The z
F’l'&'ﬁ] matic
Ograminers

Programming
Erlang c.omm:

Joe Armstrong

The world is parallel.

If we want to write programs that behave as other objects behave in
the real world, then these programs will have a concurrent structure.

Use a language that was designed for writing concurrent applications,
and development becomes a lot easier.

Erlang programs model how we think and interact.

> Joe Armstrong

Programming frlang

Software for a Concurrent World

Joe Armstrong

The Pragmatic Bookshelf
Raleigh, North Carolina Dallas, Texas

Pra matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their prod-
ucts are claimed as trademarks. Where those designations appear in this book, and The
Pragmatic Programmers, LLC was aware of a trademark claim, the designations have
been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The
Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g
device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher
assumes no responsibility for errors or omissions, or for damages that may result from
the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team
create better software and have more fun. For more information, as well as the latest
Pragmatic titles, please visit us at

http://www.pragmaticprogrammer.com

Copyright © 2007 armstrongonsoftware.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-
ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-9343560-0-X

ISBN-13: 978-1-934356-00-5

Printed on acid-free paper with 50% recycled, 15% post-consumer content.
P1.1 printing, July, 2007

Version: 2007-7-17

http://www.pragmaticprogrammer.com

_ Confents

1 Begin 12
1.1 RoadMap 13
1.2 BeginAgain 0000 16
1.3 Acknowledgments. 17
2 Getting Started 18
2.1 Overview o e 18
2.2 InstallingErlang 21
2.3 TheCodeinThisBook 23
2.4 StartingtheShell 24
2.5 Simple Integer Arithmetic 25
26 Variables oo o o 27
2.7 Floating-Point Numbers 32
2.8 AtomS.o e 33
2.9 Tuples 35
2.10 Lists e 38
2,11 Strings e 40
2.12 Pattern Matching Again 41
3 Sequential Programming 43
3.1 Modules 43
3.2 BacktoShopping 49
3.3 Functions with the Same Name and Different Arity . . 52
34 Funs e 52
3.5 Simple List Processing 58
3.6 List Comprehensions 61
3.7 Arithmetic Expressions 64
3.8 Guards e 65
39 Records. oL 69
3.10 caseandif Expressions 72
3.11 Building Lists in Natural Order 73

3.12 Accumulators e 74

CONTENTS d 6

4 Exceptions 76
4.1 Exceptions o oo 76
4.2 RaisinganException 77
4.3 try.catch L L. 78
44 catch 81
4.5 Improving Error Messages 82
4.6 Programming Style with try...catch. 82
4.7 Catching Every Possible Exception 83
4.8 Old- and New-Style Exception Handling 84
4.9 StackTraces. 84

5 Advanced Sequential Programming 86
51 BIFs. e 87
52 Binaries 0 oo 87
53 TheBitSyntax 89
5.4 Miscellaneous Short Topics 98

6 Compiling and Running Your Program 118
6.1 Starting and Stopping the Erlang Shell 118
6.2 Modifying the Development Environment 119
6.3 Different Ways to Run Your Program. 122
6.4 Automating Compilation with Makefiles 127
6.5 Command Editing in the Erlang Shell 130
6.6 GettingOutofTrouble 131
6.7 When Things GoWrong 131
6.8 GettingHelp 0L 134
6.9 Tweaking the Environment 135
6.10 TheCrashDump 136

7 Concurrency 137

8 Concurrent Programming 141
8.1 The Concurrency Primitives 142
8.2 ASimple Example 143
8.3 Client-Server—An Introduction 144
8.4 How Long Does It Take to Create a Process? 148
8.5 Receive with a Timeout 150
8.6 Selective Receive 153
8.7 Registered Processes 154
8.8 How Do We Write a Concurrent Program? 156
8.9 A Word About Tail Recursion 156
8.10 Spawningwith MFAs 157

8.11 Problems e 158

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=6

CONTENTS «d 7

9 Errors in Concurrent Programs 159
9.1 Linking Processes 159
9.2 Anon_ exitHandler 160
9.3 Remote Handling of Errors 162
9.4 The Details of Error Handling 162
9.5 Error Handling Primitives 170
9.6 Sets of Linked Processes 172
9.7 Monitors L oo 172
9.8 AKeep-Alive Process 173

10 Distributed Programming 175
10.1 The Name Server 177
10.2 The Distribution Primitives 182
10.3 Libraries for Distributed Programming 185
10.4 The Cookie Protection System 186
10.5 Socket-Based Distribution. 187

11 IRC Lite 191
11.1 Message Sequence Diagrams 193
11.2 The UserInterface 194
11.3 Client-Side Software 195
11.4 Server-Side Software 199
11.5 Running the Application 203
11.6 The Chat Program Source Code 204
11.7 EXerciseso it 211

12 Interfacing Techniques 212
12.1 Ports e 213
12.2 Interfacing an External C Program 214
12.3 open_port e 220
12.4 Linked-inDrivers 221
12.5 Notes 225

13 Programming with Files 226
13.1 Organization of the Libraries 226
13.2 The Different Ways of Readinga File 227
13.3 The Different Ways of Writingtoa File 235
13.4 Directory Operations 239
13.5 Finding Information Abouta File 240
13.6 Copying and Deleting Files 241
13.7 BitsandPieces 241
138 AFnd Utility 242

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=7

CONTENTS «d 8

14 Programming with Sockets 245
14.1 UsingTCP ittt 246
14.2 Controllssues 255
14.3 Where Did That Connection Come From? 258
14.4 Error Handling with Sockets 259
145 UDP. e 260
14.6 Broadcasting to Multiple Machines 263
14.7 A SHOUTcast Server 265
14.8 Digging Deeper 272

15 ETS and DETS: Large Data Storage Mechanisms 273
15.1 Basic OperationsonTables 274
15.2 TypesofTable 275
15.3 ETS Table Efficiency Considerations 276
15.4 Creatingan ETSTable 277
15.5 Example Programs with ETS 279
156 DETS it e 284
15.7 What Haven’'t We Talked About? 287
15.8 Code Listings, 288

16 OTP Introduction 291
16.1 The Road to the Generic Server 292
16.2 Getting Started with gen_server 301
16.3 The gen_server Callback Structure 305
16.4 Code and Templates 309
16.5 Digging Deeper 312

17 Mnesia: The Erlang Database 313
17.1 Database Queries 313
17.2 Adding and Removing Data in the Database 317
17.3 Mnesia Transactions 319
17.4 Storing Complex Datain Tables 323
17.5 Table Types and Location 325
17.6 Creating the Initial Database 328
17.7 The Table Viewer 329
17.8 Digging Deeper, 329
179 Listings. o o 331

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=8

CONTENTS «d 9

18 Making a System with OTP 335
18.1 Generic Event Handling 336
18.2 The Error Logger 339
18.3 Alarm Management 346
18.4 The Application Servers 348
18.5 The SupervisionTree 351
18.6 Starting the System 354
18.7 The Application 358
18.8 File System Organization 360
18.9 The Application Monitor 361
18.10 Digging Deeper 361
18.11 How Did We Make That Prime? 363

19 Multicore Prelude 365

20 Programming Multicore CPUs 367
20.1 How to Make Programs Run Efficiently on a Multicore CPU 368
20.2 Parallelizing Sequential Code 372
20.3 Small Messages, Big Computations 375
20.4 mapreduce and Indexing OurDisk 379
20.5 Growing Into the Future 389

A Documenting Our Program 390
A.1 ErlangType Notation 391
A2 ToolsThatUseTypes. 394

B Erlang on Microsoft Windows 396
B.1 Erlang 396
B.2 Fetch and Install MinGW 396
B.3 Fetch and Instal MSYS 397
B.4 Install the MSYS Developer Toolkit (Optional) 397
B.5 Emacs e 397

C Resources 399
C.1 Online Documentation 399
C.2 BooksandTheses 400
C.3 LinkCollections 400
C4 Blogs 400
C.5 Forums, Online Communities, and Social Sites 401
C.6 Conferences 401
C.7 Projects. o 401
C.8 Bibliography 402

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=9

CONTENTS <« 10

D A Socket Application 403
D.1 AnExample 0o 403
D.2 Howlib chanWorks 406
D.3 Thelib chanCode 409

E Miscellaneous 419
E.1 Analysis and Profiling Tools 419
E.2 Debugging 422
E3 Tracing e 431
E.4 Dynamic Code Loading 435

F Module and Function Reference 439
F.1 Module: application. 439
F.2 Module: base64 440
F.3 Module: beam lib 441
F.4 Module:c e 441
F.5 Module: calendar 443
F.6 Module: code e 444
F.7 Module:dets., 445
F.8 Module: dict 448
F.9 Module: digraph. 449
F.10 Module: digraph_utils 450
F.11 Module: disk log, 451
F.12 Module:epp o o it i i 452
F.13 Module:erl. eval 453
F.14 Module: erl_parse 453
F.15 Module:erlLpp 454
F.16 Module:erl_ scan 454
F.17 Module:erl tar 454
F.18 Module:erlang, 455
F.19 Module: error_ handler 464
F.20 Module: error_logger 464
F.21 Module:ets 465
F.22 Module: file 468
F.23 Module: file_ sorter 470
F.24 Module: filelib 471
F.25 Module: filename 471
F.26 Module: gb_sets, 472
F.27 Module: gb_trees 474
F.28 Module: gen_event, 475
F.29 Module: gen_fsm 476

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=10

CONTENTS «d 11

F.30 Module: gen_sctp 477
F.31 Module: gen_server 478
F.32 Module:gen_tcp. 478
F.33 Module: gen_udp 479
F.34 Module: global 479
F.35 Module:inet, 480
F.36 Module: init 481
F.37 Module:io 481
F.38 Module:io lib 482
F.39 Module:lib. 483
F.40 Module: lists oL 483
F.41 Module:math 487
F.42 Module: ms_transform 487
F.43 Module:net adm 487
F.44 Module: net kernel 488
F.45 Module:os 488
F.46 Module: proc_lib 489
F.47 Module: qlc o 489
F.48 Module: queue 490
F.49 Module: random, 491
F.50 Module:regexpo 492
F.51 Module: rpc 492
F.52 Module: seq_trace. 494
F.53 Module:sets 494
F.54 Module: shell 495
F.55 Module:slave, 495
F.56 Module:sofs, 496
F.57 Module:string, 500
F.58 Module: supervisor 501
F.59 Module: sys 501
F.60 Module: timer, 502
F.61 Module: win32reg 503
F.62 Module: zip 504
F.63 Module: zlib, 504

Index 507

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=11

Chapter 1

Oh no! Not another programming language! Do I have to learn yet another
one? Aren’t there enough already?

I can understand your reaction. There are loads of programming lan-
guages, so why should you learn another?

Here are five reasons why you should learn Erlang:

* You want to write programs that run faster when you run them on
a multicore computer.

* You want to write fault-tolerant applications that can be modified
without taking them out of service.

