
Generalized Low Rank Approximations of Matrices

Jieping Ye jieping@cs.umn.edu

Department of Computer Science, University of Minnesota, Minneapolis, MN 55455, USA

Abstract

We consider the problem of computing low
rank approximations of matrices. The nov-
elty of our approach is that the low rank ap-
proximations are on a sequence of matrices.
Unlike the problem of low rank approxima-
tions of a single matrix, which was well stud-
ied in the past, the proposed algorithm in
this paper does not admit a closed form so-
lution in general. We did extensive exper-
iments on face image data to evaluate the
effectiveness of the proposed algorithm and
compare the computed low rank approxima-
tions with those obtained from traditional
Singular Value Decomposition based method.

keywords: Singular Value Decomposition (SVD), low
rank approximation, classification.

1. Introduction

The language of linear algebra appeared quite early in
information retrieval, and machine learning, through
the use of vector space model (Kleinberg & Tomkins,
1999). Under this model, each datum is modeled as a
vector and the collection of data is modeled as a single
data matrix, where each column of the data matrix
corresponds to a data point and each row of the data
matrix corresponds to a feature dimension. The repre-
sentation of data by vectors in Euclidean space allows
one to compute the similarity between data points,
based on the Euclidean distance or some other simi-
larity metrics. The similarity metrics on data points
naturally lead to similarity based indexing by repre-
senting queries as vectors and searching for their near-
est neighbors. However, in many applications, such
as images, the nearest neighbor searching is in a huge
number of dimensions. Because of the curse of the
dimensionality, that is, the query efficiency and accu-
racy degrades as the dimensionality increases, dimen-

This paper is a slightly revised version of the paper appear-
ing in Proceedings of the 21 st International Conference on
Machine Learning, 2004. Copyright 2004 by the author.

sion reduction becomes an important pre-processing
step (Aggarwal, 2001; Castelli et al., 2003).

A well-known technique for dimension reduction is the
low rank approximation by the Singular Value Decom-
position (SVD) (Golub & Van Loan, 1996). Let A be
the data matrix, and let A = UΣV T be the SVD of
A, where U and V are orthogonal and Σ is diagonal.
Then, for a given k, the optimal rank k approxima-
tion of A is given by bestk(A) = UkΣkV

T
k , where Uk

and Vk are the matrices formed by the first k columns
of the matrices U and V , respectively, and Σk is the
k-th principal submatrix of Σ. A key property of this
rank k approximation is that it achieves the best possi-
ble approximation with respect to the Frobenius norm,
among all matrices with rank k. More details can be
found in Section 2.

The problem of low rank approximations of matrices
has recently received broad attention in areas such as
computer vision, information retrieval, and machine
learning (Berry et al., 1995; Castelli et al., 2003; Deer-
wester et al., 1990; Dhillon & Modha, 2001; Srebro
& Jaakkola, 2003). It becomes an important tool
for extracting correlations and removing noise from
data. However, applications of this technique to high-
dimensional data, such as images and videos, quickly
run up against practical computational limits, mainly
due to the high time and space complexities of the
SVD computation for large matrices. Several incre-
mental algorithms have been proposed in the past (Gu
& Eisenstat, 1993; Kanth et al., 1998) to deal with the
high space complexity of SVD, where the data points
are inserted incrementally to update the SVD. To our
knowledge, such algorithms come with no guarantees
on the quality of the approximation produced. Low
rank approximation by random sampling was studied
in (Achlioptas & McSherry, 2001; Drineas et al., 1999;
Frieze et al., 1998) to speed up the SVD computation.
However, the effectiveness of these approaches is de-
pendent on the spectral structure of data matrix.

In this paper, we present a novel approach to allevi-
ate the expensive SVD computation. The novelty lies
in a new data representation model. Under this new
model, each datum is represented as a matrix, instead
of a vector, and the collection of data as a sequence of

matrices, instead of a single large matrix. The prob-
lem of low rank approximations becomes the problem
of approximating a sequence of matrices with matrices
of lower rank. We formulate this as a new optimization
problem. Details will be given in Section 3. Unlike the
traditional problem of approximating a single matrix,
there is no closed form solution for the new optimiza-
tion problem. We thus derive an iterative algorithm.
Detailed mathematical justification for this iterative
procedure is provided.

