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1. Introduction
Learning isthe main property that characterizes an intelligent system. As similar situations will usually appear
again and again in agiven environment, the goa of learningisto gain experience that can be used to improvethe
performance of the system when similar situations occur in the future. Gaining experience often requires the
system to build up an internal knowledge base that can efficiently fetch the information when needed.

The learning process can be divided into two phases: the knowledge acquisition phase and the rule

generation phase. In the knowledge acquisition phase, it isrelatively easy to gather a large amount of knowledge
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or facts. However, critical facts are usualy difficult to collect or easy to neglect. Therefore, the time, manpower
and other resources spent on knowledge acquisition can be very large if this process is not managed properly.

This article examines the knowledge acquisition problem for learning in a monotone boolean system. In
such systems, it isassumed that all examplesare represented by binary vectorsin space E" and each bit of avector
represents an attribute of the example. The attributes are assumed to be binary, i.e. to be either “True” or
“Fase’(i.e,“0” or“1”). All examplesaredivided into two classes, and are thus regarded as positive and negative
examples. Therelation among the examples can be expressed in the form of amonotone boolean function, inwhich
an example is regarded as a positive example when the function value for the example is 1 and as a negative
example when the function valueis 0. The goal of the knowledge acquisition phase in amonotone boolean system

isto infer the function and thus be able to determine the class membership for al examplesin the problem space.

2. M onotone Boolean Functions

To expresstherelation among the examplesin the form of a monotone boolean function requiresthat the
class membership of al examples be known. To determine the class membership of all examplesisthe sameasto
restore the underlying monotone boolean function, and thus this knowledge acquisition process is known as
monotone boolean function inference.

As discussed earlier, it could be very costly to determine the class membership of al examples in the
problem space if the process is not arranged properly. For instance, to get the function value of al examplesin
space E*° could mean to test each one of the 1,024 examples in that space. Even if each test requires only 30
minutesto get theresult, thisprocess could betoo slow to be acceptablein many practical situations. Furthermore,
the considerable costs related with each test could be another reason that prevents the use of this kind of testing.

When the details of different kinds of tests are omitted, each example submitted for testing can be
regarded as posing a question and the results come from the test can be regarded as getting an answer. Therefore,
it is desirable to ask a sequence of appropriate questions, i.e. to test only a small number of examples from the

problem space, so that the class membership of al examplesin the space can be determined. The selection of the
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examples, or the question-asking strategy, is critical in reducing the number of questions.

When the relation among the examples is expressed as a genera boolean function, there is no way to
determine the class membership of other examplesbased on the classified examples (training set). Therefore every
example should be examined if the relation among the examples (i.e., theinferred boolean function) isrequired to
be 100% correct. This means that the size of the examplesin the training set will always be 2", the same asthe
number of al the examplesin space E". However, the number of questions can be reduced when therelation can
be expressed as amonotone boolean function (to be discussed later). Asthe class membership of all examples
in a monotone boolean system satisfy the monotone property, it is possible that a small number of classified
examples can be used to determine the class membership of new examples. This, in turn, can significantly
expedite the learning process and thus reduce the costs. Under monotonicity examples can be ordered as follows

[Rudeanu, 1974]:

Let E" denote the set of all binary vectors of length n; let x and y be two such vectors. Then, the vector x=<x,,
Xo, -y X> Precedes vector y=<y,, y,, ..., Y,> (denoted asxoy) if and only if x#y, for 1#i#n. If, at the sametime,
xQy then x strictly precedes y (denoted as x0y).

According to this definition, the vectors in space E* can be ordered as follows:

<11> > <01> > <00>

and <11> » <10> > <00>.
However, the vectors <01> and <10> cannot be compared according to the above definition.

Based on the order of the vectors, an increasing monotone boolean function is defined as follows
[Rudeanu, 1974] :

A boolean function f defined in space E" is said to be an increasing (isotone) monotone boolean
functionif and only if for any vectors x, y 0 E", such that xoy, then f(x)#f(y).

Similarly, a decreasing monotone boolean function is defined as follows [Rudeanu, 1974]:

A boolean function f defined in space E" is said to be a decreasing (antitone) monotone boolean
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functionif and only if for any vectors x, y 0 E", such that xoy, then f(x)$f(y).

In a monotone boolean system, a function is either an increasing monotone boolean function or a
decreasing monotone boolean function. However, as the method used to acquire the class memberships for the
examples is the same for both cases, in this paper it is assumed that a hidden function is aways an increasing
monotone boolean function.