* You've heard about “functional programming” and you're wonder -
ing whether the techniques really work.

* You want to use a language that has been battle tested in real
large-scale industrial products that has great libraries and an
active user community.

* You don’'t want to wear your fingers out by typing lots of lines of
code.

Can we do these things? In Section 20.3, Running SMP Erlang, on
page 376, we'll look at some programs that have linear speed-ups when
we run them on a thirty-two-core computer. In Chapter 18, Making a
System with OTP, we’ll look at how to make highly reliable systems that
have been in round-the-clock operation for years. In Section 16.1, The
Road to the Generic Server, on page 292, we'll talk about techniques for
writing servers where the software can be upgraded without taking the
server out of service.

RoaD MarP «d 13

In many places we’ll be extolling the virtues of functional programming.
Functional programming forbids code with side effects. Side effects and
concurrency don’'t mix. You can have sequential code with side effects,
or you can have code and concurrency that is free from side effects.
You have to choose. There is no middle way.

Erlang is a language where concurrency belongs to the programming
language and not the operating system. Erlang makes parallel program-
ming easy by modeling the world as sets of parallel processes that can
interact only by exchanging messages. In the Erlang world, there are
parallel processes but no locks, no synchronized methods, and no pos-
sibility of shared memory corruption, since there is no shared memory.

Erlang programs can be made from thousands to millions of extremely
lightweight processes that can run on a single processor, can run on a
multicore processor, or can run on a network of processors.

1.1 Road Map

* Chapter 2, Getting Started, on page 18 is a quick “jump in and
swim around” chapter.

¢ Chapter 3, Sequential Programming, on page 43 is the first of two
chapters on sequential programming. It introduces the ideas of
pattern matching and of nondestructive assignments.

* Chapter 4, Exceptions, on page 76 is about exception handling. No
program is error free. This chapter is about detecting and handling
errors in sequential Erlang programs.

* Chapter 5, Advanced Sequential Programming, on page 86 is the
second chapter on sequential Erlang programming. It takes up
some advanced topics and fills in the remaining details of sequen-
tial programming.

® Chapter 6, Compiling and Running Your Program, on page 118
talks about the different ways of compiling and running your pro-
gram.

¢ In Chapter 7, Concurrency, on page 137, we change gears. This
is a nontechnical chapter. What are the ideas behind our way of
programming? How do we view the world?

* Chapter 8, Concurrent Programming, on page 141 is about concur-
rency. How do we create parallel processes in Erlang? How do pro-
cesses communicate? How fast can we create parallel processes?

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=13

RoaAaD MarP d 14

® Chapter 9, Errors in Concurrent Programs, on page 159 talks about
errors in parallel programs. What happens when a process fails?
How can we detect process failure, and what can we do about it?

® Chapter 10, Distributed Programming, on page 175 takes up dis-
tributed programming. Here we’ll write several small distributed
programs and show how to run them on a cluster of Erlang nodes
or on free-standing hosts using a form of socket-based distribu-
tion.

® Chapter 11, IRC Lite, on page 191 is a pure application chapter.
We tie together the themes of concurrency and socket-based distri-
bution with our first nontrivial application: a mini IRC-like client
and server program.

* Chapter 12, Interfacing Techniques, on page 212 is all about inter-
facing Erlang to foreign-language code.

® Chapter 13, Programming with Files, on page 226 has numerous
examples of programming with files.

* Chapter 14, Programming with Sockets, on page 245 shows you
how to program with sockets. We’'ll look at how to build sequential
and parallel servers in Erlang. We finish this chapter with the sec-
ond sizable application: a SHOUTcast server. This is a streaming
media server, which can be used to stream MP3 data using the
SHOUTcast protocol.

® Chapter 15, ETS and DETS: Large Data Storage Mechanisms, on
page 273 describes the low-level modules ets and defs. efs is a
module for very fast, destructive, in-memory hash table opera-
tions, and dets is designed for low-level disk storage.

® Chapter 16, OTP Introduction, on page 291 is an introduction to
OTP. OTP is a set of Erlang libraries and operating procedures
for building industrial-scale applications in Erlang. This chap-
ter introduces the idea of a behavior (a central concept in OTP).
Using behaviors, we can concentrate on the functional behavior
of a component, while allowing the behavior framework to solve
the nonfunctional aspects of the problem. The framework might,
for example, take care of making the application fault tolerant or
scalable, whereas the behavioral callback concentrates on the spe-
cific aspects of the problem. The chapter starts with a general dis-
cussion on how to build your own behaviors and then moves to
describing the gen_server behavior that is part of the Erlang stan-
dard libraries.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=14

RoaDp Mar «d 15

® Chapter 17, Mnesia: The Erlang Database, on page 313 talks about
the Erlang database management system (DBMS) Mnesia. Mnesia
is an integrated DBMS with extremely fast, soft, real-time
response times. It can be configured to replicate its data over sev-
eral physically separated nodes to provide fault-tolerant operation.

* Chapter 18, Making a System with OTP, on page 335 is the second
of the OTP chapters. It deals with the practical aspects of sewing
together an OTP application. Real applications have a lot of small
messy details. They must be started and stopped in a consistent
manner. If they crash or if subcomponents crash, they must be
restarted. We need error logs so that if they do crash, we can figure
out what happened after the event. This chapter has all the nitty-
gritty details of making a fully blown OTP application.

* Chapter 19, Multicore Prelude, on page 365 is a short introduction
to why Erlang is suited for programming multicore computers. We
talk in general terms about shared memory and message passing
concurrency and why we strongly believe that languages with no
mutable state and concurrency are ideally suited to programming
multicore computers.

® Chapter 20, Programming Multicore CPUs, on page 367 is about
programming multicore computers. We talk about the techniques
for ensuring that an Erlang program will run efficiently on multi-
core computers. We introduce a number of abstractions for speed-
ing up sequential programs on multicore computers. Finally we
perform some measurements and develop our third major pro-
gram, a full-text search engine. To write this, we first implement
a function called mapreduce—this is a higher-order function for
parallelizing a computation over a set of processing elements.

* Appendix A, on page 390, describes the type system used to doc-
ument Erlang functions.

* Appendix B, on page 396, describes how to set up Erlang on the
Windows operating system (and how to configure emacs on all
operating systems).

¢ Appendix C, on page 399, has a catalog of Erlang resources.

¢ Appendix D, on page 403, describes lib_chan, which is a library for
programming socket-based distribution.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=15

BEGIN AcalIN «d 16

¢ Appendix E, on page 419, looks at techniques for analyzing, pro-
filing, debugging, and tracing your code.

* Appendix F, on page 439, has one-line summaries of the most
used modules in the Erlang standard libraries.

1.2 Begin Again

Once upon a time a programmer came across a book describing a _funny
programming language. It had an unfamiliar syntax, equal didn’'t mean
equals, and variables weren’t allowed to vary. Worse, it wasn’'t even
object-oriented. The programs were, well, different....

Not only were the programs different, but the whole approach to pro-
gramming was different. The author kept on and on about concurrency
and distribution and fault tolerance and about a method of programming
called concurrency-oriented programming—whatever that might mean.

But some of the examples looked like fun. That evening the programmer
looked at the example chat program. It was pretty small and easy to
understand, even if the syntax was a bit strange. Surely it couldn’t be
that easy.

The basic program was simple, and with a few more lines of code, file
sharing and encrypted conversations became possible. The programmer
started typing....

What’s This All About?

It’s about concurrency. It's about distribution. It's about fault toler-
ance. It's about functional programming. It’s about programming a dis-
tributed concurrent system without locks and mutexes but using only
pure message passing. It's about speeding up your programs on multi-
core CPUs. It’s about writing distributed applications that allow people
to interact with each other. It’s about design methods and behaviors
for writing fault-tolerant and distributed systems. It’s about modeling
concurrency and mapping those models onto computer programs, a
process I call concurrency-oriented programming.

I had fun writing this book. I hope you have fun reading it.

Now go read the book, write some code, and have fun.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=16

ACKNOWLEDGMENTS <« 17

1.3 Acknowledgments

Many people have helped in the preparation of this book, and I'd like to
thank them all here.

First, Dave Thomas, my editor: Dave has been teaching me to write
and subjecting me to a barrage of never-ending questions. Why this?
Why that? When I started the book, Dave said my writing style was like
“standing on a rock preaching.” He said, “I want you to talk to people,
not preach.” The book is better for it. Thanks, Dave.

Next, I've had a little committee of language experts at my back. They
helped me decide what to leave out. They also helped me clarify some
of the bits that are difficult to explain. Thanks here (in no particular
order) to Bjorn Gustavsson, Robert Virding, Kostis Sagonas, Kenneth
Lundin, Richard Carlsson, and Ulf Wiger.

Thanks also to Claes Vikstrém who provided valuable advice on Mnesia,
to Rickard Green on SMP Erlang, and to Hans Nilsson for the stemming
algorithm used in the text-indexing program.

Sean Hinde and Ulf Wiger helped me understand how to use various
OTP internals, and Serge Aleynikov explained active sockets to me so
that I could understand.

Helen Taylor (my wife) has proofread several chapters and provided
hundreds of cups of tea at appropriate moments. What’s more, she put
up with my rather obsessive behavior for the last seven months. Thanks
also to Thomas and Claire; and thanks to Bach and Handel, Zorro and
Daisy, and Doris, who have helped me stay sane, have purred when
stroked, and have gotten me to the right addresses.

Finally, to all the readers of the beta book who filled in errata requests:
I have cursed you and praised you. When the first beta went out, I was
unprepared for the entire book to be read in two days and for you to
shred every page with your comments. But the process has resulted in
a much better book than I had imagined. When (as happened several
times) dozens of people said, “I don’t understand this page,” then I was
forced to think again and rewrite the material concerned. Thanks for
your help, everybody.

Joe Armstrong
May 2007

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=17

2.1

Chapter 2

Overview

As with every learning experience, you'll pass through a number of
stages on your way to Erlang mastery. Let’s look at the stages we cover
in this book and the things you’ll experience along the way.

Stage 1: I'm Not Sure...

As a beginner, you’ll learn how to start the system, run commands in
the shell, compile simple programs, and become familiar with Erlang.
(Erlang is a small language, so this won’t take you long.)

Let’s break this down into smaller chunks. As a beginner, you’ll do the
following:

* Make sure you have a working Erlang system on your computer.

* Learn to start and stop the Erlang shell.

* Discover how to enter expressions into the shell, evaluate them,
and understand the results.

* See how to create and modify programs using your favorite text
editor.

¢ Experiment with compiling and running your programs in the
shell.

Stage 2: I'm Comfortable with Erlang

By now you’ll have a working knowledge of the language. If you run
into language problems, you'll have the background to make sense of
Chapter 5, Advanced Sequential Programming, on page 86.

OVERVIEW <« 19

At this stage you’'ll be familiar with Erlang, so we’ll move on to more
interesting topics:

* You'll pick up more advanced uses of the shell. The shell can do a
lot more than we let on when you were first learning it. (For exam-
ple, you can recall and edit previous expressions. This is covered
in Section 6.5, Command Editing in the Erlang Shell, on page 130.)

