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Abstract—Object-based cloud storage presents an unconven-
tional storage model. Exploiting its unique characteristics, such
as the strong semantic correlations among objects and the high
I/O parallelism potential, can greatly enhance user experience.
Unfortunately, current storage optimization techniques, such as
the caching and prefetching schemes, are designed for conven-
tional storage and thus are sub-optimal for cloud storage services.

In this paper, we propose a client-side cache management
framework, called Pacaca, which integrates object clustering,
parallelized prefetching, and cost-aware caching to exploit I/O
parallelism and object correlations on cloud storage. We first
develop an efficient mining scheme, called Frequent Cluster
Mining (FCM), to discover object correlations from the access
sequence, and then build a prefetching scheme to fetch the
correlated objects in parallel. These two schemes are closely coor-
dinated for achieving high prefetching accuracy, proper control
on parallelism degree, and effective mis-prefetching detection and
handling. After studying the impact of parallelized prefetching
on cache management, we further present a cost-aware caching
scheme to differentiate low-cost and high-cost objects for efficient
caching by leveraging the awareness of parallelism and object
correlations. Our experimental results show that our optimization
schemes can effectively reduce the access latency, outperforming
traditional schemes by up to 58%.

I. INTRODUCTION

Object-based cloud storage, such as Amazon S3 and Drop-
box, has gained a huge popularity in recent years. As an
Internet-based service, cloud storage maintains user data in the
service provider’s data center, and clients use an HTTP-based
REST protocol to access their data through the network. Such
a storage model brings numerous technical advantages, such
as platform independence, usage-based pricing, cross-system
shareability, and potentially unlimited capacity. These merits
contribute to a quick and wide adoption of cloud storage in
our daily computing.

Compared with conventional direct-attached storage, which
has dominated computer systems for decades, object-based
cloud storage is radically different: its “storage media” is a
large-scale storage cluster, in which user data are distributed
to a massive number of parallelized machines; its “I/O bus”
is the world-wide Internet, which connects the client to the
data center that provides the services; its “I/O protocol” is
an HTTP-based REST protocol rather than a strictly defined
command set; its “addressable unit” is a variable-size data
object rather than a fixed-size sector. As a result, many of
our long-held common-sense understandings and assumptions
for storage system optimizations may not remain valid in the
scenario of cloud storage. Here we list three critical issues:

• Critical Issue 1: I/O parallelization, rather than sequen-
tiality, is key to optimizing user-perceived performance of
cloud storage. In cloud storage, data are stored in a large-
scale storage cluster, which is designed to simultaneously
process a huge number of independent parallel requests. For
example, Amazon S3 and Microsoft Azure Blob Storage are
able to handle millions of requests per second [2], [6]. Such
an inherent capability of processing parallel I/Os has a strong
implication—creating parallel I/Os should be given a top
priority for enhancing user experience with cloud storage; on
the contrary, organizing sequential I/Os, which is a classic
approach for optimizing traditional storage, becomes less
rewarding with cloud storage.

We have conducted experiments on Amazon S3 and com-
pared the time of downloading one thousand 4KB objects
in different orders from an EC2 instance. The observed
performance difference was almost non-existent. The same
observations were obtained in the experiments with the object
size varying from 16 KB to 4 MB. By contrast, properly par-
allelizing I/O jobs (e.g., downloading the objects of 4 KB with
four parallel threads) can significantly improve the bandwidth
and shorten the overall I/O completion time. This indicates
that the existing schemes designed for optimizing rotating
media, such as organizing sequential I/Os through caching [46]
and prefetching [30], become less effective for cloud storage;
instead, I/O parallelization is more important to user-perceived
performance.
• Critical Issue 2: The object abstraction of cloud storage
enables rich opportunities to explore the semantic rela-
tionships among objects. Unlike conventional block-based
storage, which provides a simple Logical Block Address (LBA)
interface, cloud storage presents an object-based abstraction.
In object-based cloud storage [1], [5], [9], [13], the basic entity
of user data is an object, which is associated with certain
metadata. Objects are further organized into logical groups,
called buckets or containers, forming a flat namespace.

Such an object-based storage model can carry much richer
semantic information. A particularly useful knowledge is the
relationship among objects. For example, when a Netflix
movie trailer is accessed, the full movie is likely to be
downloaded soon. Another example is compiling a program-
ming project. The source code files have inherent logical
dependencies: the related header files need to be read together
with the main source code files. Therefore, compared to
obtaining the relationships from the block layer [54], mining



the relationships among objects is more effective and much
simpler. This opportunity will enable numerous unprecedented
optimization opportunities for caching, prefetching, compres-
sion, scheduling, and many others.
• Critical Issue 3: Accessing cloud storage objects may
result in drastically different access costs. For direct-
attached storage, such as HDDs and SSDs, access costs (I/O
latencies) vary in a relatively small range (at the level of
milliseconds, or smaller) and can be accurately modeled [59],
[60]. Comparatively, access costs for cloud storage are more
variable. First, user-perceived cloud I/O latencies largely de-
pend on object sizes and network conditions, such as the
network speed and the geographic distance, and thus may
vary significantly (from milliseconds to seconds). Second,
parallelized accesses can significantly change the access cost.
For example, our experiments show that downloading four
small objects (e.g., 4 KB) in parallel demands almost identical
time as downloading an individual one.

A strong implication to us is that we cannot continue to
assume that the data access cost is a constant value. For
many system schemes, such as object-based caching, we need
to differentiate the miss penalties of different objects and
design a cost-aware caching scheme. Unfortunately, many
traditional caching schemes (e.g., [45], [47], [57], [62], [69])
are cost-unaware, and thus unsuitable for cloud storage; the
classic cost-aware caching schemes, such as GreedyDual-Size
(GDS) [25], are not designed for recognizing the change of
access costs caused by cloud I/O parallelization.

The above-said issues have motivated us to revisit the
existing system design for cloud storage. In particular, we
focus on caching and prefetching on the client side (i.e.,
clients or client-side proxies/gateways) and present a cache
management framework, called Pacaca, aiming to enhance
user experience with cloud storage, especially reducing user-
perceived access latencies.