A natural application for this new approach is in image
compression and retrieval, where each image is repre-
sented in its native matrix representation. To evaluate
the proposed algorithm, we did extensive experiments
on four well-known face image datasets: PIX, ORL,
AR and PIE and compared the proposed algorithm
with traditional SVD based method. Empirical results
show that: (1) The proposed algorithm outperforms
the traditional SVD based method in terms of classifi-
cation accuracy, when using the same compression ra-
tio1; (2) The proposed algorithm has distinctively less
computational time than the traditional SVD based
method.

The rest of this paper is organized as follows. We
give a brief overview on low rank approximations in
Section 2. The problem of generalized low rank ap-
proximations of matrices is studied in Section 3. A
performance study is presented in Section 4. The con-
clusion is in Section 5.

The notations used throughout the rest of this paper
are listed in the Table 1.

Table 1. Notations

Notations Descriptions
Ai the i-th data point in matrix form
r number of rows in Ai

c number of columns in Ai

L transformation on the left side
R transformation on the right side
Di reduced representation of Ai

`1 number of rows in Di

`2 number of columns in Di

k rank of reduced matrix by SVD
A data matrix
n number of training data points
N dimension of training data

1Here the compression ratio means the percentage of
space saved by the low rank approximations to store the
data. Details can be found in Sections 2 and 3.

2. Low Rank Approximations

Traditional methods in information retrieval and ma-
chine learning deal with data in vectorized representa-
tion. A collection of data is then stored in a single ma-
trix A ∈ RN×n, where each column of A corresponds
to a vector in the N -dimensional space. A major ben-
efit of this vector space model is that the algebraic
structure of the vector space can be exploited (Berry
et al., 1995).

For high-dimensional data, one would like to simplify
the data, so that traditional machine learning and sta-
tistical techniques can be applied. However, crucial in-
formation intrinsic in the data should not be removed
under this simplification. A widely used method for
this purpose is to approximate the single data matrix,
A, with a matrix of lower rank. Mathematically, the
optimal rank k approximation of a matrix A, under
the Frobenius norm can be formulated as follows:

Find a matrix B ∈ RN×n with rank(B) = k, such
that B = argminrank(B)=k

||A−B||F ,

where the Frobenius norm, ||M ||F , of a matrix M =

(Mij) is given by ||M ||F =
√

∑

i,j M
2
ij . The matrix

B can be readily obtained by computing the Singu-
lar Value Decomposition (SVD) of A, as stated in the
following theorem (Golub & Van Loan, 1996).

Theorem 2.1. Let the Singular Value Decomposi-
tion of A ∈ RN×n be A = UDV T , where U and V

are orthogonal, D = diag(σ1, · · · , σr, 0, · · · , 0), σ1 ≥
· · · ≥ σr > 0 and r = rank(A). Then for 1 ≤ k ≤
r,
∑r

i=k+1 σ
2
i = min{||A − B||2F | rank(B) = k}.

The minimum is achieved with B = bestk(A), where
bestk(A) = Ukdiag(σ1, · · · , σk)V

T
k , and Uk and Vk are

the matrices formed by the first k columns of U and V
respectively.