* You'll start learning the libraries (called modules in Erlang). Most
of the programs I write can be written using five modules: lists, io,
file, dict, and gen_tcp; therefore, we’ll be using these modules a lot
throughout the book.

* As your programs get bigger, you’ll need to learn how to automate
compiling and running them. The tool of choice for this is make.
We’'ll see how to control the process by writing a makefile. This is
covered in Section 6.4, Autormating Compilation with Makefiles, on
page 127.

¢ The bigger world of Erlang programming uses an extensive library
collection called OTP.! As you gain experience with Erlang, you'll
find that knowing OTP will save you lots of time. After all, why
reinvent the wheel if someone has already written the functional-
ity you need? We'll learn the major OTP behaviors, in particular
gen_server. This is covered in Section 16.2, Getting Started with
gen_server, on page 301.

* One of the main uses of Erlang is writing distributed programs,
so now is the time to start experimenting. You can start with the
examples in Chapter 10, Distributed Programming, on page 175,
and you can extend them in any way you want.

Stage 2.5: | May Learn Some Optional Stuff
You don’t have to read every chapter in this book the first time through.

Unlike most of the languages you have probably met before, Erlang is
a concurrent programming language—this makes it particularly suited
for writing distributed programs and for programming modern multi-
core and SMP? computers. Most Erlang programs will just run faster
when run on a multicore or SMP machine.

Erlang programming involves using a programming paradigm that I call
concurrency-oriented programming (COP).

1. Open Telecom Platform.
2. Symmetric multiprocessing.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=19

OVERVIEW <« 20

When you use COP, you break down problems and identify the natural
concurrency in their solutions. This is an essential first step in writing
any concurrent program.

Stage 3: I'm an Erlang Master

By now you’ve mastered the language and can write some useful dis-
tributed programs. But to achieve true mastery, you need to learn even
more:

* Mnesia. The Erlang distribution comes complete with a built-in
fast, replicated database called Mnesia. It was originally designed
for telecom applications where performance and fault tolerance
are essential. Today it is used for a wide range of nontelecom appli-
cations.

¢ Interfacing to code written in other programming languages, and
using linked-in drivers. This is covered in Section 12.4, Linked-in
Drivers, on page 221.

* Full use of the OTP behaviors-building supervision trees, start
scripts, and so on. This is covered in Chapter 18, Making a System
with OTP, on page 335.

* How to run and optimize your programs for a multicore computer.
This is covered in Chapter 20, Programming Multicore CPUs, on
page 367.

The Most Important Lesson

There’s one rule you need to remember throughout this book: program-
ming is fun. And I personally think programming distributed applica-
tions such as chat programs or instant messaging applications is a
lot more fun than programming conventional sequential applications.
What you can do on one computer is limited, but what you can do
with networks of computers becomes unlimited. Erlang provides an
ideal environment for experimenting with networked applications and
for building production-quality systems.

To help you get started with this, I've mixed some real-world applica-
tions in among the technical chapters. You should be able to take these
applications as starting points for your own experiments. Take them,
modify them, and deploy them in ways that I hadn’t imagined, and I'll

be very happy.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=20

INSTALLING ERLANG <« 21

2.2 Installing Erlang

Before you can do anything, you have to make sure you have a func-
tioning version of Erlang on your system. Go to a command prompt,
and type erl:

$ erl
Erlang (BEAM) emulator version 5.5.2 [source] ... [kernel-poll:false]

Eshell V5.5.2 (abort with AG)
1>

On a Windows system, the command erl works only if you have installed

Erlang and changed the PATH environment variable to refer to the pro-

gram. Assuming you've installed the program in the standard way, @
you'll invoke Erlang through the Start > All Programs > Erlang OTP

menu. In Appendix B, on page 396, I'll describe how I've rigged Erlang

to run with MinGW and MSYS.

Note: T'll show the banner (the bit that says “Erlang (BEAM) ... (abort
with AG)”) only occasionally. This information is useful only if you want
to report a bug. I'm just showing it here so you won't get worried if you
see it and wonder what it is. I'll leave it out in most of the examples
unless it’s particularly relevant.

If you see the shell banner, then Erlang is installed on your system.
Exit from it (press Ctrl+G, followed by the letter Q, and then hit Enter
or Return).® Now you can skip ahead to Section 2.3, The Code in This
Book, on page 23.

If instead you get an error saying erl is an unknown command, you’'ll
need to install Erlang on your box. And that means you’ll need to make
a decision—do you want to use a prebuilt binary distribution, use a
packaged distribution (on OS X), build Erlang from the sources, or use
the Comprehensive Erlang Archive Network (CEAN)?

Binary Distributions

Binary distributions of Erlang are available for Windows and for Linux-
based operating systems. The instructions for installing a binary sys-
tem are highly system dependent. So, we’ll go through these system by
system.

3. Or give the command g0 in the shell.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=21

INSTALLING ERLANG < 22

Windows

You'll find a list of the releases at http://www.erlang.org/download.html.
Choose the entry for the latest version, and click the link for the Win-
dows binary—this points to a Windows executable. Click the link, and
follow the instructions. This is a standard Windows install, so you
shouldn’t have any problems.

Linux

Binary packages exist for Debian-based systems. On a Debian-based
system, issue the following command:

> apt-get install erlang

Installing on Mac OS X

As a Mac user, you can install a prebuilt version of Erlang using the
MacPorts system, or you can build Erlang from source. Using MacPorts
is marginally easier, and it will handle updates over time. However,
MacPorts can also be somewhat behind the times when it comes to
Erlang releases. During the initial writing up this book, for example,
the MacPorts version of Erlang was two releases behind the then cur-
rent version. For this reason, I recommend you just bite the bullet and
install Erlang from source, as described in the next section. To do this,
you’ll need to make sure you have the developer tools installed (they’re
on the DVD of software that came with your machine).

Building Erlang from Source

The alternative to a binary installation is to build Erlang from the
sources. There is no particular advantage in doing this for Windows
systems since each new release comes complete with Windows binaries
and all the sources. But for Mac and Linux platforms, there can be
some delay between the release of a new Erlang distribution and the
availability of a binary installation package. For any Unix-like OS, the
installation instructions are the same:

1. Fetch the latest Erlang sources.* The source will be in a file with
a name such as otp_src_R11B-4.tar.gz (this file contains the fourth
maintenance release of version 11 of Erlang).

4. From http://www.erlang.org/download.html.

http://www.erlang.org/download.html
http://www.erlang.org/download.html
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=22

THE CODE IN THIS Book <« 23

2. Unpack, configure, make, and install as follows:

$ tar -xzf otp_src_R11B-4.tar.gz
$ cd otp_src_R11B-4

$./configure

$ make

$ sudo make install

Note: You can use the command ./configure --help to review the available
configuration options before building the system.

Use CEAN

The Comprehensive Erlang Archive Network (CEAN) is an attempt to
gather all the major Erlang applications in one place with a common
installer. The advantage of using CEAN is that it manages not only
the basic Erlang system but a large number of packages written in
Erlang. This means that as well as being able to keep your basic Erlang
installation up-to-date, you'll be able to maintain your packages as well.

CEAN has precompiled binaries for a large number of operating systems
and processor architectures. To install a system using CEAN, go to
http://cean.process-one.net/download/, and follow the instructions. (Note
that some readers have reported that CEAN might not install the Erlang
compiler. If this happens to you, then start the Erlang shell and give the
command cean:install(compiler). This will install the compiler.)

2.3 The Code in This Book

Most of the code snippets we show come from full-length, running
examples, which you can download.® To help you find your way, if a
code listing in this book can be found in the download, there’ll be a bar
above the snippet (just like the one here):

Download shopl.erl

-module(shopl).
-export([total/1]).

total([{What, N}|T]) -> shop:cost(What) » N + total(T);
total([]) -> 0.

This bar contains the path to the code within the download. If you're
reading the PDF version of this book and your PDF viewer supports
hyperlinks, you can click the bar, and the code should appear in a
browser window.

5. From http://pragmaticprogrammer.com/titles/jaerlang/code.html.

http://cean.process-one.net/download/
http://media.pragprog.com/titles/jaerlang/code/shop1.erl
http://pragmaticprogrammer.com/titles/jaerlang/code.html
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=23

STARTING THE SHELL <« 24

2.4 Starting the Shell

Now let’s get started. We can interact with Erlang using an interactive
tool called the shell. Once we've started the shell, we can type expres-
sions, and the shell will display their values.

If you've installed Erlang on your system (as described in Section 2.2,
Installing Erlang, on page 21), then the Erlang shell, erl, will also be
installed. To run it, open a conventional operating system command
shell (cmd on Windows or a shell such as bash on Unix-based systems).
At the command prompt, start the Erlang shell by typing erl:

o $ erl
Erlang (BEAM) emulator version 5.5.1 [source] [async-threads:0] [hipe]

Eshell V5.5.1 (abort with AG)

® 1> % I'm going to enter some expressions in the shell ..
® 1> 20 + 30.

9 50

e 2>

Let’s look at what we just did:

© This is the Unix command to start the Erlang shell. The shell
responds with a banner telling you which version of Erlang you
are running.

® The shell printed the prompt 1>, and then we typed a comment.
The percent (%) character indicates the start of a comment. All
the text from the percent sign to the end of line is treated as a
comment and is ignored by the shell and the Erlang compiler.

® The shell repeated the prompt 1> since we hadn’t entered a com-
plete command. At this point we entered the expression 20 + 30,
followed by a period and a carriage return. (Beginners often for-
get to enter the period. Without it, Erlang won’t know that we've
finished our expression, and we won't see the result displayed.)

® The shell evaluated the expression and printed the result (50, in
this case).

® The shell printed out another prompt, this time for command
number 2 (because the command number increases each time a
new command is entered).

Have you tried running the shell on your system? If not, please stop and
try it now. If you just read the text without typing in the commands, you
might think that you understand what is happening, but you will not

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=24

SIMPLE INTEGER ARITHMETIC < 25

have transferred this knowledge from your brain to your fingertips—
programming is not a spectator sport. Just like any form of athletics,
you have to practice a lot.

Enter the expressions in the examples exactly as they appear in the
text, and then try experimenting with the examples and changing them
a bit. If they don’t work, stop and ask yourself what went wrong. Even
an experienced Erlang programmer will spend a lot of time interacting
with the shell.

As you get more experienced, you'll learn that the shell is a really pow-
erful tool. Previous shell commands can be recalled (with Ctrl+P and
Ctrl+N) and edited (with emacs-like editing commands). This is covered
in Section 6.5, Command Editing in the Erlang Shell, on page 130. Best
of all, when you start writing distributed programs, you will find that
you can attach a shell to a running Erlang system on a different Erlang
node in a cluster or even make an secure shell (ssh) connection directly
to an Erlang system running on a remote computer. Using this, you can
interact with any program on any node in a system of Erlang nodes.