Pacaca is a unified cache management framework inte-
grating a set of optimization schemes designed particularly
for cloud storage, including object clustering, parallelized
prefetching, and cost-aware caching. Specifically, we first
develop an efficient mining scheme to discover object cor-
relations and then build a prefetching scheme to fetch cor-
related objects in parallel; we further develop a cost-aware
caching scheme to differentiate high-cost and low-cost objects,
leveraging the awareness of access cost changes caused by
parallelized prefetching. Our contributions in this work are
summarized as follows:

1) To accurately identify the most appropriate candidates for
prefetching, we have designed an efficient mining scheme,
called Frequent Cluster Mining (FCM), to discover object
correlations, and group the correlated objects into clusters.
FCM adopts a “black-box” approach, without relying on
application-specific knowledge or data semantics, to fit the
cloud environment.

2) To properly exploit the great parallelism potential of cloud
storage, we have developed a parallelized prefetching

scheme, which is closely coordinated with the mining
scheme FCM for achieving high prefetching accuracy,
proper control on parallelism degree, and effective mis-
prefetching detection and handling.

3) To improve the caching efficiency, we have studied the
impact of parallelized prefetching on the access costs
of objects, and further developed a cost-aware caching
scheme to leverage the awareness of object correlations
and parallelized prefetching.

4) To evaluate the efficiency of client-side caching and
prefetching, we have designed a cache management frame-
work. Besides the caching scheme of Pacaca, this frame-
work supports three traditional cache replacement poli-
cies, including LRU, ARC [57], and GreedyDual-Size
(GDS) [25], which are integrated with our prefetching
scheme. The experiments on Amazon S3 show that our
optimization schemes can effectively reduce cloud I/O
latencies, outperforming traditional schemes by up to 58%.

The rest of the paper is organized as follows. Section II
and III present the mining and prefetching schemes. Section IV
presents our caching scheme. Section V describes the cache
management framework, which integrates all the schemes
together. Section VI gives the evaluation results. Related work
is presented in Section VII. Section VIII concludes the paper.

II. FCM: FREQUENT CLUSTER MINING

In this section, we present our mining scheme, called
Frequent Cluster Mining (FCM), which is designed to obtain
useful object correlations to provide guidance for effective
prefetching on cloud storage. We first present the design goals,
then describe the mining scheme in detail, and finally analyze
the mining efficiency.

A. Design Goals

The purpose of cluster mining is to obtain object correla-
tions to direct parallelized prefetching in the scenario of cloud
storage. We have two main design goals.

First, the scheme should be efficient and application-
independent. Cloud storage serves different applications and
maintains a large number of highly diversified objects from
various applications. Therefore, the mining scheme should not
assume certain application-specific knowledge about data in
cloud environments.

Second, the scheme should be prefetching-focused. For the
purpose of prefetching, we are interested in object correlations
that are accurate, stable, and up-to-date, and the correlated
objects should be accessed in a small access distance. With
the knowledge of such object correlations, we can proactively
submit cloud I/Os to prefetch the correlated objects in parallel.

These two goals, unfortunately, cannot be properly satisfied
by using conventional approaches. For example, the graph-
based schemes [35], [37], [38], [50], [51], though effective
for small data sets, are difficult to efficiently present the
correlations involving many objects and could suffer scal-
ability issues [54]. Some correlation mining schemes are
application-specific. For example, Dependency Graphs used



in Web mining [61] assumes and relies on link dependencies
among web pages. SEER [50] partially relies on file attributes
to determine the importance of different files. Finally, the
methods that are designed for other purposes, such as analyz-
ing user behaviors [36] and making hoarding decisions [50],
are not optimized for prefetching.

To achieve our design goals, we propose an efficient mining
scheme, called Frequent Cluster Mining (FCM). FCM adopts
a “black-box” approach and does not rely on assumptions of
application-specific semantics or knowledge to fit the cloud
environment. It considers the recency, frequency, and accuracy
of object correlations, for the purpose of prefetching, and also
utilizes a set of optimizations to improve the mining efficiency.

B. Mining Frequent Clusters

Fig. 1: An illustration of the look-around circle

The basic methodology of FCM is to mine frequent clusters
from the access sequence. A frequent cluster is a set of objects
that are frequently accessed together. In this section, we first
introduce the constraints to determining a qualified cluster and
then describe the mining procedures.

1) Determining Qualified Clusters: To determine a qual-
ified cluster, FCM sets several constraints to quantitatively
evaluate the strength of relationships among objects and to
reduce the mining overhead.
Search scope: radius. To identify the correlated objects to a
given object, we first define a search scope (i.e., the neigh-
bor accesses in the access stream). We use a “look-around
circle”, whose size is determined by radius (see Figure 1).
When setting radius to two, for example, FCM searches the
correlated objects for a given object in the scope of the
past two neighbor accesses and the following two neighbor
accesses. The rationale is that the correlated objects for a given
object may appear in the access sequence before or after that
object. Some objects are correlated but do not necessarily have
strict semantic dependencies, and thus they can be accessed
in different orders. By restricting radius, FCM can discover
the correlated objects that are closely accessed within a small
access distance.

In general, we can set the search scope to a reasonably small
value, such as 64 in C-Miner [54] or 20 in SEER [50]. In our
design, since the search scope also determines the potential
cluster size, we set radius to half of the upper bound of
a proper cluster size, which is estimated by the parallelism
control for prefetching (see Section III-A).
Search depth: search limit. Another important factor is
the recency of the identified correlations—a recent object
correlation is more useful than an outdated one for prefetch-
ing. Thus, different from prior methods [50], [54], FCM

particularly considers the recency of object correlations. For
each object, when identifying its correlated objects, we use
a threshold, search limit, to restrict the maximum backward
search distance (how far we look back in the access sequence).
For example, if the search limit is 100 for a given object,
FCM only examines the past 100 accesses to the object and
searches the potentially correlated objects in its look-around
circles. This brings two benefits. First, it ensures the identified
correlation clusters to be strong and up-to-date. Second, it
limits the search depth and reduces the mining time. We will
further discuss the effects of the search limit threshold in
Section VI-C2.
Metrics: support and confidence. To evaluate the accuracy
of object correlations, we introduce the association rules and
metrics, which are widely used in correlation mining [54],
[65]. We use the association rule x → y to present the
correlation that if object x is accessed, object y is likely to be
accessed before or after the access to object x. We use two
metrics, confidence and support, to estimate the accuracy and
repeatability of an identified correlation. Specifically, if object
x appears N times in the access sequence, and object y appears
M times within the look-around circles of object x, then we
have the association rule x → y, and its confidence =
M
N and support = M . A high confidence means that two
objects have a high possibility to be correlated, and a high
support means that such a correlation is highly repeatable.
So, we set the thresholds for both metrics, min support and
min confidence, to filter out weak and rare correlations. The
effects of these two thresholds will be further discussed in
Section VI-C2.
Cluster definition. By using confidence and support to mea-
sure object correlations, we can ensure the accuracy and
repeatability of a cluster, in which any two objects are closely
accessed and tightly correlated. Assuming a cluster c has a
min support threshold and a min confidence threshold, it
should satisfy the following two rules:

Rule 1: ∀ ci ∈ c and ∀ cj ∈ c, the confidences of the
association rules ci → cj and cj → ci are both no smaller
than min confidence.