For any approximation,M , of A, we call ||A−M ||F the
reconstruction error of the approximation. By Theo-
rem 2.1, B = Ukdiag(σ1, · · · , σk)V

T
k has the small-

est reconstruction error among all the rank k ap-
proximations of A. Under this approximation, each
column, ai ∈ RN , of A can be approximated as
ai ≈ Uka

L
i , for some aL

i ∈ Rk. Since Uk has or-
thonormal columns, ||Uka

L
i − Uka

L
j || = ||aL

i − aL
j ||,

i.e., the Euclidean distance between two vectors are
preserved under the projection by Uk. It follows that
||ai − aj || ≈ ||Uka

L
i − Uka

L
j || = ||aL

i − aL
j ||. Hence the

proximity of ai and aj , in the original high-dimensional
space, can be approximated by computing the proxim-
ity of their reduced representations aL

i and a
L
j . This

forms the basics for Latent Semantics Indexing (Berry

et al., 1995; Deerwester et al., 1990), widely used
in informational retrieval. Another potential applica-
tion of the above rank k approximation is data com-
pression. Since each ai is approximated by Uka

L
i ,

where Uk is common for every ai, we need to keep
Uk and {aL

i }ni=1 only for all the approximations. Since
Uk ∈ RN×k and aL

i ∈ Rk, for i = 1, · · · , n, it requires
nk+Nk = (n+N)k scalars only to store the reduced
representations. The storage saved, or compression
ratio, using the rank k approximation is thus nN

(n+N)k ,

since the original data matrix A ∈ RN×n.

3. Generalized Low Rank Approxima-

tions

3.1. Problem formulation

In this section, we study the problem of generalized low
rank approximations, which aims to approximate a se-
quence of matrices with lower rank. A key difference
between this generalized problem and the low rank ap-
proximation problem, discussed in the last section, is
the data representation model applied. Recall that the
vector space model is applied for the traditional low
rank approximations. The vector space model leads
to a simple and closed form solution for low rank ap-
proximations by computing the SVD of the data ma-
trix. However, the high time and space complexities of
SVD restricts its applicability to matrices with large
size. Instead, we apply a different data representa-
tion model, under which, each datum is represented
by a matrix and the collection of data is represented
by a sequence of matrices. The corresponding gener-
alized low rank approximation problem becomes the
problem of approximating a sequence of matrices with
lower rank. Details are given below.

Let Ai ∈ Rr×c, for i = 1, · · · , n, be the n data points
in the training set. We aim to compute two matrices
L ∈ Rr×`1 and R ∈ Rc×`2 with orthonormal columns,
and n matrices Di ∈ R`1×`2 , such that LDiR

T is a
good approximation of Ai, for all i. Mathematically,
we can formulate this as the following minimization
problem: Computing optimal L, R and {Di}ni=1, which
solve

min
L ∈ Rr×`1 : LT L = I`1

R ∈ Rc×`2 : RT R = I`2

Di ∈ R`1×`2 : i = 1, · · · , n

n
∑

i=1

||Ai − LDiR
T ||2F . (1)

We can consider L and R in the above approximations
as the two-sided linear transformations on the data in
matrix form, with L and R as the transformations on
the left and right sides, respectively. Recall that in

the case of traditional low rank approximations, one-
sided transformation is applied, which is Uk in our
previous discussions. Note that the matrices {Di}ni=1

are not required to be diagonal, which contrasts with
the traditional low rank approximations by SVD.

The common transformations L and R with orthonor-
mal columns, in the above approximations, naturally
lead to several basic applications:

• Data compression: The matrices L, R, and
{Di}ni=1 can be used to recover the original n
matrices {Ai}ni=1, assuming LDiR

T is a good
approximation of Ai, for each i. It requires
r`1 + c`2 + n`1`2 scalars to store L ∈ Rr×`1 ,
R ∈ Rc×`2 , and {Di}ni=1 ∈ R`1×`2 . Hence, the
storage saved, or the compression ratio using the
approximations is nrc

r`1+c`2+n`1`2
, since Ai ∈ Rr×c,

for each i.

• Similarity computation: A common simi-
larity metric between Ai and Aj is the Frobe-
nius norm. Under this metric, the distance be-
tween Ai and Aj is ||Ai − Aj ||F , whose compu-
tational complexity is O(rc). Using the approxi-
mations, ||Ai − Aj ||F ≈ ||LDiR

T − LDjR
T ||F =

||Di−Dj ||F , since both L and R have orthonormal
columns. It is clear that the computational cost
for computing ||Di−Dj ||F is O(`1`2). Hence, the
speed-up on a single distance computation using
the reduced representations, is rc

`1`2
.