Warning: You can’t type everything you read in this book into the shell.

In particular, you can’t type the code that’s listed in the Erlang program

files into the shell. The syntactic forms in an .erl file are not expressions @
and are not understood by the shell. The shell can evaluate only Erlang
expressions and doesn’t understand anything else. In particular, you

can’t type module annotations into the shell; these are things that start

with a hyphen (such as -module, -export, and so on).

The remainder of this chapter is in the form of a number of short dia-
logues with the Erlang shell. A lot of the time I won't explain all the
details of what is going on, since this would interrupt the flow of the
text. In Section 5.4, Miscellaneous Short Topics, on page 98, I'll fill in
the details.

2.5 Simple Integer Arithmetic

Let’s evaluate some arithmetic expressions:

1> 2 + 3 = 4,
14

2> (2 + 3) = 4.
20

Important: You'll see that this dialogue starts at command number 1
(that is the shell printed, 1>). This means we have started a new Erlang

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=25

SIMPLE INTEGER ARITHMETIC <« 26

7 N

Is the Shell Not Responding?

If the shell didn’t respond after you typed a command, then
you might have forgotten to end the command with a period
followed by carriage return (called dof-whitespace).

Another thing that might have gone wrong is that you've
started to type something that is quoted (that is, starts with a
single or double quote mark) but have not yet typed a match-
ing closing quote mark that should be the same as the open
quote mark.

If any of these happen, then the best thing to do is type an
extra closing quote, followed by dot-whitespace.

If things go really wrong and the system won‘t respond at all,
then just press Cirl+C (on Windows, Ctrl+Break). You'll see the
following output:

BREAK: (a)bort (c)ontinue (p)roc info (i)nfo (1)oaded
(v)ersion (k)ill (D)b-tables (d)istribution

Now just press A to abort the current Erlang session.

Advanced: You can start and stop multiple shells. See Sec-
tion 6.7, The Shell Isn‘t Responding, on page 133 for details.

shell. Every time you see a dialogue that starts with 1>, you’'ll have to
start a new shell if you want to exactly reproduce the examples in the
book. When an example starts with a prompt number that is greater
than 1, this means the shell session is continued from the previous
examples so you don’t have to start a new shell.

Note: If you're going to type these examples into the shell as you read
the text (which is absolutely the best way to learn), then you might
like to take a quick peek at Section 6.5, Command Editing in the Erlang
Shell, on page 130.

You’'ll see that Erlang follows the normal rules for arithmetic expres-
sions, so 2+ 3 *4 means 2 + (3 *4) and not (2 + 3) * 4.

Erlang uses arbitrary-sized integers for performing integer arithmetic.
In Erlang, integer arithmetic is exact, so you don’t have to worry about
arithmetic overflows or not being able to represent an integer in a cer-
tain word size.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=26

VARIABLES «d 27

Variable Notation

Often we will want to talk about the values of particular vari-
ables. For this I'll use the notation Var — Value, so, for example,
A — 42 means that the variable A has the value 42. When there
are several variables, I'll write {A — 42, B — frue ... }, meaning
that A is 42, B is true, and so on.

Why not try it? You can impress your friends by calculating with very
large numbers:

3> 123456789 = 987654321 = 112233445566778899 = 998877665544332211.
13669560260321809985966198898925761696613427909935341

You can enter integers in a number of ways.® Here’s an expression that
uses base 16 and base 32 notation:

4> 16#cafe = 32#sugar.
1577682511434

2.6 Variables

How can you store the result of a command so that you can use it later?
That’s what variables are for. Here’s an example:

1> X = 123456789.
123456789

What's happening here? First, we assign a value to the variable X; then,
the shell prints the value of the variable.

Note: All variable names must start with an uppercase letter.

If you want to see the value of a variable, just enter the variable name:

2> X.
123456789

Now that X has a value, you can use it:

3> XuX#X=X.
232305722798259244150093798251441

6. See Section 5.4, Integers, on page 111.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=27

VARIABLES <« 28

7 A

Single Assignment Is Like Algebra

When | went to school, my math teacher said, *If there’s an X
in several different parts in the same equation, then all the Xs
mean the same thing.” That’s how we can solve equations: if
we know that X+Y=10 and X-Y=2, then X will be 6 and Y will be
4 in both equations.

But when | learned my first programming language, we were
shown stuff like this:

X=X+1

Everyone profested, saying “you can’t do that!” But the
tfeacher said we were wrong, and we had to unlearn what we
learned in math class. X isn‘t a math variable: it's like a pigeon
hole/little box....

In Erlang, variables are just like they are in math. When you asso-
ciate a value with a variable, you're making an assertion—a
statement of fact. This variable has that value. And that’s that.

However, if you try to assign a different value to the variable X, you'll
get a somewhat brutal error message:

4> X = 1234.

=ERROR REPORT==== 11-Sep-2006::20:32:49 ===

Error in process <0.31.0> with exit value:
{{badmatch,1234},[{erl1_eval,expr,3}]}

+» exited: {{badmatch,1234},[{er1_eval,expr,3}]} ==

What on Earth is going on here? Well, to explain it, I'm going to have to
shatter two assumptions you have about the simple statement X = 1234:

* First, X is not a variable, at least not in the sense that you're used
to in languages such as Java and C.
* Second, = is not an assignment operator.

This is probably one of the trickiest areas when you're new to Erlang,
so let’s spend a couple of pages digging deeper.

Variables That Don’t Vary

Erlang has single assignment variables. As the name suggests, sin-
gle assignment variables can be given a value only once. If you try to
change the value of a variable once it has been set, then you’ll get an

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=28

VARIABLES «d 29

error (in fact, you'll get the badmatch error we just saw). A variable that
has had a value assigned to it is called a bound variable; otherwise, it
is called an unbound variable. All variables start off unbound.

When Erlang sees a statement such as X = 1234, it binds the variable X
to the value 1234. Before being bound, X could take any value: it’s just
an empty hole waiting to be filled. However, once it gets a value, it holds
on to it forever.

At this point, you're probably wondering why we use the name variable.
This is for two reasons:

¢ They are variables, but their value can be changed only once (that
is, they change from being unbound to having a value).

* They look like variables in conventional programming languages,
so when we see a line of code that starts like this:
X = ...
then our brains say, “Aha, I know what this is; X is a variable, and
= is an assignment operator.” And our brains are almost right: X is
almost a variable, and = is almost an assignment operator.
Note: The use of ellipses (...) in Erlang code examples just means
“code I'm not showing.”

In fact, = is a pattern matching operator, which behaves like assignment
when X is an unbound variable.

Finally, the scope of a variable is the lexical unit in which it is defined.

So if X is used inside a single function clause, its value does not “escape”

to outside the clause. There are no such things as global or private @
variables shared by different clauses in the same function. If X occurs

in many different functions, then all the values of X are different.

Pattern Matching

In most languages, = denotes an assignment statement. In Erlang, how-
ever, = denotes a pattern matching operation. Lhs = Rhs really means this:
evaluate the right side (Rhs), and then match the result against the pat-
tern on the left side (Lhs).

Now a variable, such as X, is a simple form of pattern. As we said ear-
lier, variables can be given a value only once. The first time we say X =
SomekExpression, Erlang says to itself, “What can I do to make this state-
ment true?” Because X doesn’t yet have a value, it can bind X to the
value of SomeExpression, the statement becomes valid, and everyone is

happy.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=29

VARIABLES <« 30

Then, if at a later stage we say X = AnotherExpression, then this will suc-
ceed only if SomeExpression and AnotherExpression are identical. Here’s an
example of this:

tnel 1> X = (2+4).

6

2> Y = 10.
- 10
5 3> X = 6.

6

4> X =Y.

=ERROR REPORT==== 27-0ct-2006::17:25:25 ===
- Error in process <0.32.0> with exit value:
10 {{badmatch,10}, [{erl1_eval,expr,3}]1}
- 5> Y = 10.

10

6> Y = 4.

=ERROR REPORT==== 27-0ct-2006::17:25:46 ===

15 Error in process <0.37.0> with exit value:
{{badmatch,4},[{er1_eval,expr,3}]1}
7> Y = X.
=ERROR REPORT==== 27-0ct-2006::17:25:57 ===
- Error 1in process <0.40.0> with exit value:
20 {{badmatch,6},[{er1_eval,expr,3}]}

Here’s what happened: In line 1 the system evaluated the expression
2+4, and the answer was 6. So after this line, the shell has the following
set of bindings: {X — 6}. After line 3 has been evaluated, we have the
bindings {X — 6, Y — 10}.

Now we come to line 5. Just before we evaluate the expression, we know
that X — 6, so the match X = 6 succeeds.

When we say X =V in line 7, our bindings are {X — 6, Y — 10}, and
therefore the match fails and an error message is printed.

Expressions 4 to 7 either succeed or fail depending upon the values of
X and Y. Now is a good time to stare hard at these and make sure you
really understand them before going any further.

At this stage it may seem that I am belaboring the point. All the patterns
to the left of the “=” are just variables, either bound or unbound, but
as we’ll see later, we can make arbitrarily complex patterns and match
them with the “=” operator. I'll be returning to this theme after we have
introduced tuples and lists, which are used for storing compound data
items.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=30

VARIABLES <« 31

Why Does Single Assignment Make My Programs Better?

In Erlang a variable is just a reference to a value—in the Erlang imple-
mentation, a bound variable is represented by a pointer to an area of
storage that contains the value. This value cannot be changed.

The fact that we cannot change a variable is extremely important and
is unlike the behavior of variables in imperative languages such as C or
Java.

Let’s see what can happen when you're allowed to change a variable.
Let’s define a variable X as follows:

1> X = 23.
23

Now we can use X in computations:

2> Y =4 =% X + 3.
95

Now suppose we could change the value of X (horrors):

3> X = 19.

Fortunately, Erlang doesn’t allow this. The shell complains like crazy
and says this:
=ERROR REPORT==== 27-0ct-2006::13:36:24 ===

Error in process <0.31.0> with exit value:
{{badmatch,19}, [{erl1_eval,expr,3}]1}

This just means that X cannot be 19 since we've already said it was 23.

But just suppose we could do this; then the value of Y would be wrong in
the sense that we can no longer interpret statement 2 as an equation.
Moreover, if X could change its value at many different points in the
program and something goes wrong, it might be difficult saying which
particular value of X had caused the failure and at exactly which point
in the program it had acquired the wrong value.

In Erlang, variable values cannot be changed after they have been set.
This simplifies debugging. To understand why this is true, we must ask
ourselves what an error is and how an error makes itself known.

One rather common way that you discover that your program is incor-
rect is that a variable has an unexpected value. If this is the case, then
you have to discover exactly the point in your program where the vari-
able acquired the incorrect value. If this variable changed values many

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=31

FLOATING-POINT NUMBERS < 32

4 N

A n f Side Effects Means W n Paralleliz r Program

The technical term for memory areas that can be modified is
mutable state. Erlang is a functional programming language
and has nonmutable state.