Rule 2: ∀ ci ∈ c and ∀ cj ∈ c, the supports of the
association rules ci → cj and cj → ci are both no smaller
than min support.

2) Mining Procedures: FCM identifies clusters in three
phases: (1) determining the search depth for frequent objects;
(2) generating candidate association rules; and (3) generating
final clusters from the obtained candidate association rules.
Phase 1: FCM scans the access sequence to count the fre-
quency of each object. The purpose is to determine the proper
search depth and to remove rarely accessed objects. First, if
the frequency of an object is smaller than the default setting
of search limit, its search limit threshold will be updated
with its frequency. Any object with a frequency smaller
than min support is regarded as an infrequent object and
will be discarded in the process of generating the candidate
association rules.



Phase 2: FCM does a backward scan on the access sequence
to generate the candidate association rules. Each time when
object j appears in the look-around circle of object i, FCM
increases the support of the association rule i → j
by 1; if the association rule does not exist, a new one is
created. FCM only examines a limited number (search limit)
of recent accesses to the object. If the search limit threshold of
object i is reached, in the remaining process of the backward
scanning, FCM will skip this object and not further update the
association rules for it.

In addition to discarding infrequent objects (with the
min support threshold) and limiting the search depth (with the
search limit threshold), another technique for FCM to improve
the mining efficiency is to early prune the “unpromising”
objects and the association rules that are predicted to be
impossible to satisfy the rules in the remaining process of
searching.

To better explain this, we can consider a simple scenario,
where FCM is searching for the correlated objects of object i
and the search limit threshold is 100. If the current support
of the association rule i → j is 9, and object i will
be searched for 40 times in the remaining process, then the
maximum possible support of the association rule i → j
will be 49, which is the sum of the current support (9)
and the maximum possible increment of the support value
in the remaining process (40). Thus, the maximum possible
confidence is 0.49 (=49/100), which makes it impossible to
satisfy the min confidence threshold, 0.5. Therefore, object j
is considered “unpromising” for object i, and we do not need
to proceed further.
Phase 3: FCM generates clusters based on the cluster defi-
nition (see Section II-B1). The association rules that do not
satisfy the definition are removed first. Then FCM scans each
object to find potential clusters based on its association rules.
For example, for an object a, which has the association rules
a → b and a → c, FCM checks the association rules
in the descending order of their confidence values. For the
association rule a → b, if b → a also exists, the two
objects are grouped as a cluster {ab}. Then, FCM continues
to check a → c. Object c can be added to cluster {ab} if and
only if the association rules c → a, c → b, and b → c also
exist, which is based on the definition of a cluster that any two
objects in a cluster should be correlated to each other. Once
an object is added into a cluster, it is not further considered in
the remaining process of clustering. This procedure is iterated
over all the remaining objects until completion.
Discussion: Similar to prior work [54], FCM has time com-
plexity O(n). In practice, the efficiency of FCM is further
optimized with several important measures. First, FCM only
focuses on the correlations of frequent objects, rather than
the semantic relationships of all the objects. Second, FCM
particularly considers the recency by using the search limit
threshold to limit the search depth, which together with other
thresholds constrains the number of candidate association rules
for an object. Third, FCM prunes the “unpromising” objects
and the association rules as early as possible.

III. PARALLELIZED PREFETCHING

With the knowledge of object correlations, the basic
prefetching scheme is straightforward: since any two objects in
an identified cluster are tightly correlated (see Section II-B1),
we can prefetch the correlated objects in parallel. Two main
challenges are how to properly decide the parallelism degree
and how to detect and handle mis-prefetching.

A. Parallelism Control

To reduce the interference between parallel requests, we
propose a method to adjust the parallelism degree of prefetch-
ing by restricting the size of obtained clusters. The key idea
is to determine the upper bound of a proper cluster size based
on the system performance potential, so that downloading all
the objects of a cluster in parallel would consume comparable
time as downloading an individual object.

To achieve this, we need to understand the system capa-
bility, which can be characterized by the upper bound of
the parallelism degree with which the client can download
objects of a certain size without causing a latency increase. The
knowledge about such parallelism degrees can be obtained by
running simple tests on the client with a range of typical object
sizes (e.g., from 16 KB to 1 MB) and parallelism degrees
(e.g., from 1 to 64). For example, on our platform, such an
upper-bound parallelism degree for downloading 64KB objects
is observed to be 32, which means that downloading 64KB
objects with a parallelism degree larger than 32 would lead to
over-parallelization. Therefore, if the objects in a cluster are
larger than 64 KB, the number of objects in the cluster should
be no larger than 32, which is the upper bound of a proper
cluster size.

To properly restrict the cluster size, we set the search scope
radius in our mining scheme (see Section II-B1) to half of the
upper bound of a proper cluster size, which ensures that the
size of the obtained clusters would not be excessively large.
With such a setting, fetching objects in parallel would not
cause significant over-parallelization (see Section VI-C3 for
further discussion).

B. Handling Mis-prefetching

To alleviate the possible cache pollution caused by mis-
prefetched objects, we adopt a correlation-aware method to
proactively detect mis-prefetching. We maintain a logical
clock, which ticks upon each on-demand request. For each
prefetched object, we set its expiration time as the current
clock time plus the diameter (i.e., 2×radius) of the look-
around circle of the cluster. If a prefetched object runs out
of the assigned time and is still not accessed, it is considered
as a mis-prefetched object. The rationale is that if an object
fails to be accessed in the pre-defined access distance, it is very
likely that this object is uncorrelated to the object accessed by
the on-demand request. In this case, we should quickly evict
such objects and reclaim their space (see Section VI-C3 for
further discussion).