Monotonicity isavery strong constraint and, sometimes, cannot be easily satisfied. Fortunately, it can
easily be proved that every general boolean function q(x,, .., X,) can be described in terms of several increasing

g (X4, ..., X,) and decreasing h; (x;, ..., X,) monotone boolean functions [Kovaerchuk, et al., 1995]. That is:

m
q(x) Z_Vl(gi(x)/\ h;(x)).
|=

For the number yr(n) of monotone boolean functions defined on the vectors in space E, it is known

([Alekeseev, 1988] and[Kleitman, 1969]) that:

W(n)- 2(L”?2 )(Le(m)

where 0<e(n)<c(logn)/n, cisaconstant and [n/2|isthe largest integer less than or equal to n/2.

A boolean function can be of any form. All the forms are regarded as equivalent as long as they give the
same correct true-false function values for all input boolean vectors. However, it is convenient to represent a
boolean function in either the Conjunctive Norma Form (CNF) or the Digunctive Normal Form (DNF) (see, for
instance, [Blair et al., 1985], [Cavalier et al., 1990], [Hooker, 1988a and 1988b], [ Jeroslow, 1988 and 1989], and
[Williams, 1986]). Peysakh, 1987 describes an algorithm for converting any boolean expression into CNF. The

CNF form can be described as follows:

/<(V o),

j=1ieD,



wherea, iseither attribute A; or its negation K. , ] isthe number of attribute combinationsand D; is thejth index

set for the jth attribute combination. Similarly, DNF can be described as follows:

K

V(A o).

j=11ieD,
3. Shannon Function and the Hansel Theorem

Suppose the rel ations among the binary examplesin the problem space can be expressed with amonotone

boolean function f.  This function f can be obtained by classifying all vectors with the help of the appropriate
operator A; (also called an oracle) which, when fed with avector x=(x,, X, Xs, .., X,), returnsthe classmembership
(or function value f(x) ) of vector x. Let A={F} bethe set of all algorithms which can be used to determine the
class membership of al vectorsin the space, and ¢(F, f) be the number of accesses to the operator A; required to
obtain the monotone boolean function feM,, (where M,, is the set of all monotone boolean functions defined on n
variables). Based on the above notation, the Shannon function ¢(n) can be introduced as follows [Korobkov,

1965]:

¢@(n)=min maxe(F, f).
FecA feM

An upper bound on the number of questions needed to determine the class membership of all vectorsand
restore the underlying monotone boolean function is given by the following equation (also known as Hansel’s

theorem) [Hansdl, 1966]:

n n
P =(y2) (o)1)

Thesignificance of the Hansel theoremisthat thetotal number of questions needed toinfer any monotone
boolean function defined by the relations among vectors in space E" will not exceed ¢(n) if a proper question-

asking strategy is applied.



[Kovaerchuk, et al., 1996] proposed a method on how to classify the examples in a monotone boolean
system by issuing a sequence of membership inquires to an operator or “oracle.” That method is based on the

concept of the Hansel chains and is optimal in the sense of the Hansel theorem and the Shannon function.

4. Hansdl Chains

A chainin space E"isasequence of binary vectors. All binary vectorsin space E" can beorganizedinto
severa chains, which are called Hansel chains[Hansel, 1966]. For any two adjacent vectorsx andy inaHansel
chain (wherey follows x), the vector x is required to be different than vector y by only one bit so that vector x
strictly precedes vector y.

The Hansdl chains in space E" can be generated recursively based on the Hansel chains in space E™*.
Algorithm 1, asshownin Figure4.1, isamodified version of the method proposed by [Hansel, 1966] to generate

Hansel chainsin space E".

Algorithm 1: Hansel Chains Generation in space E"
Input: Dimension n, Hansel chains of dimension n-1;
Output: Hansel chains of dimension n;

Note that the Hansel chains of space E™* are assumed to be known and also
HY'={<0>, <1>}.

For each single chain C of the Hansel Chains in space E™* do the following:

Step 1: Form a new chain C™" in space E" by attaching the element ‘0’ to the right
of each vector in chain C;

Step 2: Form a new chain C™ in space E" by attaching the element ‘1’ to the right
of each vector in chain C;

Step 3: Move the last vector in chain C™ to C™";

Step 4: Add C™" to the Hansel Chains of dimension n;

Step 5: If after removing the last vector form C™ to C™", C™* s not empty, then
add chain C™ to the Hansel chains of dimension n;

The above 5 steps will be repeated until all chains in space E" have been

processed.