Much later in the book we’ll look at how to program multicore
CPUs. When it comes to programming multicore CPUs, the con-
segquences of having nonmutable state are enormous.

If you use a conventional programming language such as C
or Java to program a multicore CPU, then you will have to
contend with the problem of shared memory. In order not to
corrupt shared memory, the memory has to be locked while
it is accessed. Programs that access shared memory must not
crash while they are manipulating the shared memory.

In Erlang. there is no mutable state, there is no shared mem-
ory, and there are no locks. This makes it easy to parallelize our
programs.

times and at many different points in your program, then finding out
exactly which of these changes was incorrect can be extremely difficult.

In Erlang there is no such problem. A variable can be set only once and
thereafter never changed. So once we know which variable is incorrect,
we can immediately infer the place in the program where the variable
became bound, and this must be where the error occurred.

At this point you might be wondering how it’s possible to program with-
out variables. How can you express something like X = X + 1 in Erlang?
The answer is easy. Invent a new variable whose name hasn’t been used
before (say X1), and write X1 =X+ 1.

2.7 Floating-Point Numbers

Let’s try doing some arithmetic with floating-point numbers:

1> 5/3.
1.66667

2> 4/2.
2.00000

3> 5 div 3.
1

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=32

Atoms <« 33

4> 5 rem 3.

2

5> 4 div 2.

2

6> Pi = 3.14159.

3.14159

7> R = 5.

5

8> Pi * R * R.

78.5397

Don't get confused here. In line 1 the number at the end of the line is
the integer 3. The period signifies the end of the expression and is not
a decimal point. If I had wanted a floating-point number here, I'd have

written 3.0.

“/” always returns a float; thus, 4/2 evaluates to 2.0000 (in the shell). N
div M and Nrem M are used for integer division and remainder; thus, 5
div3is 1, and 5rem 3 is 2.

Floating-point numbers must have a decimal point followed by at least
one decimal digit. When you divide two integers with “/”, the result is
automatically converted to a floating-point number.

2.8 Atoms

In Erlang, atoms are used to represent different non-numerical con-
stant values.

If you're used to enumerated types in C or Java, then you will already
have used something very similar to atoms whether you realize it or
not.

C programmers will be familiar with the convention of using symbolic
constants to make their programs self-documenting. A typical C pro-
gram will define a set of global constants in an include file that consists
of a large number of constant definitions; for example, there might be
a file glob.h containing this:

#define OP_READ 1

#define OP_WRITE 2
#define OP_SEEK 3

#define RET_SUCCESS 223

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=33

Atoms «d 34

Typical C code using such symbolic constants might read as follows:

#include "glob.h"

int ret;
ret = file_operation(OP_READ, buff);
if(ret == RET_SUCCESS) { ... }

In a C program the values of these constants are not interesting; they're
interesting here only because they are all different and they can be
compared for equality.

The Erlang equivalent of this program might look like this:
Ret = file_operation(op_read, Buff),
if

Ret == ret_success ->

In Erlang, atoms are global, and this is achieved without the use of
macro definitions or include files.

Suppose you want to write a program that manipulates days of the
week. How would you represent a day in Erlang? Of course, you'd use
one of the atoms monday, fuesday,

Atoms start with lowercase letters, followed by a sequence of alphanu-
meric characters or the underscore () or at (@) sign.” For example: red,
december, cat, meters, yards, joe@somehost, and a_long_name.

Atoms can also be quoted with a single quotation mark (‘). Using the
quoted form, we can create atoms that start with uppercase letters
(which otherwise would be interpreted as variables) or that contain
nonalphanumeric characters. For example: ‘Monday’, ‘Tuesday’, '+’, "™,
‘an atom with spaces’. You can even quote atoms that don’t need to be

quoted, so ‘a’ means exactly the same as a.

The value of an atom is just the atom. So if you give a command that is
just an atom, the Erlang shell will print the value of that atom:

1> hello.
hello

It may seem slightly strange talking about the value of an atom or the
value of an integer. But because Erlang is a functional programming
language, every expression must have a value. This includes integers
and atoms that are just extremely simple expressions.

7. You might find that a period () can also be used in atoms—this is an unsupported
extension to Erlang.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=34

TurLEs < 35

2.9 Tuples

Suppose you want to group a fixed number of items into a single entity.
For this you'd use a tuple. You can create a tuple by enclosing the
values you want to represent in curly brackets and separating them
with commas. So, for example, if you want to represent someone’s name
and height, you might use {joe, 1.82}. This is a tuple containing an atom
and a floating-point number.

Tuples are similar to structs in C, with the difference that they are
anonymous. In C a variable P of type point might be declared as follows:
struct point {

int x;

int y;
} P;
You’'d access the fields in a C struct using the dot operator. So to set
the x and y values in Point, you might say this:

P.x = 10; P.y = 45;

Erlang has no type declarations, so to create a “point,” we might just
write this:

P = {10, 45}

This creates a tuple and binds it to the variable P. Unlike C, the fields
of a tuple have no names. Since the tuple itself just contains a couple
of integers, we have to remember what it’s being used for. To make it
easier to remember what a tuple is being used for, it's common to use
an atom as the first element of the tuple, which describes what the
tuple represents. So we’d write {point, 10, 45} instead of {10, 45}, which
makes the program a lot more understandable.®

Tuples can be nested. Suppose we want to represent some facts about
a person—their name, height, foot size, and eye color. We could do this
as follows:

1> Person = {person,
{name, joe},
{height, 1.82%,
{footsize, 42},
{eyecolour, brown}}.

8. This way of tagging a tuple is not a language requirement but is a recommended style
of programming.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=35

TurLEs < 36

Note how we used atoms both to identify the field and (in the case of
name and eyecolour) to give the field a value.

Creating Tuples

Tuples are created automatically when we declare them and are de-
stroyed when they can no longer be used. Erlang uses a garbage col-
lector to reclaim all unused memory, so we don’'t have to worry about
memory allocation.

If you use a variable in building a new tuple, then the new tuple will
share the value of the data structure referenced by the variable. Here’s
an example:

2> F = {firstName, joe}.

{firstName, joe}

3> L = {lastName, armstrong}.

{TastName,armstrong}

4> P = {person, F, L}.

{person, {firstName, joe}, {1astName,armstrong}}

If you try to create a data structure with an undefined variable, then
you’ll get an error. So in the next line, if we try to use the variable Q
that is undefined, we’ll get an error:

5> {true, Q, 23, Costs}.
#% 1: variable 'Q' 1is unbound ==

This just means that the variable Q is undefined.

Extracting Values from Tuples

Earlier, we said that =, which looks like an assignment statement,
was not actually an assignment statement but was really a pattern
matching operator. You might wonder why we were being so pedantic.
Well, it turns out that pattern matching is fundamental to Erlang and
that it’s used for lots of different tasks. It's used for extracting values
from data structures, and it’s also used for flow of control within func-
tions and for selecting which messages are to be processed in a parallel
program when you send messages to a process.

If we want to extract some values from a tuple, we use the pattern
matching operator =.

Let’s go back to our tuple that represents a point:

1> Point = {point, 10, 45}.
{point, 10, 453}.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=36

TurLEs < 37

Supposing we want to extract the fields of Point into the two variables X
and Y, we do this as follows:

2> {point, X, Y} = Point.

{point,10,45}

3> X.

10

4> Y.

45

In command 2, X is bound to 10 and Y to 45. The value of the expression
Lhs = Rhs is defined to be Rhs, so the shell prints {point,10,45}.

As you can see, the tuples on both sides of the equal sign must have
the same number of elements, and the corresponding elements on both
sides must bind to the same value.

Now suppose you had entered something like this:

5> {point, C, C} = Point.

=ERROR REPORT==== 28-0ct-2006::17:17:00 ===
Error in process <0.32.0> with exit value:
{{badmatch, {point,10,45}}, [{erl1_eval,expr,3}]1}

What happened? The pattern {point, C, C} does not match {point, 10, 45},
since C cannot be simultaneously 10 and 45. Therefore, the pattern
matching fails,® and the system prints an error message.

If you have a complex tuple, then you can extract values from the tuple
by writing a pattern that is the same shape (structure) as the tuple and
that contains unbound variables at the places in the pattern where you
want to extract values.!©

To illustrate this, we’ll first define a variable Person that contains a com-
plex data structure:

1> Person={person, {name, {first,joe}, {last,armstrong}}, {footsize,42}}.
{person, {name, {first,joe}, {last,armstrong}}, {footsize,42}}

Now we’ll write a pattern to extract the first name of the person:

2> { ,{ ,{ ,Who}, }, } = Person.
{person, {name, {first,joe}, {last,armstrong}}, {footsize,42}}

9. For readers familiar with Prolog: Erlang considers nonmatching a failure and does
not backtrack.

10. This method of extracting variables using pattern matching is called unification and
is used in many functional and logic programming languages.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=37

Lists «d 38

And finally we’ll print out the value of Who:

3> Who.
joe

Note that in the previous example we wrote _ as a placeholder for vari-
ables that we're not interested in. The symbol _ is called an anonymous
variable. Unlike regular variables, several occurrences of _ in the same
pattern don’t have to bind to the same value.

2.10 Lists

We use lists to store variable numbers of things: things you want to
buy at the store, the names of the planets, the results returned by your
prime factors function, and so on.

We create a list by enclosing the list elements in square brackets and
separating them with commas. Here’s how we could create a shopping
list:

1> ThingsToBuy = [{apples, 10}, {pears,6},{milk,3}].
[{apples, 10}, {pears,6},{milk,3}]

The individual elements of a list can be of any type, so, for example, we
could write the following:

2> [1+7,hell0,2-2, {cost, apple, 30-20%},3].
[8,hell0,0,{cost,apple,10},3]

Terminology

We call the first element of a list the head of the list. If you imagine
removing the head from the list, what’s left is called the tail of the list.

For example, if we have a list [1,2,3.4,5], then the head of the list is the
integer 1, and the tail is the list [2,3.4,5]. Note that the head of a list can
be anything, but the tail of a list is usually also a list.

Accessing the head of a list is a very efficient operation, so virtually
all list-processing functions start by extracting the head of a list, doing
something to the head of the list, and then processing the tail of the
list.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=38

Lists «d 39

Defining Lists
If T is a list, then [H|T] is also a list,!! with head H and tail T. The vertical
bar | separates the head of a list from its tail. [] is the empty list.

Whenever we construct a list using a [...|T] constructor, we should make
sure that T is a list. If it is, then the new list will be “properly formed.” If
T is not a list, then the new list is said to be an “improper list.” Most of
the library functions assume that lists are properly formed and won’t
work for improper lists.