Step Access Stream LRU Latency Pacaca Latency
1 A [A] 7 [A] 7
2 B1 [B1, B2, B3, B4, A] 2 [A, {B1, B2, B3, B4}] 2
3 B2 [B2, B1, B3, B4, A] 0 [A, {B1, B2, B3, B4}] 0
4 B3 [B3, B2, B1, B4, A] 0 [A, {B1, B2, B3, B4}] 0
5 B4 [B4, B3, B2, B1, A] 0 [A, {B1, B2, B3, B4}] 0
6 C1 [C1, C2, C3, C4, B4, B3, B2, B1] 2 [A, {C1, C2, C3, C4}] 2
7 C2 [C2, C1, C3, C4, B4, B3, B2, B1] 0 [A, {C1, C2, C3, C4}] 0
8 C3 [C3, C2, C1, C4, B4, B3, B2, B1] 0 [A, {C1, C2, C3, C4}] 0
9 C4 [C4, C3, C2, C1, B4, B3, B2, B1] 0 [A, {C1, C2, C3, C4}] 0

10 B1 [B1, C4, C3, C2, C1, B4, B3, B2] 0 [A, {B1, B2, B3, B4}] 2
11 B2 [B2, B1, C4, C3, C2, C1, B4, B3] 0 [A, {B1, B2, B3, B4}] 0
12 B3 [B3, B2, B1, C4, C3, C2, C1, B4] 0 [A, {B1, B2, B3, B4}] 0
13 B4 [B4, B3, B2, B1, C4, C3, C2, C1] 0 [A, {B1, B2, B3, B4}] 0
14 A [A, B4, B3, B2, B1] 7 [A, {B1, B2, B3, B4}] 0

Total Time 18 13

TABLE I: An example illustrating the advantages of the caching scheme of Pacaca over the traditional LRU caching scheme
in the scenario of parallelized prefetching, in which all the objects of a cluster are downloaded in parallel upon related cache
misses. In this example, the cache space is set to 16, and the cache is empty before Step 1. The objects shown in the cache
from left to right have caching priorities from high to low. The objects of the lowest caching priority have the least “value”
to be held in cache. The objects downloaded from the cloud are boldfaced. The sizes, downloading latencies, and costs of the
objects and clusters are shown in Table II.

IV. PARALLELIZATION-AWARE CACHING

In this section, we first analyze the impact of parallelized
prefetching on caching with an illustrative example and then
describe our cache replacement policy.

A. Impact of Parallelized Prefetching

Parallelized prefetching can change the relative costs of ac-
cessing objects from the cloud. Specifically, for the correlated
objects that can be prefetched in parallel, the access cost is
amortized, and thus the relative cost is lower than fetching
each object individually. A direct implication to caching is
that the relative cost of fetching an object in a cluster upon a
cache miss would be significantly smaller (i.e., a lower miss
penalty). This would change the equation for making a caching
decision—evicting a low-cost object is a wise choice. Without
such awareness, simply combining parallelized prefetching
with traditional caching algorithms, such as LRU, ARC [57],
and GreedyDual-Size (GDS) [25], would be sub-optimal.

B. An Illustrative Example

To illustrate the impact of parallelized prefetching on
caching, we give a simple example in Table I to show the
difference between the caching scheme of Pacaca and the
traditional LRU caching scheme, which is widely adopted in
current cloud-based storage systems [3], [4], [7], [8], [10],
[12], [22], [66]. In the example, both schemes handle the
same access stream in the scenario of parallelized prefetching
(downloading all the objects of a cluster in parallel upon a
related cache miss). Table II describes the sizes, latencies, and
the access costs of the objects and clusters.

As shown in Table I, Pacaca has resulted in a lower
aggregate latency than LRU (13 time units vs. 18 time units).
Initially, the two caching algorithms have the same content.
At Step 6, Pacaca and LRU begin to make distinct caching
decisions. Since LRU makes the caching decisions only based
on the recency of each object and finds that object A has a

Object/Cluster Size Latency Latency/Size
A 8 7 0.875

{B1, B2, B3, B4} 8 2 0.25
B1 2 2 1
B2 2 2 1
B3 2 2 1
B4 2 2 1

{C1, C2, C3, C4} 8 2 0.25
C1 2 2 1
C2 2 2 1
C3 2 2 1
C4 2 2 1

TABLE II: Access costs of the objects/clusters. {B1, B2, B3,
B4} denotes the cluster containing objects B1, B2, B3, and
B4; {C1, C2, C3, C4} denotes the cluster containing objects
C1, C2, C3, and C4. The latency of a cluster is the time units
of downloading the objects of the cluster in parallel. The cost
of each object or cluster is calculated by latency/size.

lower recency than other objects; consequently, LRU decides
to evict object A. This decision leads to a cache miss of object
A at a later time (Step 14), causing a high miss penalty (7 time
units). By contrast, knowing that objects B1, B2, B3, and B4
are correlated and could be fetched in a cluster {B1, B2, B3,
B4} in a parallelized manner, Pacaca estimates that the miss
penalty of the cluster is lower than that of object A (0.25 cost
unit vs. 0.875 cost unit). Thus, Pacaca decides to evict the
cluster {B1, B2, B3, B4}, which leads to a relatively lower
penalty (2 time units) at Step 10.

This example clearly illustrates the impact of parallelized
prefetching on caching and demonstrates the importance of
considering parallelism and object correlations when deciding
the victim objects.

C. Cache Replacement Policy

Pacaca adopts a cost-aware cache replacement algorithm
based on GDS [25]. Our augmented algorithm is capable of



recognizing clusters of objects. The objects in a cluster are
fetched together in parallel, when a related cache miss hap-
pens. We use a cluster as the basic unit for cost estimation. An
object that does not have any correlated objects is considered
as a special cluster containing a single object.