Figure 4.1 An Algorithm for the Generation of Hansel Chainsin Space E".



For space E!, thereisonly asingle Hansel chain that consists of two vectors <0>, <1>. That is
H ! ={<0>, <1>}.
To form the Hansel chains for space E?, there are 3 steps to be followed:
Step 1: Attach the element “0" to the front of each vector in H** and get chain C*"". That is:
C2mn = [ <00>,<01>}
Step 2: Attach the element “1" to the front of each vector in H** and get chain C*™, That is:
C¥ = [<10>,<11>}
Step 3: Movethe last vector in chain C*™ (i.e. vector <11>), to the end of C*™".,
Now, the two Hansel chainsin E? can be listed as follows:
H2! ={<00>, <01>, <11>},
H>? = {<10>}.
To form the Hansel chains for space E3, the previous 3 steps will be repeated. That is:
Step 1. Attach the element “0” to the front of each vector in H>* and H?? and get chains C3*'™"  and C32™",
respectively, asfollows:
C3mn = <000>, <001>, <011>},
C32min = £ <010>}.
Step 2: Attach the element “1” to the front of each vector in H** and H*2 and get chains C*'™ and C* 2™,
respectively, as follows:
C3ma = {<100>, <101>, <111>},
C32ma = [<110>}.
Step 3: Movethelast vector form C31™* and C*2™*to the end of their counterpart C>'™"and C>*™", respectively,
to form the Hansel chainsin E? asfollows:
H3*! ={<000>, <001>, <011>, <111>},

H32= {<100>, <101>},



H33={<010>, <110>}.
Since there is only one vector in chain C32™ this chain can be deleted after the vector <110> is moved to C*2™",
So there are only three chains in the final set with Hansdl chains, namely: H* %, H32 and H* 3. In generdl, the
Hansel chainsfor space E" can be generated recursively by repeating the 3 steps described above from the Hansel
chainsin space E™. Table 4.1 lists the Hansel chains generated for space E° .

Table4.1 Hansal chainsfor ES.

"Chain Number Vector In- Vector
Chain Index

............. i to..x ]...000 |

2 001 |

Y N S N o011 |
4 111

2 S 100
2 101

R I R S 010 |
2 110

5. The Sequential Hansel Chains Strategy

An interactive learning approach based on Hansel chains was proposed by [Kovalerchuk, et al., 1996]
and can significantly reduce the number of inquiries needed to determine a hidden monotone boolean function in
space E".  This interactive learning approach assumes that there is no example classified initiadly. By
systematically choosing a set of vectors from the Hansel chains and by asking about their class memberships, al
other vectorsin the space can be classified. Thealgorithm proposed isoptimal in the sense of the Shannon function
and the Hansel theorem. The typical process of this interactive learning is:

(D) Generate the Hansel chainsin space E".

2 Sort the Hansel chainsin increasing order of the size (i.e., the number of vectors) of the Hansel

chains.

Start form the first Hansel chain and do the following:

(3) Start form the first unclassified vector in the chain and require the class membership of that



(4)

()

Vector.

Use the class membership of this classified vector to determine the class membership of as many

undetermined vectors as possible.

If al the vectorsin the chain are determined, then process the next Hansel chain.

Steps (3), (4), (5) will be repeated until all chains have been processed.

As in step (3), the vectors are selected sequentially in each Hansel chain, the algorithm is therefore caled a

Sequential Hansel Chains Approach. The above steps are described in detail in Figure 5.1.

Algorithm 2. Sequential Hansel Chains Question-Asking Approach

Input: Dimension n;

Output: Number of questions asked to determine the class membership of all the

vectors for space E".