We can add more than one element to the beginning of T by writing
[E1.E2...En|T]. For example:

3> ThingsToBuyl = [{oranges,4}, {newspaper,1}|ThingsToBuy].
[{oranges,4}, {newspaper,1},{apples, 10}, {pears,6},{miTk,3}]

Extracting Elements from a List

As with everything else, we can extract elements from a list with a
pattern matching operation. If we have the nonempty list L, then the
expression [X|Y] =L, where X and Y are unbound variables, will extract
the head of the list into X and the tail of the list into Y.

So, we're in the shop, and we have our shopping list ThingsToBuy1—the
first thing we do is unpack the list into its head and tail:

4> [Buyl|ThingsToBuy2] = ThingsToBuyl.
[{oranges,4}, {newspaper,1},{apples,10}, {pears,6},{miTlk,3}]

This succeeds with bindings

Buy1 — {oranges.4}

and

ThingsToBuy2 — [{newspaper,1}, {apples,10}, {pears.6}, {milk,3}].

We go and buy the oranges, and then we could extract the next couple
of items:

5> [Buy2,Buy3|ThingsToBuy3] = ThingsToBuy2.
{newspaper, 1}, {apples,10}, {pears,6},{milk,3}]

This succeeds with Buy2 — {newspaper,1}, Buy3 — {apples,10}, and ThingsTo-
Buy3 — [{pears.6}.{milk,3}].

11. Note for LISP programmers: [H|T] is a CONS cell with CAR H and CDRT. In a pattern,
this syntax unpacks the CAR and CDR. In an expression, it constructs a CONS cell.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=39

STRINGS <« 40

2.11 Strings

Strictly speaking, there are no strings in Erlang. Strings are really just
lists of integers. Strings are enclosed in double quotation marks ('), so,
for example, we can write this:

1> Name = "Hello".
"Hello"

Note: In some programming languages, strings can be quoted with
either single or double quotes. In Erlang, you must use double quotes.

"Hello" is just shorthand for the list of integers that represent the indi-
vidual characters in that string.

When the shell prints the value of a list it prints the list as a string, but
only if all the integers in the list represent printable characters:

2> [1,2,3].

[l ’ 2 ’ 3]

3> [83,117,114,112,114,105,115,101].

"Surprise”

4> [1,83,117,114,112,114,105,115,101].
[1,83,117,114,112,114,105,115,101].

In expression 2 the list [1,2,3] is printed without any conversion. This is
because 1, 2, and 3 are not printable characters.

In expression 3 all the items in the list are printable characters, so the
list is printed as a string.

Expression 4 is just like expression 3, except that the list starts with a
1, which is not a printable character. Because of this, the list is printed
without conversion.

We don’t need to know which integer represents a particular character.
We can use the “dollar syntax” for this purpose. So, for example, $Sa is
actually the integer that represents the character a, and so on.

5> I = $s.

115

6> [I-32,%u,$r,$p,$r,$1,$s,%e].
"Surprise"

Character Sets Used in Strings

The characters in a string represent Latin-1 (ISO-8859-1) character
codes. For example, the string containing the Swedish name Hdkan will
be encoded as [72,229,107,97,110].

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=40

PATTERN MATCHING AGAIN < 41

Note: If you enter [72,229,107,97,110] as a shell expression, you might not
get what you expect:

1> [72,229,107,97,110].
"H\345kan"

What has happened to “Hakan”—where did he go? This actually has
nothing to do with Erlang but with the locale and character code set-
tings of your terminal.

As far as Erlang is concerned, a string is a just a list of integers in
some encoding. If they happen to be printable Latin-1 codes, then they
should be displayed correctly (if your terminal settings are correct).

2.12 Pattern Matching Again

To round off this chapter, we’ll go back to pattern matching one more
time.

The following table has some examples of patterns and terms.!? The
third column of the table, marked Result, shows whether the pattern
matched the term and, if so, the variable bindings that were created.
Look through these examples, and make sure you really understand

them:

Pattern Term Result

{X,abc} {123,abc} Succeeds X +— 123

{X,Y,2} {222,def,"cat"} Succeeds X — 222, Y — def,
Z — "cat"

{X,Y} {333,ghi,"cat"} Fails—the tuples have
different shapes

X true Succeeds X — true

{X,Y,X} {{abc,12},42,{abc,12}} Succeeds X — {abc,12}, Y — 42

{X,Y,X} {{abc,12},42,true} Fails—X cannot be both
{abc,12} and frue

[H[T] 1,2,3,4,5] Succeeds H i 1, T — [2,3,4,5]

[H|T] "cat" Succeeds H r— 99, T +— "at'

[A,B,C|T] [a,b,c,d,e,f] Succeeds A — a, B — b,

Croc, T [def

If you're unsure about any of these, then try entering a Pattern = Term
expression into the shell to see what happens.

12. A term is just an Erlang data structure.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=41

PATTERN MATCHING AGAIN < 42

For example:

1> {X, abc} = {123, abc}.
{123,abc}.

2> X.

123

3> fO.

ok

4> {X,Y,Z} = {222,def,"cat"}.
{222,def,"cat"}.

5> X.

222

6> Y.

def

Note: The command f() tells the shell to forget any bindings it has. After
this command, all variables become unbound, so the X in line 4 has
nothing to do with the X in lines 1 and 2.

Now that we're comfortable with the basic data types and with the
ideas of single assignment and pattern matching, so we can step up
the tempo and see how to define functions and modules. Let’s see how
in the next chapter.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=42

3.1

Chapter 3

In this chapter, we’ll see how to write simple sequential Erlang pro-
grams. In the first section, we’ll talk about modules and functions. We'll
see how the ideas on pattern matching that we learned about in the
previous chapter are used when we define functions.

Immediately after this, we’ll return to the shopping list that we intro-
duced in the previous chapter, and we’ll write some code to work out
the total cost of the items in the shopping list.

As we go along, we’ll make incremental improvements to the programs
we develop. That way you’ll be able to see how the basic ideas evolve,
and not just be presented with some finished program with no explana-
tion as to how we got there. By understanding the steps involved, you'll
get some ideas that you can apply to your own programs.

Along the way we’ll be talking about higher-order functions (called
Juns) and how they can be used to create your own control abstrac-
tions. Finally, we’ll talk about guards, records, case expressions, and if
expressions.

So, let’s get to work....

Modules

Modules are the basic unit of code in Erlang. All the functions we write
are stored in modules. Modules are stored in files with .erl extensions.

MODULES <d 44

Modules must be compiled before the code can be run. A compiled
module has the extension .beam.!

Before we write our first module, we’ll remind ourselves about pattern
matching. All we're going to do is create a couple of data structures
representing a rectangle and a circle. Then we’re going to unpack these
data structures and extract the sides from the rectangle and the radius
from the circle. Here’s how:

1> Rectangle = {rectangle, 10, 5}.

{rectangle, 10, 5}.

2> Circle = {circle, 2.4}.

{circle,2.40000}

3> {rectangle, Width, Ht} = Rectangle.

{rectangle, 10,5}

4> Width.

10

5> Ht.

5

6> {circle, R} = Circle.

{circle,2.40000}

7> R.

2.40000

In lines 1 and 2 we created a rectangle and circle. In lines 3 and 6 we
unpacked the fields of the rectangle and circle using pattern matching.
In lines 4, 5, and 7 we printed the variable bindings that were created
by the pattern matching expressions. After line 7 the variable bindings
in the shell are {Width — 10, Ht — 5, R — 2.4}.

Going from pattern matching in the shell to pattern matching in func-
tions is an extremely small step. Let’s start with a function called area
that computes the areas of rectangles and circles. We'll put this in a
module called geometry and store the module in the file called geome-
try.erl. The entire module looks like this:

Download geometry.erl

-module(geometry).

-export([area/1]).

area({rectangle, Width, Ht}) -> Width = Ht;
area({circle, R}) -> 3.14159 = R * R.

Don’t worry about the -module and -export annotations (we’ll talk about
these later); for now I want you just to stare at the code for the area
function.

1. Beam is short for Bogdan’s Erlang Abstract Machine; Bogumil (Bogdan) Hausman
wrote an Erlang compiler in 1993 and designed a new instruction set for Erlang.

http://media.pragprog.com/titles/jaerlang/code/geometry.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=44

MoODULES < 45

The function area consists of two clauses. The clauses are separated
by a semicolon, and the final clause is terminated by dot-whitespace.
Each clause has a head and a body; the head consists of a function
name followed by a pattern (in parentheses), and the body consists of a
sequence of expressions,? which are evaluated if the pattern in the head
is successfully matched against the calling arguments. The patterns are
matched in the order they appear in the function definition.

Note that the patterns such as {rectangle, Width, Ht} have become part of
the area function definition. Each pattern corresponds to exactly one
clause. Let’s look at the first clause of the area function:

area({rectangle, Width, Ht}) -> Width = Ht;

This is a rule for computing the area of a rectangle. When we call geom-
etry:area({rectangle, 10, 5}), the earlier pattern matches with bindings
{Width — 10, Ht — 5}. Following the match, the code following the arrow
-> is evaluated. This is just Width * Ht, which is 10*5, or 50.

Now we’ll compile and run it:

1> c(geometry).

{ok,geometry}

2> geometry:area({rectangle, 10, 5}).
50

3> geometry:area({circle, 1.4}).
6.15752

So what happened here? In line 1 we give the command c(geometry),
which compiles the code in the file geometry.erl. The compiler returns
{ok.geometry}, which means that the compilation succeeded and that
the module geometry has been compiled and loaded. In lines 2 and 3
we call the functions in the geometry module. Note how we need to
include the module name together with the function name in order to
identify exactly which function we want to call.

Extending the Program

Now suppose we want to extend our program by adding a square to our
geometric objects. We could write this:
area({rectangle, Width, Ht}) -> Width = Ht;

area({circle, R}) -> 3.14159 = R = R;
area({square, X}) -> X = X.

2. See Section 5.4, Expressions and Expression Sequences, on page 106.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=45

MoODULES < 46

or even this:

area({rectangle, Width, Ht}) -> Width = Ht;
area({square, X}) > X = X3
area({circle, R}) -> 3.14159 = R = R.

In this case, the order of the clauses doesn’t matter; the program means
the same no matter how the clauses are ordered. This is because the
patterns in the clause are mutually exclusive. This makes writing and
extending programs very easy—we just add more patterns. In gen-
eral, though, clause order does matter. When a function is entered,
the clauses are pattern matched against the calling arguments in the
order they are presented in the file.

Before going any further, you should note the following about the way
the area function is written:

¢ The function area consists of several different clauses. When we
call the function, execution starts in the first clause that matches
the call arguments.

® Our function does not handle the case where none of the patterns
match—our program will fail with a runtime error. This is deliber-
ate.

Many programming languages, such as C, have only one entry point
per function. If we had written this in C, the code might look like this:

enum ShapeType { Rectangle, Circle, Square };

struct Shape {
enum ShapeType kind;

union {
struct { int width, height; } rectangleData;
struct { int radius; } circleData;
struct { int side;} squareData;

} shapeData;
};

double area(struct Shape* s) {
if(s->kind == Rectangle) {
int width, ht;
width = s->shapeData.rectangleData.width;
ht = s->shapeData.rectangleData.ht;
return width = ht;
} else if (s->kind == Circle) {

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=46

MoDULEs <« 47

Where Has My Code Gone?