1 initialize L = 0
2 upon the request of object x
3 let c be the cluster containing x

4 if cache hit
5 H(c) = L + Lat(c)/Size(c)

6 if cache miss
7 while not enough cache space
8 update L = min(H)
9 evict cluster d such that H(d) = L
10 parallelized prefetching for cluster c
11 H(c) = L + Lat(c)/Size(c)

Fig. 2: Cache replacement algorithm

Figure 2 shows the algorithm of the caching scheme. Each
cluster is associated with a value H to determine the caching
priority (lines 5 and 8). The cluster with the lowest H value is
selected as the victim and will be evicted first (lines 7-9). The
H value is calculated as H(c) = L + Lat(c)

Size(c)
, which includes

two components:
• L is a global inflation value, tracking the H value of

the most recently evicted cluster. Since the cluster having the
lowest H value is always selected as the victim cluster (lines
7-9), L keeps growing and indicates the access recency of the
clusters. Thus, a low L value means that the cluster has not
been accessed recently.
• Lat(c)

Size(c) evaluates the cost of the cluster, considering the
miss penalty of the cluster per size unit. It incorporates the
time of fetching the cluster in a parallelized way, Lat(c), and
the size of the cluster, Size(c).

From this function, we can see that the cluster that has not
been accessed for a long time and has a lower miss penalty is
of less value for caching. Such a caching policy incorporates
different factors, including not only access recency but also
parallelization-aware miss penalty and cluster size.

It is worth noting that the latency function, Lat(c), and the
size function, Size(c), here should only involve the objects
that have been accessed on demand rather than the entire
originally identified cluster. This is because some prefetched
objects could be evicted earlier due to mis-prediction, or have
not reached its expiration time and are waiting to be accessed
(see Section III-B). Therefore, when calculating the cost of a
cluster, we only consider the objects that have been accessed
on demand. Similarly, when evicting a victim cluster, only the
objects that have been accessed on demand will be evicted.
The prefetched objects that are detected to expire will be
evicted by the mis-prefetching handler (see Section III-B and
Section V).

V. PUTTING IT ALL TOGETHER

After describing each of the schemes above, we are in
the position to present the architecture of Pacaca, which

is a cache management framework that incorporates these
schemes to provide client-side (i.e., clients or client-side
gateways/proxies) caching and prefetching for cloud storage.
Figure 3 shows the architecture of Pacaca, which integrates our
proposed schemes. Since the details of the three schemes have
been presented in prior sections, in this section we particularly
focus on the integration of these components.

Fig. 3: An illustration of the architecture of Pacaca

Integration of cluster mining (FCM) and prefetching. In
the framework, FCM is responsible for discovering object cor-
relations, and the prefetching scheme exploits the correlations
to make prefetching decisions. These two schemes are closely
coordinated for achieving high prefetching accuracy, proper
control on parallelism degree, and effective mis-prefetching
detection and handling (see Section II and Section III).
Integration of caching and prefetching. To properly integrate
the caching and prefetching schemes, an important issue is to
manage the cache space for caching (to store the on-demand
objects) and prefetching (to store the prefetched objects). In
our design, we logically divide the local cache into two parts:
a demand cache for caching on-demand data and a prefetch
cache for holding prefetched data. These two areas use differ-
ent management schemes: the prefetch cache manages objects
in an LRU list, and the demand cache manages objects with
our caching scheme (see Section IV-C).

Unlike prior methods that separate the cache space into two
fixed-size partitions (e.g., [54]), in our design, caching and
prefetching share the cache space. This is for two practical
considerations. First, without static partitioning, the cache
space can be sufficiently utilized, even when prefetching
does not happen frequently. For example, a cache miss to
an independent object that does not have correlated objects
would not trigger prefetching at all. Second, our prefetching
scheme is optimized with high prefetching accuracy and
correlation-aware detection for handling mis-prefetching (see
Section III-B). Thus we do not have to isolate the prefetched
objects in a fixed-size area to reduce the cache pollution.
Cache space management. Figure 4 shows the core space
management flow. Upon a request of object x, which is
associated with cluster c (lines 1-2), for a cache hit in the
prefetch cache, the object is promoted to the demand cache
(lines 4-5); for a cache hit in the demand cache, the caching
priority of the object is refreshed by the caching scheme (lines
6-7). If a cache miss happens (line 8), the prefetching scheme
will be triggered to fetch the correlated objects in parallel



1 upon the request of object x
2 let c be the cluster containing x

3 if cache hit
4 if hit in prefetch cache
5 promote x to demand cache
6 if hit in demand cache
7 refresh caching priority

8 if cache miss
9 while not enough cache space
10 reclaim mis-prefetched objects
11 while not enough cache space
12 reclaim on-demand objects
13 while not enough cache space
14 reclaim prefetched objects in LRU order
15 parallelized prefetching for cluster c
16 add x to demand cache
17 add prefetched objects to prefetch cache

Fig. 4: Integration of caching and prefetching

(line 15), after which the on-demand object is added to the
demand cache (line 16) and the other prefetched objects are
added to the prefetch cache (line 17). If the cache space is not
enough, the reclaiming priority of the objects from high to
low is: (1) the mis-prefetched objects (lines 9-10); (2) the on-
demand objects selected by the caching scheme (lines 11-12);
and (3) the prefetched objects in the LRU order (lines 13-14).
With such a policy, we first evict the mis-prefetched objects
identified by the mis-prefetching handler and give a higher
priority to protect the on-demand objects and the recently
prefetched objects, which are likely to be accessed soon.

VI. EVALUATION

A. Methodology

Emulation. We have implemented an emulator to evaluate the
performance of our client-side cache management framework
Pacaca. The prototype simulates a client for cloud storage
similar to S3FS [12]. It provides POSIX-like APIs for users
to access data stored on Amazon S3 buckets and has the
support of a client cache to enable sophisticated caching
and prefetching schemes. Particularly for dirty data, since
a write-through policy would cause significant performance
degradation [18], a write-back policy is often adopted by
the cache solutions to optimize user-perceived performance
with cloud storage [42], [66], [68]. In our prototype, we
adopt a write-back policy similar to that of Linux memory
management mechanism: we use a background daemon to
synchronize the dirty objects to the cloud storage repository
when they are aged (older than 30 seconds) or evicted.
Platform. In our experiments, we use Amazon S3 located
in Oregon (s3-us-west-2.amazonaws.com) as the cloud. We
also set up an Amazon EC2 instance (m1.large) in North
California as the client to run our prototype. The client is
configured with 2 processors, 7.5 GB memory, and 410 GB
disk. The Round Trip Time between the client and the cloud
is measured 28 milliseconds. The network bandwidth is tested
to be 80 MB/sec.
Scheme comparisons. Besides the schemes of Pacaca, in our
prototype, we have also implemented three classic caching

algorithms: (1) LRU, a popular caching algorithm used in cur-
rent cloud-based storage systems in both academia [12], [22],
[66] and industry [3], [4], [7], [8], [10]; (2) ARC [57], one of
the advanced caching algorithms that is recently adopted by
gateway caching for cloud storage [68]; and (3) GreedyDual-
Size (GDS) [25], a classic cost-aware caching algorithm.

