isotone)  boolean function

can be defined as follows [Rudeanu, 1974]:

A boolean function f  is said to be an non-decreasing monotone boolean function if and only if for any

vectors x, y 0 En, such that  x— y, then f(x)— f(y).

A non-increasing monotone (antitone) boolean function can be defined in a similar fashion.  As

the method used to infer an antitone boolean function is the same as that of a isotone boolean function, we

will restrict our attention to the isotone boolean functions. 

When analyzing a subclass of boolean functions, it is always informative to determine its size.  This

may give some indications of how general the functions are and how hard it is to infer them.  The number
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of isotone boolean functions, Q(n), defined on En is sometimes referred to as the n-th Dedekind number after

[Dedekind, 1897] who computed it for n = 4.  Since then it has been computed for up to E8.

Q(1) = 3, Q(2) = 6, Q(3) = 20, 

Q(4) = 168  by [Dedekind, 1897]

Q(5) = 7,581 by [Church, 1940]

Q(6) = 7,828,354 by [Ward, 1946]

Q(7) = 2,414,682,040,998 by [Church, 1965]

Q(8) = 56,130,437,228,687,557,907,788 by [Wiedeman, 1991]

Wiedeman’s [1991]’s algorithm employed a Cray-2 processor for 200 hours to compute the value for n = 8.

This gives a flavor of the complexity of computing the exact number of  isotone boolean functions.  The

computational infeasibility for larger values of n provides the motivation for approximations and bounds.

The best known bounds on Q(n) are due to [Kleitman, 1969] and [Kleitman and Markowsky, 1975]:

2
( n
ln/2m)(1%c12&n/2)

# Q(n) # 2
( n
ln/2m)(1%c2log(n)/n)

,

where c1 and c1 are constants and  Fn/2L is the integer part of n/2.

These bounds, which are improvements over the first bounds obtained by [Hansel, 1966], are also

based on the Hansel chains described in section 4.  Even though these bounds can lead to good

approximations for Q(n) ,when n is large, the best known asymptotic is due an extensive analysis by

[Korshunov, 1981]:
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, for odd n.

[Shmulevich, 1997] achieved a similar but slightly inferior asymptotic for even n in a simpler and more

elegant manner, which lead him to some interesting distributional conjectures regarding isotone boolean

functions.
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Even though the number of isotone boolean functions is large, it is a small fraction of the number

of general boolean functions, . This is the first hint towards the feasibility of efficiently inferring22n

monotone boolean functions. Intuitively, one would conjecture that the generality of this class was sacrificed.

That is true, however, a general boolean function consists of a set of areas where it is monotone. In fact,

[Kovalerchuk, et al., 1995] showed that any boolean function q(x1, ..., xn) can be represented by several non-

decreasing gi (x) and non-increasing hj (x) monotone boolean functions in the following manner:

 q(x)'»
i

(gi(x)¹
j

hj(x)).

As a result, one may be able to solve the general boolean function inference problem by considering

several monotone boolean function inference problems.  Intuitively, the closer the target function is to a

monotone boolean function, the fewer monotone function are needed to represent it and more successful this

approach might be. [Kovalerchuk, et al., 1995] formulated the problem of joint restoration of two nested

monotone boolean functions f1 and f2.  Their approach allows one to further decrease the dialogue with an

expert (oracle) and restore a complex function of the form  f1&¬f2, which is not necessarily monotone.

3. The Shannon Function and the Hansel Theorem 

The complexity of inferring isotone boolean functions was mentioned in section 2, when realizing

that the number of isotone boolean functions is a small fraction of the total number of general boolean

functions.  In defining the most common complexity measure for the boolean function inference problem,

consider the following notation.  Let  Mn denote the set of all monotone boolean functions, and A ={F} be

the set of all algorithms which infer f 0 Mn , and n(F, f) be the number of questions to the oracle Af  required

to infer f.  The Shannon function n(n) can be introduced as follows [Korobkov, 1965]:

n(n) ' min
F0A

( max
f0Mn

 n(F, f ) ).



7

An  upper bound on the number of questions needed to restore a monotone boolean function is given

by the following equation (known as The Hansel Theorem) [Hansel, 1966]:

n(n)'( n
Fn/2L)%( n

Fn/2L%1
).

That is, if a proper question asking strategy is applied, the total number of questions needed to infer any

monotone boolean functions should not exceed n(n).  The Hansel Theorem can be viewed as the worst case

scenario analysis. Recall, from section 2, that all of the 2n questions are necessary to restore a general boolean

function.  [Gainainov 1984] proposed three other criteria for evaluating the efficiency of algorithms used to

infer isotone boolean functions.  One of them is the average case scenario and the two others consider two

different ways of normalizing the Shannon function by the size of the target function.

4. Hansel Chains

For a monotone boolean function, all the vectors can be placed in chains (sequences of vectors)

according to monotonicity.  The Hansel chains is a particular set of chains that can be formed using a

dimensionally recursive algorithm [Hansel, 1966].  It starts with the single Hansel chain in E1:

  H1={<0>, <1>}. 