If you download the code examples in this book or want to write
your own examples, you have to make sure that when you run
the compiler from the shell, you are in the right directory so that
the system can find your code.

If you are running on a system with a cormmand shell, then you
should change directories to the directory where your code is
before trying to compile the example code.

If you‘re running on Windows with the standard Erlang distribbu-
tion, you will need to change directories to where you have
stored your code. Two commands in the Erlang shell can help
you get to the right directory. If you're lost, pwd() prints the
current working directory. cd(Dir) changes the current working
directory to Dir. You should use forward slashes in the directory
name; for example:

1> cd("c:/work™").
c:/work

Tip for Windows users: Create a file called C:/Program
Files/erl5.4.12/.erlang (you might have to change this if your instal-
lation details vary).

Add the following to the file:

io:format("consulting .erlang in ~p~n",
[element(2,file:get_cwd())]1).

%% Edit to the directory where you store your code

c:cd("c:/work™).

io:format("Now in:~p~n", [element(2,file:get_cwd())]).

Now when you start Erlang, it will automatically change direc-
tory to C:/work.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=47

MODULES < 48

The C code performs what is essentially a pattern matching operation
on the argument to the function; only the programmer has to write the
pattern matching code and make sure that it is correct.

In the Erlang equivalent, we merely write the patterns, and the Erlang
compiler generates optimal pattern matching code, which selects the
correct entry point for the program.

We can see what the equivalent code would look like in Java:3

abstract class Shape {
abstract double area();

}

class Circle extends Shape {
final double radius;
Circle(double radius) { this.radius = radius; }
double area() { return Math.PI * radius=*radius; }

}

class Rectangle extends Shape {
final double ht;
final double width;

Rectangle(double width, double height) {
this.ht = height;
this.width = width;

}

double area() { return width = ht; }
}

class Square extends Shape {
final double side;

Square(double side) {
this.side = side;

}

double area() { return side * side; }

}

If you compare the Erlang code with Java code, you'll see that in the
Java program the code for area is in three different places. In the Erlang
program, all the code for area is in the same place.

3. Adapted from http://java.sun.com/developer/Books/shiftintojava/page1.html.

http://java.sun.com/developer/Books/shiftintojava/page1.html
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=48

BACK TO SHOPPING <d 49

3.2 Back to Shopping

Recall that we had a shopping list that looked like this:
[{oranges,4}, {newspaper,1},{apples,10}, {pears,6},{milk,3}]

Now suppose that we’d like to know what our shopping costs. To work
this out, we need to know how much each item in the shopping list
costs. Let’s assume that this information is computed in a module
called shop. Start your favorite text editor, and enter the following into
a file called shop.erl.

Download shop.erl

-module(shop) .
-export([cost/1]).
cost(oranges) -> 5;
cost(newspaper) -> 8;
cost(apples) -> 2;
cost(pears) -> 9;
cost(milk) -> 7.

The function cost/14 is made up from five clauses. The head of each
clause contains a pattern (in this case a very simple pattern that is
just an atom). When we evaluate shop:cost(X), then the system will try
to match X against each of the patterns in these clauses. If a match is
found, the code to the right of the -> is evaluated.

The cost/1 function must also be exported from the module; this is nec-
essary if we want to call it from outside the module.?

Let’s test this. We'll compile and run the program in the Erlang shell:

1> c(shop).

{ok,shop}

2> shop:cost(apples).

2

3> shop:cost(oranges).

5

4> shop:cost(socks).

=ERROR REPORT==== 30-0ct-2006::20:45:10 ===

Error in process <0.34.0> with exit value:
{function_clause, [{shop,cost, [socks]},
{erl1_eval,do_apply,5},
{shell,exprs,6},

{shell,eval_loop,3}]1}

4. The notation Name/N means a function called Name with N arguments; N is called the

arity of the function.
5. You can also say -compile(export_all), which exports all the functions in the module.

http://media.pragprog.com/titles/jaerlang/code/shop.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=49

BACK TO SHOPPING <« 50

In line 1 we compiled the module in the file shop.erl. In lines 2 and 3,
we asked how much apples and oranges cost (results, 2 and 5 units®).
In line 4 we asked what socks cost, but no clause matched, so we got a
pattern matching error, and the system printed an error message.”
Back to the shopping list. Suppose we have a shopping list like this:

1> Buy = [{oranges,4}, {newspaper,l}, {apples,10}, {pears,6}, {milk,3}].
[{oranges,4}, {newspaper,1},{apples,10}, {pears,6},{milk,3}]

And say we want to calculate the total value of all the items in the list.
One way we do this might be as follows:
Download shopl.erl

-module(shopl).
-export([total/1]).

total([{What, N}|T]) -> shop:cost(What) = N + total(T);
total([]) -> 0.

Let’s experiment with this:

2> c(shopl).

{ok, shopl}
3> shopl:total ([1).
0

Why is this 0? It's because the second clause of total/1 says that total([])
->0:

4> shopl:total ([{miTlk,3}]1).
21

The function call total([{milk.3}]) matches the clause total([{What N} T]} with
T=[].% After the match, the bindings of the variables are {What — milk, N
— 3, T— []}. Then the body of the function (shop:cost(What) * N + total(T)) is
entered. All the variables in the body are replaced by the values in the
bindings. So, the value of the body is now the expression shop:cost(milk)
* 3 + fotal([]).

shop:cost(milk) is 7, and fotal([]) is O; thus, the value of the body is 7*3+0
=21.
What about a more complex argument?

5> shopl:total ([{pears,6},{milk,3}]).
75

6. We're not really interested in the units here, just that the return values are numbers.
7. The “function_clause” part of the error message means that the function call failed
because no clause matched the arguments.

8. This is because [X] is just shorthand for [X|[]].

http://media.pragprog.com/titles/jaerlang/code/shop1.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=50

BACK TO SHOPPING <« 51

7 A

Where Do | put Those Semicolons?

We use three types of punctuation in Erlang.

Commas (,) separate arguments in function calls, data con-
structors, and patterns.

Periods (.) (followed by whitespace) separate entire functions
and expressions in the shell.

Semicolons (;) separate clauses. We find clauses in several con-
texts: in kn function definitions and in case, if, try..catch and
receive eXpressions.

Whenever we see sets of patterns followed by expressions, we’ll
see semicolons as separators:

Patternl ->
Expressionsl;

Pattern2 ->
Expressions2;

This time the first clause of total matches with the bindings {What —
pears, N — 6, T+ [{milk,3}]}. The result is shop:cost(pears) * 6 + total([{milk,3}]),
which is 9 * 6 + total([{milk,3})).

But we worked out before that total([{milk,3}]) was 21, so the final result
is 9*6 + 21 =75.

Finally:

6> shopl:total(Buy).
123

Before we leave this section, we should take a more detailed look at the
function total. total(L) works by a case analysis of the argument L. There
are two possible cases; L is a nonempty list, or L is an empty list. We
write one clause for each possible case, like this:
total([Head|Tail]l) ->

some_function_of(Head) + total(Tail);

total([]) ->
0.

In our case, Head was a pattern {What,N}. When the first clause matches
a nonempty list, it picks out the head from the list, does something with
the head, and then calls itself to process the tail of the list. The second
clause matches when the list has been reduced to an empty list ([]).

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=51

FUNCTIONS WITH THE SAME NAME AND DIFFERENT ARITY < 52

The function fotal/1 actually did two different things. First it looked up
the prices of each of the elements in the list, and then it summed all
the prices. We can rewrite fotal in a way that separates looking up the
values of the individual items and summing the values. The resulting
code will be clearer and easier to understand. To do this we’ll write two
small list-processing functions called sum and map. But before we talk
about these, we have to introduce the idea of funs. After this, we’ll write
sum and map and then an improved version of total.

3.3 Functions with the Same Name and Different Arity

The arity of a function is the number of arguments that the function
has. In Erlang, two functions with the same name and different arity
in the same module represent entirely different functions. They have
nothing to do with each other apart from a coincidental use of the same
name.

By convention Erlang programmers often use functions with the same
name and different arities as auxiliary functions. Here’s an example:

Download lib_misc.erl

sum(L) -> sum(L, 0).

sum([1, N) -> N;
sum([H|TI, N) -> sum(T, H+N).

The function sum(l) sums the elements of a list L. It makes use of an
auxiliary routine called sum/2, but this could have been called any-
thing. You could have called the auxilliary routine hedgehog/2, and the
meaning of the program would be the same. sum/2 is a better choice of
name, though, since it gives the reader of your program a clue as to
what’s going on and since you don’t have to invent a new name (which
is always difficult).

3.4 Funs

Juns are “anonymous” functions. They are called this because they have
no name. Let’s experiment a bit. First we’ll define a fun and assign it to
the variable Z:

1> Z = fun(X) -> 2%X end.
#Fun<erl_eval.6.56006484>

When we define a fun, the Erlang shell prints #Fun<...> where the ... is
some weird number. Don’t worry about this now.

http://media.pragprog.com/titles/jaerlang/code/lib_misc.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=52

II!!!!II!III!!!IIIIIII

There’s only one thing we can do with a fun, and that is to apply it to
an argument, like this:

2> 7(2).
4

Z wasn'’t a very good name for the fun; a better name would be Double,
which describes what the fun does:

3> Double = Z.

#Fun<erl_eval.6.10732646>

4> Double(4).
8

Funs can have any number of arguments. We can write a function to
compute the hypotenuse of a right-angled triangle, like this:

5> Hypot = fun(X, Y) -> math:sqrt(X:X + YY) end.
#Fun<erl_eval.12.115169474>

6> Hypot(3,4).
5.00000

If the number of arguments is incorrect, you'll get an error:

7> Hypot(3).
xx exited: {{badarity,{#Fun<erl_eval.12.115169474>,[3]}},
[{er1_eval,expr,3}]} ==

Why is this error called badarity? Remember that arity is the number
of arguments a function accepts. badarity means that Erlang couldn’t
find a function with the given name (Hypot in this case) that took the
number of parameters we passed—our function takes two parameters,
and we passed just one.

Funs can have several different clauses. Here’s a function that converts
temperatures between Fahrenheit and Centigrade:

8> TempConvert = fun({c,C}) -> {f, 32 + Cx9/5};
8> ({f,F}) -> {c, (F-32)=5/9}
8> end.

#Fun<erl_eval.6.56006484>

9> TempConvert({c,100}).

{f,212.000}

10> TempConvert({f,212}).

{c,100.000}

11> TempConvert({c,0}).