We have integrated all the three caching algorithms with
our parallelized prefetching schemes. With such comparisons,
we can not only investigate the capability of our parallelized
prefetching scheme to improve different caching algorithms
but also evaluate the advantages of our caching scheme,
which is aware of the parallelized prefetching. We note that
sequential prefetching is a technique used by some cloud
storage systems [11], [68]. However, it is only applicable to
block-based cloud storage, in which the block sequentiality is
visible to the block-level caching layer. For a cache serving
object-based cloud storage, in which an object is the basic
caching entity, sequential prefetching is not applicable due to
the lack of object correlations. This has motivated us to de-
velop the FCM mining scheme to discover object correlations.
Therefore, we do not further use sequential prefetching as a
comparison scheme.
Traces. Since web services and filesystem services are two
typical and popular object-based storage services provided by
cloud storage, we use the object-based traces converted from
two web traces (Calgary and NASA) and two filesystem traces
(Deasna2 and Home02) collected from the real-world storage
systems:

• Calgary contains the logs of HTTP requests to the servers
of Department of Computer Science of University of Cal-
gary at Calgary, Canada [15], [17].

• NASA has 2-month HTTP requests to the web servers of
NASA Kennedy Space Center in Florida [16], [17].

• Deasna2 is an NFS trace of a general workload from the
Department of Engineering and Applied Sciences at Harvard
University. This trace is a mix of research, web, and email
workloads [56], [63].

• Home02 is another NFS trace collected in the main network
of Harvard University, which serves 10,000 active user
accounts from the colleges, the graduate school, and the
administration [56], [64].

• Trace pre-processing. For the filesystem traces, we convert
the NFS requests by extracting file_id, offset, and
length from the read and write requests. For the web
traces, we focus on GET and PUT requests (corresponding
to read and write requests) and use the original link as
file_id. Another pre-processing on the filesystem work-
loads is to split large files into smaller segments (1 MB). It
simulates chunking, which is widely adopted in cloud storage
clients (e.g., Dropbox) for various purposes such as dedupli-
cation, compression, delta encoding, and partial updating [24],
[33]. Our framework leverages local storage as the client-side
cache, and all the traces are first filtered with a memory cache.
The memory cache has the size of 0.1% of the data set and
uses the LRU cache replacement algorithm.



Training Trace Length Num. of Objects Num. of Clusters Avg. Cluster Size Time (seconds)
Calgary (3 months) 218,519 5,133 549 4.7 4
NASA (1 month) 1,556,258 11,068 1,187 3.3 146
Deasna2 (1 day) 547,295 40,961 2,592 3.4 23
Home02 (1 day) 143,180 13,067 1,593 3.9 5

TABLE III: The details of the training traces and mining results. The cluster size refers to the number of objects in a cluster.

Testing Trace Length Num. of Objects
Calgary (3 months) 238,519 7,913
NASA (1 month) 1,305,596 10,093
Deasna2 (1 day) 488,145 36,532
Home02 (1 day) 135,363 12,559

TABLE IV: The details of the testing traces.

• Trace splitting: training and testing. To fairly test the
effectiveness of identifying object correlations, we split each
trace into two parts: one for training (denoted as training trace)
and the other for testing (denoted as testing trace). For Calgary,
we use the first three-month trace as the training trace and the
next three-month trace as the testing trace; for NASA, the first-
month and the second-month data are used for training and
testing, respectively. For the filesystem traces, Deasna2 and
Home02, we use one-day trace for training and the next-day
trace for testing. The details of the testing traces are shown in
Table IV. The details of the training traces and mining results
are shown in Table III (see Section VI-B).

B. Mining Correlations in Real Traces

1) Parameter Settings: The main purpose of mining object
correlations is for parallelized prefetching. When using FCM
to cluster correlated objects, we set the search limit as 10,000,
min confidence as 0.5, and min support as 3. The setting
of these thresholds can affect the performance of Pacaca,
which will be further discussed in Section VI-C2.

As for the look-around circle, we need to set a relatively
small radius to restrict the search scope for each object so
that we can find correlated objects that are accessed within
a small time frame; such object correlations are useful to
direct prefetching (see Section II-B1). Specifically, in our
experiments, we set the radius to 16 for mining web traces
and 8 for mining filesystem traces. This setting considers the
possible cluster size. Considering the 90th percentile of the
object sizes in the web traces is smaller than 32 KB, based on
the method of restricting the cluster sizes (see Section III-A),
the proper number of objects for parallel accesses is tested to
be 32 in our systems, so setting radius to no larger than 16
is a sound choice. For the same reason, we set the radius for
the filesystem traces to 8.

2) Mining Results: The efficiency of mining object corre-
lations determines its practicality. Table III shows the object
clusters obtained from the training traces on our platform and
the related overhead. Generally, the time overhead of FCM
is reasonably low. For example, it takes only 4 seconds to
complete searching for object correlations in Calgary. The
overhead for mining filesystem traces is also small. For
example, it takes only 5 seconds to mine object correlations in
Home02. Even for the most costly one, NASA, it takes only

146 seconds to cluster correlated objects from the training
trace which contains the log of one-month accesses.

From Table III, we can also find that the average sizes of
the object clusters are larger than 3, which means that the
correlations involving multiple objects are abundant in real-
system traces. This demonstrates the capability of FCM to
find the correlations of multiple objects.

C. Performance Evaluation
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Fig. 5: Performance for Calgary
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Fig. 6: Performance for NASA
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Fig. 7: Performance for Deasna2

1) Performance Comparison: In this experiment, we set the
entire cache size as 5% of the working set (i.e., the total size of
the unique objects). The prefetching scheme is directed by the
object correlations obtained from the traces (see Section VI-B).
Figures 5-8 show the performance for different optimization
methods working with the four workloads. For a complete
comparison, we also enhanced three traditional caching al-
gorithms (LRU, ARC, and GDS) with the same prefetching
scheme as Pacaca.