Note that as `1 and `2 decrease, the speed-up on the
distance computation and the compression ratio in-
crease. However, small values of `1 and `2 may lead to
loss of information intrinsic in the original data. We
discuss this trade-off in Section 4.

The formulation in Eq. (1) is general, in the sense that
`1 and `2 can be different, which might be useful in the
case when the number, r, of rows of Ai is much larger
or smaller than the number, c, of columns of Ai.

3.2. The main algorithm

In the rest of this section, we show how to solve the
minimization problem in Eq. (1). The result in the
following theorem shows that the Di’s are dependent
on the transformation matrices L and R, which signif-
icantly simplifies the minimization in Eq. (1).

Theorem 3.1. Let L, R and {Di}ni=1 be the optimal
solution to the minimization problem in Eq. (1). Then
Di = LTAiR, for every i.

Proof. By the property of the trace of matrices,

∑n
i=1 ||Ai − LDiR

T ||2F
=

∑n
i=1 trace

(

(Ai − LDiR
T)(Ai − LDiR

T)T
)

=
∑n

i=1 trace(AiA
T
i) +

n
∑

i=1

trace(DiD
T
i)

−2
∑n

i=1 trace(LDiR
TAT

i), (2)

where the second term
∑n

i=1 trace(DiD
T
i) results from

the fact that both L and R have orthonormal columns,
and trace(AB) = trace(BA), for any two matrices.

Since the first term in the right side of Eq. (2) is a
constant, the minimization in Eq. (1) is equivalent to
minimizing

n
∑

i=1

trace(DiD
T
i)− 2

n
∑

i=1

trace(LDiR
TAT

i). (3)

It is easy to check that the minimum of (3) is obtained,
only if Di = LTAiR, for every i. This completes the
proof of the theorem.

Theorem 3.1 implies that Di is uniquely determined
by L and R with Di = LTAiR, for all i. Hence the
key step for the minimization in Eq. (1) is the com-
putation of the common transformations L and R. A
key property on the optimal transformations L and R
is stated in the following theorem:

Theorem 3.2. Let L, R and {Di}ni=1 be the optimal
solution to the minimization problem in Eq. (1). Then
L and R solve the following optimization problem:

max
L ∈ Rr×`1 : LT L = I`1

R ∈ Rc×`2 : RT R = I`2

n
∑

i=1

||LTAiR||2F . (4)

Proof. From Theorem 3.1, Di = LTAiR, for every i.
Plugging Di = LTAiR into

∑n
i=1 ||Ai−LDiR

T ||2F , we
obtain

n
∑

i=1

||Ai − LDiR
T ||2F =

n
∑

i=1

||Ai||2F −
n
∑

i=1

||LTAiR||2F .

(5)

Hence the minimization in Eq. (1) is equivalent to the
maximization of

∑n
i=1 ||LTAiR||2F , which completes

the proof of the theorem.

To our knowledge, there is no closed form solution for
the maximization in Eq. (4). A key observation, which
leads to an iterative algorithm for the computation of
L and R, which are locally optimal, is stated in the
following theorem:

Theorem 3.3. Let L, R and {Di}ni=1 be the optimal
solution to the minimization problem in Eq. (1). Then

1. For a given R, L consists of the `1 eigenvectors of
the matrix ML =

∑n
i=1 AiRR

TAT
i corresponding

to the largest `1 eigenvalues.

2. For a given L, R consists of the `2 eigenvectors of
the matrix MR =

∑n
i=1 A

T
i LL

TAi corresponding
to the largest `2 eigenvalues.