To form the Hansel chains in E2, 3 steps are required as follows: 

Step 1: Attach the element "0" to the front of each vector in H1  and get  chain C2min.

 C2min={<00>,<01>}.

Step 2: Attach the element "1" to the front of each vector in H1   and get  chain  C2max.

C2max={<10>,<11>}.

Step 3: Move the last vector in C2max, i.e. vector <11>,  to the end of C2min.

           H2, 1 ={<00>, <01>, <11>};

          H2, 2 ={<10>}.
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To form the Hansel chains in E 3, the above 3 steps are repeated:  

Step 1: C 3,1min={<000>, <001>, <011>};

 C 3,2min={<010>}.

Step 2: C 3,1max={<100>, <101>, <111>};

C 3,2max={<110>}.

Step 3: H 3,1  ={<000>, <001>, <011>, <111>};

H 3, 2 ={<100>, <101>};

H 3, 3 ={<010>, <110>}.

Note that since there is only one vector in the C 3,2max chain, it can be deleted after the vector <110> is moved

to C 3,2min.  This leaves the three chains listed in Table 1.  In general, the Hansel chains in E  n can be

generated recursively from the Hansel chains in E n-1  by following the 3 steps described above.

         Table 1. Hansel chains for E 3.
Chain Number Vector In-Chain Index Vector

1 1 000
2 001
3 011
4 111

2 1 100
2 101

3 1 010
2 110

A nice property of the Hansel chains is that all the vectors in a particular chain are arranged in

increasing order. That is, if the vectors Vj and Vk are in the same chain then Vj < Vk  (i.e. Vj strictly precedes

Vk) when j < k).  Therefore, if the underlying boolean function is isotone, then one can classify vectors within

a chain easily.  For example, if a vector Vj is negative (i.e.,  f (Vj )=0), then all the vectors preceding Vj in the

same chain are also negative (i.e., f (Vk ) = 0 for any k < j). Similarly, if a vector Vj is positive, then all the

vectors succeeding Vj in the same chain are also positive.  The monotone ordering of the vectors in Hansel

chains motivates the composition of an efficient question-asking strategy discussed in the next section.
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5. Devising a Smart Question-Asking Strategy

The most  straight forward question-asking strategy, which uses Hansel chains, sequentially moves

from chain to chain.  Within each chain one may also sequentially select vectors to pose as questions. After

an answer is given, the vectors (in other chains also) that are classified as a result of monotonicity are

eliminated from further questioning.  Once all the vectors have been eliminated, the underlying function is

revealed. The maximum number of questions for this method, called the Sequential Hansel Chains

Question-Asking Strategy,  will not exceed the upper limit n(n), given in the Hansel Theorem. 

Although the sequential question-asking strategy is easy to implement and effective in reducing the

total number of questions, there is still room for improvements. [Sokolov, 1982] introduced an algorithm that

sequentially moves between the Hansel chains in decreasing size and performs a middle vector search of each

chain. His algorithm does not require the generation (and storage) of all the Hansel chains since at each

iteration it only requires a single chain. This advantage is obtained at the cost of asking more questions than

needed. 

In an entirely different approach, [Gainanov, 1984] presented a heuristic that has been used in

numerous algorithms for inferring a  monotone boolean function, such as in [Boros, et. al., 1997] and in

[Makino and Ibaraki, 1997].  This heuristic takes as input an unclassified vector and finds a border vector

(maximal false or minimal true) by sequentially questioning neighboring vectors.  The problem with most

of the inference algorithms based on this heuristic is that they do not  keep track of the vectors classified,

only the resulting border vectors.  Note that for an execution of this heuristic, all of the vectors questioned

are not necessarily covered by the resulting border vector, implying that valuable information may be lost.

In fact, several border vectors may be unveiled during a single execution of this heuristic is stored.  Many

of these methods are designed to solve large problems where it might be inefficient or even infeasible to store

all of the information gained within the execution of the heuristic.  However, these methods are not efficient

(not even for small size problems),  in terms of the number of queries they require.

One may look at each vector as carrying a "reward" value in terms of the number of other vectors
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that will be classified concurrently.  This reward value is a random variable that takes on one of two (one if

the two values are the same) values depending on whether the vector is a positive or a negative example of

the target function. The expected reward is somewhere between these two possible values.  If one wishes to

maximize the expected number of classified vectors at each step, the probabilities associated with each of

these two values need to be computed in addition to the actual values.  Finding the exact probabilities is hard,

while finding the reward values is relatively simple for a small set of examples.

This is one of the underlying ideas for the new inference algorithm termed the Binary Search/Hansel

Chains Question-Asking Strategy.  This method draws its motivation, for calculating and comparing the

"reward" values for the middle vectors in each Hansel chain,  from the widely used binary search algorithm

(see, for instance, [Neapolitan and Naimipour, 1996]). Within a given chain, a binary search will dramatically

reduce the number of questions (to the order of log2 while the sequential search is linear).  Once the "reward"

values of all the middle vectors have been found, the most promising one will be posed as a question to the

oracle. Because each vector has two values, selecting the most promising vector is subjective and several

different evaluative criteria can be used.