  0

  10

  20

  30

  40

  50

  60

  70

LRU ARC GDS Pacaca

A
ve

ra
g
e
 L

a
te

n
cy

 (
m

s)
No Prefetching
Parallelized Prefetching

(a) Average Latency

  0
  5

  10
  15
  20
  25
  30
  35
  40
  45

LRU ARC GDS Pacaca

M
is

s
 R

a
ti
o
 (

%
)

No Prefetching
Parallelized Prefetching

(b) Miss Ratio

Fig. 8: Performance for Home02

Overall performance improvement. Compared to the tra-
ditional caching algorithms without prefetching (LRU, ARC,
and GDS), Pacaca can significantly improve the performance.
Compared to LRU and ARC, Pacaca can reduce the average la-
tencies by up to 58%. For example, for the Calgary workload,
the average latency achieved by Pacaca is 10 milliseconds
while the time used by LRU is 23.8 milliseconds, and by ARC
is 20.3 milliseconds (see Figure 5). Even compared to GDS,
Pacaca can also reduce the average latency by up to 35.5%
with different workloads. This demonstrates the effectiveness
and efficiency of Pacaca.
Efficiency of parallelized prefetching. In the figures, it is
clear that the prefetching scheme can substantially improve all
the traditional caching algorithms. For example, for the NASA
workload, our prefetching scheme can reduce the average
latency of LRU by 26.5%, ARC by 32.7%, and GDS by
22% (see Figure 6). This means that the obtained object
clusters are effective for improving performance through paral-
lelized prefetching. We also note that the mis-prefetching ratio
(i.e., the percentage of the mis-prefetched objects of all the
prefetched objects) is about 4%-15% with current settings (see
Section VI-B1). The effects of mis-prefetching with different
settings will be discussed in Section VI-C2.
Efficiency of cost-aware caching. Compared to the traditional
caching algorithms that are enhanced with the same prefetch-
ing scheme, Pacaca can further improve system performance.
Impressively, Pacaca can significantly outperform LRU with
parallelized prefetching, reducing the average latencies by up
to 45.4% (see Figure 5). Compared to ARC with the same
prefetching scheme, Pacaca can reduce the average latencies
by up to 38.3% with different workloads. Specifically, for
example, for the Calgary workload, Pacaca outperforms ARC
with parallelized prefetching by 38.3% (see Figure 5). The
performance improvement of Pacaca is due to its cost-aware
caching scheme. Both LRU and ARC are cost-unaware, thus
they select the victim objects without considering the different
miss penalties of the objects. By contrast, Pacaca makes
caching decisions based on the access costs of the objects
and prefers to evict the low-cost objects first, especially the
correlated objects that can be prefetched in parallel, which
leads to a lower average latency.

Compared to GDS with parallelized prefetching, Pacaca can
reduce the average latencies by up to 17.2% with different
workloads. Note that in this comparison, GDS is enhanced
with our proposed prefetching scheme. If compared to GDS

without prefetching, Pacaca can reduce the average latencies
by up to 35.5% (see Figure 7). As stated in Section IV, the
difference between the caching policies of Pacaca and GDS
is that GDS only considers the access cost of each individual
object, while Pacaca can further recognize the cost changes
caused by parallelized prefetching. Therefore, the advantage of
Pacaca over GDS with parallelized prefetching demonstrates
the benefits of making caching decisions with the awareness
of parallelism and object correlations.

This is consistent with our observation that Pacaca has
similar miss ratios as GDS with parallelized prefetching but it
achieves lower average latencies. For example, for the Calgary
workload (see Figure 5), the miss ratios of Pacaca and GDS
with parallelized prefetching are comparable (about 10%), but
Pacaca can reduce the average latency by 16%. It is because
evicting correlated objects, which have relatively lower access
costs than individual objects, does not necessarily reduce miss
ratios but can achieve lower overall miss penalties.

2) Sensitivity Study of Parameters: The performance of
Pacaca can be affected by several parameters. In this sec-
tion, we discuss the effects of three critical parameters:
search limit, min confidence, and min support (see Sec-
tion II-B). Figures 9-11 show the performance achieved by
Pacaca for the testing trace of Calgary with object correlations
obtained from the training trace using different thresholds.
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Fig. 9: Pacaca performance for Calgary with different settings
of search limit.

Effects of the search limit thresholds. Figure 9 shows the
performance of Pacaca for Calgary using different search limit
thresholds from 10 to 10,000. When search limit increases
from 10 to 100, the performance is significantly improved,
and after that, the performance gains diminish and the average
latency even slightly increases when search limit exceeds
500. This is because with a reasonable search scope, the
object correlations become relatively stable, and further in-
creasing the search depth cannot find more useful object
correlations and could lead to performance loss. As for the
mining overhead, reducing the search limit from 10,000 to 100
results in 29% less time consumption. For the Calgary trace,
using a search limit of 100 can uncover 90% of the object
occurrences. In our experiments, setting the search limit close
to the 90th percentile of the object occurrences also works well
for other traces.
Effects of the min confidence thresholds. Figure 10 shows
the average latencies and mis-prefetching ratios achieved
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Fig. 10: Pacaca performance for Calgary with different settings
of min confidence.

by Pacaca for Calgary using the confidence thresholds
(min confidence) ranging from 0.1 to 0.9. When the confi-
dence threshold increases from 0.1 to 0.2, the average latency
decreases by 8.8%; after that, the performance remains stable;
when the confidence threshold exceeds 0.5, the average latency
increases slightly. This can be explained from two aspects.
First, a lower confidence threshold is helpful to find more
object correlations but may suffer a higher mis-prefetching
ratio. When the confidence threshold increases from 0.1 to
0.9, shown as Figure 10(b), the mis-prefetching ratio decreases
from 53% to 4%, demonstrating that prefetching accuracy is
determined by the confidence threshold. Since Pacaca can
evict the mis-prefetched objects as early as possible and
fetch the objects with proper parallelization (see Section III
and Section VI-C3), the negative effect of mis-prefetching
on performance is largely mitigated. However, considering
intensive mis-prefetching would waste the system resources
(e.g., network bandwidth), we find that a relatively higher
confidence threshold (e.g., between 0.5 and 0.8) is more
desirable.
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Fig. 11: Pacaca performance for Calgary with different settings
of min support.