Proof. By Theorem 3.2, L and R maximize

n
∑

i=1

||LTAiR||2F ,

which can be rewritten as

∑n
i=1 trace(L

TAiRR
TAT

i L)

= trace

(

LT

n
∑

i=1

(AiRR
TAT

i)L

)

= trace
(

LTMLL
)

. (6)

Hence, for a given R, the maximum of
∑n

i=1 ||LTAiR||2F = trace
(

LTMLL
)

is obtained,
only if L ∈ Rr×`1 consists of the `1 eigenvectors
of the matrix ML corresponding to the largest `1
eigenvalues. The maximization can be considered as a
special case of the more general optimization problem
in (Edelman et al., 1998).

Similarly, for a given L, the maximum of
∑n

i=1 ||LTAiR||2F = trace
(

RTMRR
)

is obtained,
only if R ∈ Rc×`2 consists of the `2 eigenvectors
of the matrix MR corresponding to the largest `2
eigenvalues, where MR =

∑n
i=1 A

T
i LL

TAi.

Theorem 3.3 provides us an iterative procedure for
computing L and R. More specifically, for a given
L, we can compute R by computing the eigenvectors
of the matrixMR. With the computed R, we can then
update L by computing the eigenvectors of the matrix
ML. The procedure can be repeated until convergence.
The pseudo-code for computing L and U following the
above iterative procedure is given in Algorithm 1.

Theoretically, the solution from Algorithm 1 is only
locally optimal. The solution depends on the choice
of the initial L0 for L. We did extensive experiments

and found that choosing L0 =

(

I`1
0

)

, where I`1 is

an identity matrix, produces excellent results. We thus
use this initial L0 in all the experiments.

Algorithm 1: Generalized Low Rank

Approximations

Input: matrices {Ai}ni=1

Output: matrices L, R, and {Di}ni=1

1. Obtain initial L0 and set i← 1
2. While not convergent
3. form the matrix MR =

∑n
j=1 A

T
j Li−1L

T
i−1Aj

4. compute the `2 eigenvectors {φR
j }`2j=1

of MR corresponding to the largest
`2 eigenvalues

5. Ri ←
[

φR
1 , · · · , φR

`2

]

6. form the matrix ML =
∑n

j=1 AjRiR
T
i A

T
j

7. compute the `1 eigenvectors {φL
j }`1j=1

of ML corresponding to the largest
`1 eigenvalues

8. Li ←
[

φL
1 , · · · , φL

`1

]

9. i← i+ 1
10. EndWhile
11. L← Li−1

12. R← Ri−1

13. For j from 1 to n
14. Dj ← LTAjR

15. EndFor

Theorem 3.3 implies that the updates of the matrices
in Lines 5 and 8 of theAlgorithm 1 increase the value
of
∑n

i=1 ||LTAiR||2F . Hence by Theorem 3.2, the value
of
∑n

i=1 ||Ai − LDiR
T ||2F decreases, or

RMSRE ≡

√

√

√

√

1

n

n
∑

i=1

||Ai − LDiRT ||2F (7)

decreases. Here RMSRE stands for the root mean
square reconstruction error. A similar measure was
used in (Ye et al., 2004). The convergence of the Al-
gorithm 1 follows, since RMSRE is bounded from
below by 0, as stated in the following Theorem:

Theorem 3.4. Algorithm 1 monotonically de-
creases the the RMSRE value as defined in Eq. (7),
hence it converges.

We thus use the RMSRE value to check the con-
vergence of Algorithm 1. More specifically, let
RMSRE(i) and RMSRE(i − 1) be the RMSRE value
at the i-th and (i − 1)-th iterations from Algorithm
1, then the convergence of the algorithm is determined
by checking whether RMSRE(i− 1)−RMSRE(i) < η,
for some small threshold η > 0. In the following ex-
periments, we choose η = 0.05.

We investigate the convergence property of the pro-
posed algorithm, using the four datasets described in

Section 4. For simplicity, we set `1 = 20 and `2 = 20
for all cases. The results on all four datasets show that
the RMSRE value drops dramatically during the first
and second iterations and it stabilizes after two itera-
tions. Thus, the proposed algorithm converges within
two iterations for all four datasets.

3.3. Time and space complexities

We close this section by analyzing the time and space
complexities of the proposed algorithm.