The Binary Search/ Hansel Chains strategy can be divided into the following steps:

Step 1: Select the middle vector of the unclassified vectors in each Hansel chain.

Step 2: Calculate the reward values for each middle vector.  That is, calculate the number of vectors

that can be classified as positive (denoted as P) if it is positive and negative (denoted as N)

if it is negative.

Step 3: Select the most promising middle vector, based on the (P, N) pairs of the middle vectors,

and ask the oracle for its membership value.

Step 4: Based on the answer in Step 3, eliminate all the vectors that can be classified as a result of

the previous answer and the property of monotonicity.

Step 5: Redefine the middle vectors in each chain as necessary.

Step 6: Unless all the vectors have been classified, go back to step 2.
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The inference of a monotone boolean function on E3 by using the Binary Search/ Hansel Chains

strategy is illustrated below.  The specifics of iteration 1, described below, are also shown in Table 2. At the

beginning of iteration 1,  the middle vectors in each Hansel chain (as described in Step 1) are selected and

marked with the ‘<-- ’ symbol in Table 2. Then, according to Step 2, the reward value for each one of these

middle vectors is calculated.  For instance, if <001>(the second vector in chain 1) has a function value of 1,

then the three vectors <000>, <001> and <010> are also classified as positive. That is, the value of P for

vector <001> equals 4. Similarly, <000> will be classified as 0 if <001> is classified as 0 and thus its reward

value N equals 2. 

Once the "reward" values of all the middle vectors have been evaluated, the most promising middle

vector will be selected based on their (P, N) pairs. Here we choose the vector whose min(P, N) value is the

largest among the ones of all middle vectors.  If there is a tie, it will be broken randomly. Based on this

evaluative criterion,  vector 2 is chosen in chain 1 and is marked with "<-- " in the column "Selected middle

vector with the largest Min(P, N)"   After receiving the function value of 1 for vector <001>, its value is

placed in the "answer" column.  This answer is used to eliminate all of the vectors succeeding <001>. The

middle vector in the remaining chains are updated as needed. At least one more iteration is required, as there

still are unclassified vectors.

Table 2. Iteration 1.
Chain

Number 
Index of

Vectors In
the Chain 

Vector Vector
Classified

Middle
Vector in
the Chain

Reward P if
the Vector is

Positive 

Reward N if 
the Vector is

Negative

Selected
Middle

Vector with
the Largest
Min(P,N)

Answer Other
Vectors

Determined

1 1 000
2 001 <-- 4 2 <-- 1
3 011 1
4 111 1

2 1 100 <-- 4 2
2 101 1

3 1 010 <-- 4 2
2 110
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Table 3. Iteration 2.  The vector <100> is chosen and based on the answer,
the class membership of the vectors <100> and <000> is determined.

Chain
Number 

Vector In-
Chain
Index

Vector Vector
Classified

Middle
Vector in
the Chain

 Reward P if
the Vector is

Positive 

Reward N if 
the Vector is

Negative

Selected
Middle

Vector with
the Largest
Min(P,N)

Answer Other
Vectors

Determined

1 1 000 <-- 4 1 0
2 001 1
3 011 1
4 111 1

2 1 100 <-- 2 2 <-- 0
2 101 1

3 1 010 <-- 2 2
2 110

At  iteration 3 (as shown in Table 4), no unclassified vectors are left in chains 1 and 2, and the

middle of these chains need not be considered anymore.  Therefore, an "X" is placed in the column called

"middle vector in the chain."  At iteration 3 the vector <010> is chosen and the function value of the

remaining two vectors <010> and <110> are determined.  At this point all the vectors have been classified

and the question-asking process stops.

Table 4. Iteration 3.

Chain
Number 

Vector In-
Chain
Index

Vector Vector
Classified

Middle
Vector in
the Chain

 Reward P 
if the Vector
is Positive 

Reward N if 
the Vector is

Negative

Selected
Middle

Vector with
the Largest
Min(P,N)

Answer Other
Vectors

Determined

1 1 000 0
2 001 1 X
3 011 1
4 111 1

2 1 100 0 X
2 101 1

3 1 010 <-- 2 1 <-- 1
2 110 1

The algorithm posed a total of 3 questions in order to classify all the examples.  The final classifications
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listed in Table 5 correspond to the monotone boolean function (x1v x3 ) w x2 w x3.

         Table 5. The Resulting Class Memberships.
Chain Number Vector In-Chain Index Vector Function Value

1 1 100 0
2 101 1

2 1 010 1
2 110 1

3 1 000 0
2 001 1
3 011 1
4 111 1

6. Conclusions

This paper described some approaches and some of the latest developments in the problem of

inferring  monotone boolean functions.  As it has been described here, by using Hansel chains in the

sequential question-asking strategy, the number of questions will not exceed the upper bound stated in the

Hansel theorem.  However, by  combining the binary search strategy with the notion of Hansel chains,  the

number of questions asked can be further reduced.  At present, the binary search/Hansel chains strategy is

only applied to Hansel chains with a dimension of less than 10.  However, it is expected that this method can

be applied to infer monotone boolean functions of larger dimensions with slight modifications.
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