Step 0: {Hansel chain generation.}
Use algorithm 1 to generate all Hansel Chains for space E".
The number of Hansel chains is K.
Step 1: {Initialization.}
Sort the Hansel chains in increasing order of the size of the chains.
Set the Current Chain Pointer CurChain=1,
Set the number of Questions NumQuestion=0;
Step 2: {Some vectors are unclassified.}
Select the first unclassified vector v in chain C,, where i=CurChain;
Step 3: {Inquire the class membership of the vector.};
Class(v) =ANSWER(v);
NumQuestion=NumQuestion+1;
Step 4: {Use monotonicity property to mark other vectors.};
For(each chain C;, j=1, 2, 3, ..., K) Do
Mark the class membership of vectors in C; that can be
determined;
Step 5: {Check for completion condition}
IF( there are no unclassified vectors in the current chain) THEN
IF (CurChain=K) THEN
Output the class membership of all the vectors and the
number of questions needed,
ELSE {There are other chains not processed}
CurChain=CurChain+1,;
Goto Step 2;
ELSE { There are unclassified vectors in the current chain}
Goto Step 2;

Figure 5.1 A Sequential Hansel Chains Question-Asking Approach.




Thefollowing exampleis a step-by-step demonstration of how the sequential Hansel chains approach can
be used to determine all positive and negative examples in space E° and eventually form the underlying hidden
monotone boolean function.

First, theHansdl chainsfor space E® are generated by using algorithm 1, asarelistedin Table 4.1. In step
1, the previous Hansdl chains are sorted in descending order of their size. Table 5.1 liststhe sorted Hansel chains.
Thecurrent chain pointer Cur Chain=1, indicatesthat the algorithm will begin to processfrom thefirst chaininthat
sequence.

Table5.1 Sorted Hansel Chains.

Chan Vector In- Vector
Number Chain Index

............ i ... r |10 |
2 101

............ 2 b1 100 |
2 110

............ s .o bo.....x . ..1...00 |

........................................ 2 ...{.....eot

........................................ 3 ....{.....oui |
4 L

After the Hansel chains are generated and sorted, steps (2), (3), (4) and (5) will be repeated until all

vectors in space E® are classified.

[teration 1:

Step 2: As CurChain=1 and no vector has been classified, the vector <100> is selected for testing.

Step 3: Suppose theresult of the test indicates that the class membership value of vector <100>is0 (i.e., false).

Step 4: Based on the monotone property of the hidden boolean function, the class membership of vector <100>
indicates that vector <000> also has a class membership value of 0. Therefore, the vector <000> and

vector <100> can be classified as negétive.
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Step 5: Asthereisan unclassified vector in chain 1, it is necessary to start another iteration and go back to step
2.

The specifics of iteration 1 are given in Table 5.2, in which the symbol “<--" indicates the vector selected in this

iteration.
Table 5.2 Vectors Classified in Iteration 1.
Chan ThOEX OF v ector v ector SHecten AnNSNer Omer
Number VectorsIn membership Vector in Vectors
the Chain the Determined
Iteration
_________ o pxo S O]
2 101
_________ 2 o Lo e ]
2 110
_________ S 000 e ) O
2 0L { o
3 OLL N
4 1Ll
Iteration 2:

Step 2: AsCurChain=1 and vector <101> has not been classified, it is selected for testing.

Step 3: Suppose the result of the test indicates that the membership value of vector <101> is 1.

Step 4: Based on the monotone property of the vectors, the class membership of vector <100> determines that
vector <111> will dso have a membership value of 1. Therefore vectors
<101> and <111> can be classified as positive.

Step 5: Thereis no unclassified vector in chain 1. However, as CurChain=1<3, which indicates that not all the
vectors have been classified, itisnecessary tolet CurChain=1+1=2sothat thenext iterationwill begin

with the vectors in Hansel chain 2. The result after iteration 2 islisted in Table 5.3.
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Table 5.3 Vectors Classified in Iteration 2.

Chan Thaex or | vecor v ector Secied | Ansver | er ors
Number Vectors membership Vector Determined
Inthe inthe
Chain Iteration
_______ 1o 1200 O
2 101 <-- 1
_______ 2 g A1 e
2 110
_______ S 1000 O e
______________________ 2 00T e ]
______________________ SO e ]
4 all —

[teration 3:
Step 2: AsCurChain=2 and thefirst vector <010> in chain 2 has not been classified, it is selected for testing.
Step 3: Suppose the result of the test determines that the membership value of vector <010> is 1.
Step 4: Based on the monotone property of the vectors, the class membership of vector <010> will determine that
Vectors:
<110> and < 011>
will aso have a membership value of 1 ( another vector, vector <111>, has already been classified by vector
<101> in iteration 2). Therefore, the 3 vectors:
<010>, <110> and <011>
can be classified as positive.
Step 5: Thereis no unclassified vector left in chain 2. However, as CurChain=2<3, which indicates that not all
vectors have been classified, it isnecessary toincrease CurChainto 3 sothat thenext iteration will
start form Hansel chain 3.