The most expensive steps in Algorithm 1 are the
formation of the matrices MR and ML in Lines 3 and
6 respectively, and the formation of Dj in Lines 13–15.

It takes O(`1c(r + c)n) time for computing MR and
O(`2r(r + c)n) time for computing ML. The compu-
tation of Dj = (LT (AjR)) using the given order is
O(rc`2+ r`2`1) = O(r`2(c+ `1)). Assume the number
of iterations in the while loop (from Line 2 to Line 10
in Algorithm 1) is I. The total time complexity can
be simplified as O(I(r + c)2max(`1, `2)n).

The key to the low space complexity of the algorithm
is that the formation of the matrices MR and ML can
be processed by reading the matrices Ai incrementally.
It is easy to verify that the space complexity for Al-
gorithm 1 is O(rc).

4. Experimental evaluations

In this section, we experimentally evaluate our pro-
posed algorithm on face image data. All of our exper-
iments are performed on a P4 1.80GHz linux machine
with 1GB memory. For face images, the number, r, of
rows and the number, c, of columns are comparable,
we thus set both `1 and `2 equal to a common value, d,
in all the following experiments, for simplicity. How-
ever, the algorithm works in the general case.

We present the four face image datasets used for our
evaluation in the first part. The effect of the com-
mon value, d, for both `1 and `2, used in the proposed
algorithm is discussed in the second part. Finally, a
detailed comparative study between the proposed al-
gorithm and SVD is provided, where the comparison
is made on classification accuracy, and efficiency.

For all the experiments, we use the K-Nearest neigh-
bors (K-NN) method based on the Euclidean distance
for classification. We use 10-fold cross-validation for
estimating the classification accuracy. In 10-fold cross-
validation, we divide the data into ten subsets of (ap-
proximately) equal size. Then we do the training and
testing ten times, each time leaving out one of the
subsets for training, and using only the omitted sub-

Table 2. Statistics of our test datasets

Dataset Size Dim # of classes
PIX 300 10000 30
ORL 400 10304 40
AR 1638 8888 126
PIE 6615 38500 63

set for testing. The classification accuracy reported is
the average from the ten runs.

4.1. Datasets

We use the following four well known face datasets,
which are publicly available, in our experiments:
PIX2, ORL3, AR4 (Martinez & Benavente, 1998), and
PIE5(Sim et al., 2002). The statistics of the four
datasets are summarized in Table 2. Note that for AR
and PIE, we only use a subset of the whole datasets.

4.2. The effect of the value of d

Recall that we choose a common value, d, for both `1
and `2. Thus, the value of d determines the dimen-
sionality in the transformed space by the proposed al-
gorithm. A large d leads to a small compression ratio,
which may not be effective for dimension reduction,
while a small d may lose some information intrinsic in
the dataset. It is difficult to determine the optimal
value of d theoretically. We did extensive experiments
using different values of d on the four datasets. The
results are summarized in Figure 1, where the x-axis
denotes the the value of d (between 2 and 20) and
the y-axis denotes the classification accuracy with 1-
Nearest-Neighbor as the classifier. As shown in Fig-
ure 1, the accuracy curves on the PIX, ORL and PIE
datasets stabilize around d = 4 to 6, while the accu-
racy curve on the AR dataset stabilizes around d = 18.
Note that the low accuracy on the AR dataset may
be related to the large within-class variance of each
class/individual in the AR dataset.