Effects of the min support thresholds. Figure 11 shows
the average latencies and mis-prefetching ratios achieved by
Pacaca for Calgary using the support thresholds (min support)
ranging from 1 to 12. When the support thresholds are
smaller than 3, the average latencies are comparable. After
that, the performance degradation is significant as the support
threshold increases. Although a low support threshold may
introduce some object correlations with weak repeatability, a
high support threshold would filter out a lot of useful object
correlations and thus lose many opportunities for prefetching.

As shown in Figure 11(b), the support thresholds do not have
obvious effects on mis-prefetching ratios. That is because the
prefetching accuracy is mainly determined by the confidence
threshold. Therefore, setting the support threshold to a rea-
sonably small value (e.g., 3 in our experiments) is generally
appropriate for performance.

3) Impact of Optimization Methods: In this section, we
evaluate the impact of optimization methods, including the
correlation-aware mis-prefetching detection and restricting
cluster sizes for parallelism control.
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Fig. 12: Pacaca performance for Calgary with and without the
correlation-aware mis-prefetching detection.

Impact of correlation-aware mis-prefetching detection. To
reduce the possible cache pollution, we adopt a correlation-
aware approach to detect the mis-prefetched objects, and
quickly reclaim their space for efficiently utilizing the cache
space (see Section III-B and Section V). Figure 12 shows
the performance for the Calgary workload with and without
the correlation-aware detection for handling mis-prefetching,
setting the confidence thresholds ranging from 0.1 to 0.9.
From Figure 12(a), we can see that the correlation-aware
approach can reduce the average latency by up to 13.1%. This
is because the approach can quickly remove the mis-prefetched
objects to reclaim their space, resulting in the reduced miss
ratios, as shown in Figure 12(b). In addition, since a higher
confidence threshold leads to a lower mis-prefetching ratio (see
Section VI-C2), the impact of the mis-prefetching detection
diminishes as the confidence threshold increases.
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Impact of restricting cluster sizes for parallelism control.
To avoid over-parallelization, we set the search scope (radius)
to restrict the cluster sizes for prefetching (see Section III-A).
Based on the performance capabilities of the client, we set
the radius to search for object clusters from the filesystem



traces and the web traces to 8 and 16, respectively (see
Section VI-B1). Figure 13 shows the performance for the
Home02 workload with different search scopes. Our setting
(radius set to 8) achieves the lowest average latency.

For setting a smaller radius (2 or 4), the performance loss
is caused by a higher miss ratio (see Figure 14). That is
because a smaller search scope would limit the obtained object
clusters in a smaller size, resulting in a smaller prefetching
granularity and lower prefetching efficiency. For setting a
higher radius (16, 32, or 64), the miss ratio decreases due to
a larger prefetching granularity; however, the latency increase
caused by the interference among over-parallelized requests
can offset the benefits of a lower miss ratio, resulting in
performance degradation. In particular, when setting radius
to 64, we find that 8.4% of the obtained clusters contain more
than 16 objects; 22.3% of these large clusters have even more
than 32 objects. Downloading such large clusters in parallel
would cause significant over-parallelization, impairing system
performance, as shown in Figure 13 and Figure 14.

As for the web traces, since the object sizes are relatively
small, the negative effect of over-parallelization is less severe.
However, increasing the current radius setting from 16 to 32,
for example, with the Calgary trace, can still lead to latency
increase by about 10%.

VII. OTHER RELATED WORK

In this section, we present other related work that has not
been discussed previously. Several prior measurement work
on cloud storage focuses on investigating the performance and
behaviors of cloud storage services [21], [28], [52], [58] and
client applications [20], [31], [32], [33], [42], [43], [55], [67].
These prior studies lay a foundation for us to understand cloud
storage services. Our work particularly focuses on exploiting
I/O parallelism, a unique characteristic of cloud storage.

Caching is widely adopted in cloud environments [19], [27],
[44]. This work particularly focuses on the client-side caching
and prefetching for cloud storage. LRU is a popular caching
algorithm adopted in cloud-based storage systems [12], [22],
[66] and also being used in many commercial products [3],
[4], [7], [8], [10]. Tombolo [68] implements a sequential
prefetching scheme integrated with the SARC [23] cache
replacement algorithm in a gateway simulator. This scheme
provides block-based optimizations and is thus not applicable
in object-based cloud storage. Our efforts include cluster-
ing semantically correlated objects, prefetching objects in a
properly parallelized manner, and making cost-aware caching
decisions, which also make our work different from other
approaches of integrating caching and prefetching [14], [29],
[34], [39], [40], [49].

Our caching scheme is a type of GDS-based cost-aware
caching optimized for parallelized prefetching in cloud stor-
age. GreedyDual-Size (GDS) [25] is originally designed for
web caching, which considers locality with cost and size
in cache replacement. Other prior GDS-based caching algo-
rithms [26], [46], [48], [53] also introduce additional factors,
such as power and spatial locality. Our algorithm particularly

recognizes the change of access costs caused by I/O paral-
lelization in cloud storage, and it makes caching decisions by
leveraging the awareness of parallelism and object correla-
tions.

Our prior work, GDS-LC [41], is another client caching
scheme designed for cloud storage. It aims to improve the
cost efficiency by considering the difference in latencies and
monetary costs of various cloud storage I/Os in caching. By
contrast, Pacaca focuses on exploiting the parallelism potential
in cloud storage by mining the relationships among objects and
prefetching correlated objects in a parallelized manner, and its
caching scheme is accordingly designed and optimized to be
aware of such parallelization. As a flexible client cache man-
agement framework, Pacaca can include GDS-LC and other
caching schemes, such as ARC and GDS, well integrating
them with our parallelized prefetching scheme.

VIII. CONCLUSIONS

In this paper, we present a client-side cache management
framework, called Pacaca, to optimize user experience with
cloud storage. In this framework, we first design a cluster-
based mining scheme FCM to obtain object correlations, based
on which an optimized prefetching scheme preloads correlated
objects in parallel. A cost-aware caching scheme further
leverages the awareness of parallelism and object correlations
to optimize the local cache management. The experimental
results show the effectiveness and efficiency of our proposed
schemes, which also demonstrates that it is important to
consider the unique characteristics of cloud storage, such as
parallelism potential and object correlations, to achieve the
desired optimization goals.
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