The details of iteration 3 arelisted in Table 5.4.
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Table5.4 Vectors Classified in Iteration 3.

Chan Thaex or | vecor v ector SHecten Ansver ] er ors
Number Vectors membership Vector in Determined
Inthe the
Chain Iteration
______ 1oL 1200 0 e )
2 101 1
______ 210wy S
2 110 1
______ S L1000 O e
______________________ 2 00T e ]
______________________ S oL ]
4 N

[teration 4:

Step 2: As CurChain=3 and the first ( and the only) vector has not been classified is <001>. Thus, it ischosen
for testing.

Step 3: Suppose the result of the test determines that the membership value of vector <001> is 1.

Step 4: Asvector <010> is the only vector left unclassified, it is classified in this iteration.

Step 5: There is no unclassified vector in chain 3 and CurChain=3. Therefore, al vectors in E have been
classified.

The number of questions needed to determine the class membership of al examplesis 4, the same as the number

of iterations. The class membership of al examples are listed in Table 5.6.

Table5.5 Vectors Classified in Iteration 4.

Chan Thaex or | vecor v ector Sgecied | Ansver | er ors
Number Vectors membership Vector Determined
Inthe inthe
Chain Iteration
_______ 1o 1200 O e
2 101 1
_______ 2ol 10 e
2 110 1
_______ S g1 1000 O e
...................... 2. .10 S ]
______________________ S0 L ]
4 N
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Table 5.6 The Class Member ship of All Vectorsin the Hansel Chains.

"ChanNumber | Vector In-Chain Vector Function
Index Vaue
S S R 100 ... o
2 101 1
2 S 010 [ ... S
2 110 1
S 2 S 000 [ ... o
........................................... 2 ..o . 1
........................................... 3 ..o (. .1

The hidden function is derived from tables 5.2 t0 5.5 asfollows. We look at each one of the vectorswhich have
been classified as positive by the oracle. Note that there are three such vectors, namely vectors <101>, <010>, and
<001>. Then, the attributes with value "1" in these vectors indicate the attributes present in the terms when the
DNF format is used. Each such vector corresponds to one DNF term. Thus, from the above vectors we get the
following inferred monotone boolean function:

fO) =N X3) V (%) V (Xg)-
6. The Proposed Binary Search/Hansel Chains Strategy

Themajor advantage of the sequential Hansel chainsapproachisitsconceptual smplicity. However, when
the sequential Hansel chains approach is applied, the unclassified vectorsin the Hansel chains are tested one by
one. Inthissituation, the vectors are selected blindly and it is possible that some less effective vectors (as explained
next) will be submitted for testing first.

One may notice that before a vector is selected for membership inquiry, a“reward” value of the vector
selection can be some how evaluated. That is, one can know at least how many other vectors can be classified as
positive or negative if thisvector is classified as positive or negative, respectively. By comparing these“reward”
values of al unclassified vectors, one can select a vector which, when asked, can give the maximum “reward”
value. However, the computation will be very heavy if the “reward” value for each vector has to be calculated.
An alternative approach isto caculate and compare the “reward” values of only the middle vector of the

unclassified vectorsin each Hansd chain H ™' (for i=1,...k, where k is the number of Hansel chainsin space E")
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and select the middle vector that appears to be the most promising.

Wecall this new method the Binary Search/Hansel Chains Strategy. Thismethod derivesthemain idea
fromthewidely used binary search agorithm ( see, for instance, [Neapolitan and Naimipour, 1995]). In summary,
this binary search/ Hansel chains strategy consists of the following steps:

Step 1: Select the middle vector of the unclassified vectors in each Hansel chain.

Step 2: Evaluate the “reward” value of each middle vector, i.e. the number of vectors that can be classified as
positive ( denoted as P) if the middle vector is positive and the number of vectors that can be classified
as negative( denoted asN) if the middle vector is negative.

Step 3: Comparethe (P, N) pair of al middle vectors, and then select the most promising middle vector. Next ask
the membership value of that vector.

Step 4: Based on the previous answer, classify other vectors that can be determined as result of the previous
answer and the monotonicity property.

Step 5: Redefine the middle vectors of each Hansel chains as necessary.

Step 6: Go back to step 2, unless al the vectors have been classified in which case exit.

The detailed description of this algorithm is shown in Figure 6.1.