4.3. Classification effectiveness

In this experiment, we evaluate the effectiveness of the
proposed algorithm in terms of classification accuracy
and compare with SVD. Figures 2–4 show the accuracy
curves of these two algorithms on the three face image
datasets: PIX, ORL, and AR, respectively. The x-

2http://peipa.essex.ac.uk/ipa/pix/faces/manchester/
3http://www.uk.research.att.com/facedatabase.html
4http://rvl1.ecn.purdue.edu/∼aleix/aleix face DB.html
5http://www.ri.cmu.edu/projects/project 418.html

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 4 6 8 10 12 14 16 18 20

A
cc

ur
ac

y

d

PIX
ORL

AR
PIE

Figure 1. The effect of the value of d

axis denotes the number of nearest neighbors in K-
NN, and the y-axis denotes the classification accuracy.
Note that SVD is not applicable for PIE, due to its
large size. However, the proposed algorithm has the
minimum space requirement and is applicable for PIE.
For all datasets, d = 20 is applied for the proposed
algorithm. The reduced rank, k, in SVD is chosen
such that both SVD and the proposed algorithm have
the same compression ratio. Thus, k = 12, 15, 73 are
chosen for datasets PIX, ORL, and AR, respectively.

The main observations include:

• For all datasets, both the proposed algorithm and
SVD have the best performance whenK = 1 near-
est neighbor is used in K-NN.

• Our proposed algorithm outperforms SVD consis-
tently for all datasets.

• Interestingly, SVD is not applicable for PIE, since
SVD requires the whole data matrix to reside in
main memory, which is not the case for the PIE
dataset, due to its large size. However, our pro-
posed algorithm has the minimum memory re-
quirement and is thus applicable for PIE.

To give a concrete idea of the difference, Figure 5 shows
images for 10 different persons from the ORL dataset.
The 10 images in the first row are the original images
from the dataset. The 10 images in the second row
are the ones compressed by our proposed algorithm
with d = 20. The compression ratio is about 25. The
same compression ratio can be obtained, if the reduced
rank in SVD is set to be 15. The resulting images are
shown in the third row of Figure 5. It is clear that the
images compressed by our proposed algorithm have
better visual quality than those compressed by SVD,
when using the same compression ratio.

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 1 2 3

A
cc

ur
ac

y

K-Nearest Neighbors

SVD
Proposed

Figure 2. Comparison of classification accuracy using PIX
dataset

 0.93

 0.935

 0.94

 0.945

 0.95

 0.955

 0.96

 0.965

 0.97

 0.975

 0.98

 1 2 3

A
cc

ur
ac

y

K-Nearest Neighbors

SVD
Proposed

Figure 3. Comparison of classification accuracy using ORL
dataset

 0.52

 0.54

 0.56

 0.58

 0.6

 0.62

 0.64

 0.66

 0.68

 0.7

 1 2 3

A
cc

ur
ac

y

K-Nearest Neighbors

SVD
Proposed

Figure 4. Comparison of classification accuracy using AR
dataset

Figure 5. First row: original images. Second row: images
compressed by the proposed algorithm. Third row: images
compressed by SVD.

4.4. Comparative study on efficiency

In this experiment, we examine the efficiency of the
proposed algorithm and compare with SVD. Figure 6
shows the CPU time of the proposed algorithm and
SVD on four datasets. The CPU time of SVD on the
PIE dataset is not shown, due to the same reason as
mentioned above. The main observation is:

• The proposed algorithm has distinctly less compu-
tational time than SVD. As the size of the dataset
gets larger from PIX to ORL to AR, the speedup
of our proposed algorithm over SVD increases.
For the AR dataset, our proposed algorithm is
almost two orders of magnitude faster compared
to SVD.

Note that the time complexity of the proposed algo-
rithm is O(I(r + c)2dn). Assuming r ≈ c ≈

√
N

(note N = rc), the time complexity of the proposed
algorithm can be simplified as O(IdnN), while the
time complexity of SVD is O(n2N), assuming n < N .
Hence, as n gets larger, the speed-up of the proposed
algorithm over SVD is also larger.

5. Conclusions

A novel algorithm for low rank approximations of a
sequence of matrices is presented. The algorithm is
iterative, in the sense that the approximation is im-
proved during iterations. Empirical results show that
the algorithm converges within few iterations.

A natural application of this approach is in image
compression and retrieval, where each image is rep-
resented in its native matrix form. We evaluate the
proposed algorithm in terms of classification accu-
racy, and efficiency, and compare with traditional SVD
based method. A key observation is that the proposed
algorithm has minimum space requirement, and lower

 1

 10

 100

 1000

PIX ORL AR PIE

Ti
m

e
(S

ec
on

ds
)

Datasets

SVD
Proposed

Figure 6. Comparison of efficiency using the four datasets.
Note that SVD is not applicable for the PIE dataset, due
to its large size.

time complexity than SVD, which is desirable for large
datasets (such as PIE), while experiments show supe-
rior performance of the proposed algorithm over SVD,
in terms of classification accuracy.

Acknowledgment

Research is sponsored, in part, by the Army High Per-
formance Computing Research Center under the aus-
pices of the Department of the Army, Army Research
Laboratory cooperative agreement number DAAD19-
01-2-0014, the content of which does not necessarily
reflect the position or the policy of the government,
and no official endorsement should be inferred.

References

Achlioptas, D., & McSherry, F. (2001). Fast compu-
tation of low rank matrix approximations. ACM
STOC Conference Proceedings (pp. 611–618).

Aggarwal, C. C. (2001). On the effects of dimensional-
ity reduction on high dimensional similarity search.
ACM PODS Conference Proceedings. Santa Bar-
bara, California, USA.

Berry, M., Dumais, S., & O’Brie, G. (1995). Using
linear algebra for intelligent information retrieval.
SIAM Review, 37, 573–595.

Castelli, V., Thomasian, A., & Li, C.-S. (2003). Csvd:
Clustering and singular value decomposition for ap-
proximate similarity searches in high dimensional
space. IEEE Transactions on Knowledge and Data
Engineering, 15, 671–685.

Deerwester, S., Dumais, S., Furnas, G., Landauer, T.,
& Harshman, R. (1990). Indexing by latent seman-

tic analysis. Journal of the Society for Information
Scienc, 41, 391–407.

Dhillon, I., & Modha, D. (2001). Concept decompo-
sitions for large sparse text data using clustering.
Machine Learning, 42, 143–175.

Drineas, P., Frieze, A., Kannan, R., Vempala, S., &
Vinay, V. (1999). Clustering in large graphs and
matrices. ACM SODA Conference Proceedings (pp.
291–299).

Edelman, A., Arias, T. A., & Smith, S. T. (1998).
The geometry of algorithms with orthogonality con-
straints. SIAM Journal on Matrix Analysis and Ap-
plications, 20, 303–353.

Frieze, A., Kannan, R., & Vempala, S. (1998). Fast
monte-carlo algorithms for finding low-rank approx-
imations. ACM FOCS Conference Proceedings (pp.
370–378).

Golub, G. H., & Van Loan, C. F. (1996). Matrix com-
putations. Baltimore, MD, USA: The Johns Hopkins
University Press. Third edition.

Gu, M., & Eisenstat, S. C. (1993). A fast and sta-
ble algorithm for updating the singular value de-
composition (Technical Report Technical Report
YALEU/DCS/RR-966, Department of Computer
Science, Yale University).

Kanth, K. V. R., Agrawal, D., Abbadi, A. E., & Singh,
A. (1998). Dimensionality reduction for similarity
searching in dynamic databases. ACM SIGMOD
Conference Proceedings (pp. 166–176).

Kleinberg, J., & Tomkins, A. (1999). Applications of
linear algebra in information retrieval and hypertext
analysis. ACM PODS Conference Proceedings.

Martinez, A., & Benavente, R. (1998). The ar face
database (Technical Report CVC Tech. Report No.
24).

Sim, T., Baker, S., & Bsat, M. (2002). The cmu pose,
illumination, and expression (pie) database. Proc.
4th Intl. Conf. on FG’02.

Srebro, N., & Jaakkola, T. (2003). Weighted low-rank
approximations. ICML Conference Proceedings (pp.
720–727).

Ye, J., Janardan, R., & Li, Q. (2004). GPCA: An ef-
ficient dimension reduction scheme for image com-
pression and retrieval. ACM SIGKDD Conference
Proceedings.