15



Algorithm 3: Binary Search/ Hansel Chains Question-Asking Approach
Input:  Dimension n;

Output: Number of questions asked to determine the class of all the vectors in space E".

Step O0: {Initialization phase.}
Use Algorithm 1 to form all Hansel chains in space E™, the number of chains is K.
Let the j-th chain, denoted as C (forj = 1, 2, 3, ..., K), be comprised by the sequence of vectors:
Vin o Vi wu Vi, forj=1,2,3,.., K
Initialize the upper and lower borders, U ; and L ;, respectively, in each chain as follows:
U;=V, and L;=V;,, where m s the total number of vectors in Hansel chain C ;.
Step 1: {Some vectors are still unclassified.}
For (each chainC,, j=1, 2, 3, ..., K)Do
IF(Hansel chain C; has some unclassified vectors) THEN
GetM; (j=[(UL;)/2n), the “middle " vector of the sequence of unclassified vectors
in chain C ;
Calculate:
POS(M ;) = Number of unclassified vectors which would be classified as
positive if M ; were a positive example;
NEG(M ;) = Number of unclassified vectors which would be classified to
negative if M ; were a negative example;
Step 2: {Inquire the value of the most “promising " unclassified example.}
Select the most “promising” vector M ; according to a criterion;
M y = MJ ;
Inquire the value of M ;
Set NumQuestion = NumQuestion + 1;
Step 3: {Use monotonicity property to mark other unclassified vectors and update the lower and
upper boundary of unclassified vectors in each chain.}
For (eachchainC;, j=1,2,3, ..., K)
Mark the class membership of vectors in C; that can be determined;
IF (M, is positive) THEN
Update U | to exclude classified vectors;
ELSE {M, is negative}
Update L ; to exclude classified vectors;
Step 4: {Check for completion condition.}
IF (no Hansel chain remains with unclassified vectors) THEN
Output the class membership of all vectors and the number of question needed;
ELSE Go to Step 1;

Figure 6.1 The Binary Search/ Hansel Chains Question-Asking Approach.
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7. An lllustrative Example

To illustrate this binary search/ Hansel chains question-asking strategy, an example is given for space
ES, in which there is a tota of 8 vectors. The Hansdl chains are constructed as shown in Table 4.1. The
underlying monotone boolean function is the same as the one is used in section 5. At each iteration, a vector is
selected asa question posed by the binary search/Hansel chains strategy.

At the beginning of iteration 1, the middle vector of each Hansel chain (as described in step 1, above)
isselected and marked withthe‘<--’ symbol inthetable. Then, accordingto step (2), the“reward” valuefor each
one of these middle vectorsis calculated. For instance, if the second vector in chain 1 has afunction value of
1, then there will be three other vectors (i.e., the vectors <000>, <001> and <010>) which can aso be classified
aspositive sincethe inferred bool ean function is assumed to be monotone. Therefore, the total number of vectors
that can be calculated to have afunction value of 1isP=4, which isput under the entry “ ‘reward value P if
the middle vector is positive’ of vector <001>. Similarly, if it is calculated that the function value is O, the
“reward” value for the vector <001> will be N= 2 and hence this valueisput inthe entry “ ‘reward’ value N if
the middle vector is negative.”

Once the “reward” values of al middle vectors have been evaluated, the most promising middle vector
will be selected and its function value will be asked. Several selection criteria can be used to compare the (P, N)
pairs of each middle vector and select the most promising vector. The one that is used here isto compare the
smaller one of the (P, N) values (i.e., to determine min(P, N) ) of each vector and select the vector whose min(P,
N) is thelargest among al middle vectors. If the number of such vectorsis more than one, then the tie will be
broken randomly. Based on this criterion, vector 2 ischosen in chain 1 and marked with the “<-- " symbol in
its corresponding entry under the column “ Selected middle vector with the largest Min(P,N).”

After getting the function value for vector <001>, which isassumed to be Linthiscase, thisvaueis put
in the entry “answer.” Then this answer will be used to classify the vectors whose class membership can be

determined by this answer and the monotonicity property. The middle vector of each Hansal chain will be updated
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asneeded. Thedetallsof thisiteration areshownin Table 7.1. Since there are still undetermined vectors, at least

one more iteration is required.

Table 7.1 Detailsfor Iteration 1.

Chain Index of Vector Vector Middle Reward Reward N Selected Answer | Other Vectors
No. Vectors In membership | Vectorinthe | Pif the if the Middle Vector Determined
the Chain Chain Vectoris | Vector is with the
Positive Negative Largest
Min(P,N)
S S L 000 e e e e e )
...................... 2....poox S A2
______________________ S O e e e ]
4 111 1
2 S 100 | S 4 2 e ]
2 101 1
3 10000 S 4 2 e e ]
2 110

At iteration 2, the vector <100> is chosen in a sSimilar manner and, based on the answer, the class

membership of the vectors <100> and <000> is determined. This iteration is shown in detail in Table 7.2.

Table 7.2 Detailsfor Iteration 2.

Chan Vector in Vector Vector Middle Reward Reward Selected Middle | Answer Other
No. the Chain membership | Vector in the Pif the N if the | Vector withthe Vectors
Chain Vectoris | Vectoris Largest Determined
Positive Negative Min(P,N)
NN N 1] 000 . S 4 ) SN UOUURRRRRROU NSRRI NS 0.
_____________________ 2 oo ]
_____________________ sooa ]
4 111 1
2 1] 100 Lo S 2 2 R O ]
2 101 1
RS2 1] 010 S 2 2 e ]
2 110
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Atiteration 3 (Table7.3), as thereisno unclassified vector left in Hansel chain 1 and Hansel chain 2,
themiddle vectors of these two chains do not need to be considered anymore. Thereforean “X” is marked for
each of thetwo chainsin the column “middle vector in the chain.” At iteration 3 the vector <010> is chosen and
the remaining two vectors, <010> and <110> are determined. At this point, the class membership of all vectors
has been determined and thus the question-asking process stops.

In similar manner as with the function inferred at the end of section 5, the new function isfrom tables 6.1,
6.2, and 6.3

f)=0%) V (%)

It is easy to confirm that these two functions are equivalent, athough the second one is much smpler.

Table 7.3 Detailsfor Iteration 3.

Chan Vector in Vector Vector Middle Reward | Reward N | Selected Middle | Answer Other
No. the Chain membership | Vector in the P if the if the Vector with the Vectors
Chain Vectoris | Vectoris Largest Determined
Positive Negative Min(P,N)

B 1. 000 1 ... O e e e

_____________________ 2. oo X ]

_____________________ so.oa ]
4 111 1

2 1. 100 f ... (U I oSSR NSRS SRS FRSRR NN U
2 101 1

RS N 1] 010 S 2 1ot St
2 110 1

By using the binary search/ Hansel chains question-asking strategy, the number of questionsis ableto be

reduced to 3 from the previous 4 needed by the sequential Hansel chains approach. Although the difference
between 3 and 4 queries is not significant, in some test problems reported in [Lu and Triantaphyllou, 1997]
indicate that the new strategy requires on the average 50% queries|ess than the existing sequential Hansel chains

approach. Theillustrative examplesin this paper smply demonstrate the implementation of the proposed binary
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search/Hansel chains strategy.

The basic idea behind the binary search strategy is to select the most “promising” vector among all
unclassified vectors in each iteration and submit it for testing. The selection of the most “promising ” vector is
based on the intuitive notion that, once the salected vector istested and classified, there will be more vectors that
can be determined based on the testing results. In the above example, when the binary search/ Hansel chains
approach is used, the vectors submitted for testing are:

{ <001>, <100>, <010>}.
In the example of section 4, when the sequential Hansel chains approach is used, the vectors submitted were:
{ <100>, <101>, <001>, <010>},

in which vector <101> is not as effective as the other vectors.

8. Conclusions

Thispaper discussed the knowledge acquisition problem in monotone boolean systems. One of themain
issues relatedto knowledge acquisition in such monotone boolean systemsishow to reduce the number of inquiries
needed to classify all vectorsin the problem space.

As it has been discussed above, by using Hansel chains in the sequential question-asking strategy
[Kovaerchuk, et al., 1997], the number of possible questions will not exceed an upper bound as stated in the
Hansel theorem. However, the performanceof sequential question-asking strategy depends on the sequence of the
Hansel chains and it may change dramatically when it is applied to different problems. Therefore, a new guided
vector selection approach; the binary search/Hansel chains approach is proposed to address this problem. When
this new method is applied, the average number of inquiries can be further reduced and the performance of the
method is relatively consistent compared to that of the sequential question-asking strategy. We are currently
working in this area and more recent updates can be found in our web home page with URL:

http://www.imse.Isu.edu/vangelis.
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