{f,32.0000}

Note: The expression in line 8 spans several lines. As we enter this
expression, the shell repeats the prompt “8>” every time we enter a new
line. This means the expression is incomplete and the shell wants more
input.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=53

II!!!!II!III!!IIIIIIII

Erlang is a functional programming language. Among other things this
means that funs can be used as the arguments to functions and that
functions (or funs) can return funs.

Functions that return funs, or functions that can accept funs as their
arguments, are called higher-order functions. We'll see a few examples
of these in the next sections.

Now all of this might not sound very exciting since we haven’'t seen
what we can do with funs. So far, the code in a fun looks just like
regular function code in a module, but nothing could be further from
the truth. Higher-order functions are the very essence of functional
programming languages—they breathe fire into the belly of the code.
Once you've learned to use them, you’ll love them. We’ll see a lot more
of them in the future.

Functions That Have Funs As Their Arguments

The module lists, which is in the standard libraries, exports several
functions whose arguments are funs. The most useful of all these is
lists:map(F,). This is a function that returns a list made by applying the
fun F to every element in the list L:

12> L = [1,2,3,4].

[1,2,3,4]

13> Tists:map(Double, L).

[2 ’ 4 ’ 6 ’ 8] -

Another useful function is lists:filter(P L), which returns a new list of all
the elements E in L such that P(E) is frue.

Let’s define a function Even(X) that is true if X is an even number:

14> Even = fun(X) -> (X rem 2) =:= 0 end.
#Fun<erl_eval.6.56006484>

Here X rem 2 computes the remainder after X has been divided by 2, and
=:= is a test for equality. Now we can test Even, and then we can use it
as an argument to map and filter:

15> Even(8).

true

16> Even(7).

false

17> lists:map(Even, [1,2,3,4,5,6,8]1).
[false,true,false,true,false,true,true]
18> 1lists:filter(Even, [1,2,3,4,5,6,8]1).
[2,4,6,8]

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=54

II!!!!!IIIIII!!IIIIIIII

We call operations such as map and filter that do something to an entire
list in one function call as list-at-a-time operations. Using list-at-a-time
operations makes our programs small and easy to understand; they are
easy to understand because we can regard each operation on the entire
list as a single conceptual step in our program. Otherwise, we have to
think of each individual operation on the elements of the list as single
steps in our program.

Functions That Return Funs

Not only can funs be used as arguments to functions (such as map and
filter), but functions can also return funs.

Here’s an example—suppose I have a list of something, say fruit:

1> Fruit = [apple,pear,orange].
[appTle,pear,orange]

Now I can define a function MakeTest(L) that turns a list of things (L) into
a test function that checks whether its argument is in the list L:

2> MakeTest = fun(L) -> (fun(X) -> Tlists:member(X, L) end) end.
#Fun<erl_eval.6.56006484>

3> IsFruit = MakeTest(Fruit).
#Fun<erl_eval.6.56006484>

lists:member(X, L) returns true if X is a member of the list L; otherwise, it
returns false. Now that we have built a test function, we can try it:

4> IsFruit(pear).

true

5> IsFruit(apple).

true

6> IsFruit(dog).

false

We can also use it as an argument to lists:filter/2:

7> lists:filter(IsFruit, [dog,orange,cat,apple,bear]).
[orange,apple]

The notation for funs that return funs takes a little getting used to,
so let’s dissect the notation to make what’s going on a little clearer. A
function that returns a “normal” value looks like this:

1> Double = fun(X) -> (2 * X) end.

#Fun<erl_eval.6.56006484>

2> Double(5).
10

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=55

II!!!!II!III!!!IIIIIII

The code inside the parentheses (in other words, 2 * X) is clearly the
“return value” of the function. Now let’s try putting a fun inside the
parentheses. Remember the thing inside the parentheses is the return
value:

3> Mult = fun(Times) -> (fun(X) -> X = Times end) end.
#Fun<erl_eval.6.56006484>

The fun inside the parentheses is fun(X) -> X * Times end; this is just a
function of X, but where does Times come from? Answer: This is just the
argument of the “outer” fun.

Evaluating Mult(3) returns fun(xX) -> X * 3 end, which is the body of the
inner fun with Times substituted with 3. Now we can test this:

4> Triple = Mult(3).

#Fun<erl_eval.6.56006484>

5> Triple(5).
15

So, Mult is a generalization of Double. Instead of computing a value, it
returns a function, which when called will compute the required value.

Defining Your Own Control Abstractions

Wait a moment—have you noticed something? So far, we haven’'t seen
any if statements, switch statements, for statements, or while statements,
and yet this doesn’t seem to matter. Everything is written using pattern
matching and higher-order functions. So far we haven’'t needed any
additional control structures.

If we want additional control structures, we have a powerful glue that
we can use to make our own control structures. Let’s give an example
of this: Erlang has no for loop, so let’'s make one:

DownToad lib_misc.erl

for(Max, Max, F) -> [F(Max)]1;
for(I, Max, F) -> [F(I)|for(I+1, Max, F)].

So, for example, evaluating for(1,10,F) creates the list [F(1), F(2), ..., F(10)].

How does the pattern matching in the for loop work? The first clause
in for matches only when the first and second arguments to for are the
same. So if we call for(10,10,F), then the first clause will match binding
Max to 10, and the result will be the list [F(10)]. If we call for(1,10,F), the
first clause cannot match since Max cannot match both 1 and 10 at the
same time. In this case, the second clause matches with bindings | —
1 and Max — 10; the value of the function is then [F()|for(l+1,10,F)] with |
substituted by 1 and Max substituted by 10, which is just[F(1)|for(2,10.F)].

http://media.pragprog.com/titles/jaerlang/code/lib_misc.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=56

Funs <« 57

7 N

When Do W Higher-Order Functions?

As we have seen, when we use higher-order functions, we can
create our own new control abstractions, we can pass func-
fions as arguments, and we can write functions that return funs.
In practice, not all these techniques get used often:

e Virtually all the modules that | write use functions like
lists:map/2—this is so common that | almost consider map
to be part of the Erlang language. Calling functions such
as map and filter and partition in the module lists is extremely
common.

e | sometimes create my own control abstractions. This is far
less common than calling the higher-order functions in the
standard library modules. This might happen a few times
in a large module.

o Writing functions that return funs is something | do very
infrequently. If | were to write a hundred modules, per-
haps only one or two modules might use this program-
ming technique. Programs with functions that return funs
can be difficult to debug; on the other hand, we can use
functions that return funs to implement things such as lazy
evaluation, and we can easily write reentrant parsers and
parser combinators that are functions that return parsers.

\ S

Now we have a simple for loop.® We can use it to make a list of the
integers from 1 to 10:

1> T1ib_misc:for(1,10,fun(I) -> I end).
[152!3!4!5!6!7!8!9!10]

Or we can use to compute the squares of the integers from 1 to 10:

2> Tib_misc:for(1,10,fun(I) -> I+I end).
[1,4,9,16,25,36,49,64,81,100]

As you become more experienced, you'll find that being able to create
your own control structures can dramatically decrease the size of your
programs and sometimes make them a lot clearer. This is because you
can create exactly the right control structures that are needed to solve
your problem and because you are not restricted by a small and fixed
set of control structures that came with your programming language.

9. This is not quite the same as a for loop in an imperative language, but it is sufficient
for our purposes.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=57

SIMPLE LIST PROCESSING <« 58

7 N

Common Errors

Some readers have mistakenly typed into the shell fragments
of code contained in the source code listings. These are not
valid shell commands, and you’ll get some very strange error
message if you try to do this. So be warned: don’t do this.

If you accidentally choose a module name that collides with
one of the system modules, then when you compile your mod-
ule, you'll get a strange message saying that you can’t load a
module that resides in a sticky directory. Just rename the mod-
ule, and delete any beam file that you might have made when
compiling your module.

3.5 Simple List Processing

Now that we’ve introduced funs, we can get back to writing sum and
map, which we’ll need for our improved version of total (which I'm sure
you haven’t forgotten about!).

We'll start with sum, which computes the sum of the elements in a list:
Download mylists.erl

©® sum([H|T]) -> H + sum(T);
® sum([]) -> 0.

Note that the order of the two clauses in sum is unimportant. This is
because the first clause matches a nonempty list and the second an
empty list, and these two cases are mutually exclusive. We can test sum
as follows:

1> c(mylists). %% <-- Last time I do this

{ok, mylists}

2> L =[1,3,10].

[1,3,10]

3> mylists:sum(L).

14

Line 1 compiled the module lists. From now on, I'll often omit the com-
mand to compile the module, and you’ll have to remember to do this
yourself. It’s pretty easy to understand how this works. Let’s trace the
execution:

1. sum([1.3.10D)

2. sum([1,3,10) = 1 + sum([3,10)) (by ©)
3. =1+ 3+sum(10]) (by ©)

http://media.pragprog.com/titles/jaerlang/code/mylists.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=58

SIMPLE LIST PROCESSING < 59

4. =1+3+10+sum([]) (by 0)
5. =1+3+10+0 (by 9)
6. =14

Finally, let’s look at map/2, which we met earlier. Here’s how it’s defined:
DownTload mylists.erl

9 mapC, [D -> [1;
@ map(F, [H|TI]) -> [F(H)|map(F, T)].
©® The first clause says what to do with an empty list. Mapping any
function over the elements of an empty list (there are none!) just
produces an empty list.

® The second clause is a rule for what to do with a list with a head
H and tail T. That’s easy. Just build a new list whose head is F(H)
and whose tail is map(F).

Note: The definition of map/2 is copied from the standard library module
lists to mylists. You can do anything you like to the code in mylists.erl. Do @
not under any circumstance try to make your own module called lists

unless you know exactly what you're doing.

We can run map using a couple of functions that double and square
the elements in a list, as follows:

1> L =1[1,2,3,4,5].

[1,2,3,4,5].
2> mylists:map(fun(X) -> 2+X end, L).
[2,4,6,8,10]
3> mylists:map(fun(X) -> X=X end, L).
[1,4,9,16,25]

Have we said the final word on map? Well, no, not really! Later, we’ll
show an even shorter version of mop written using list comprehen-
sions, and in Section 20.2, Parallelizing Sequential Code, on page 372,
we’ll show how we can compute all the elements of the map in parallel
(which will speed up our program on a multicore computer)—but this
is jumping too far ahead. Now that we know about sum and map, we
can rewrite total using these two functions:

Download shop2.erl

-module(shop2).
-export([total/1]).
-import(lists, [map/2, sum/1]).

total(L) ->
sum(map(fun({What, N}) -> shop:cost(What) = N end, L)).

http://media.pragprog.com/titles/jaerlang/code/mylists.erl
http://media.pragprog.com/titles/jaerlang/code/shop2.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=59

SIMPLE LIST PROCESSING < 60

7 A

How | Write Programs

When I'm writing a program, my approach is to “write a bit”
and then “test a bit.” | start with a small module with few func-
fions, and then | compile it and test it with a few commands in
the shell. Once I'm happy with it, | write a few more functions,
compile them, test them, and so on.

Often | haven't really decided what sort of data structures I'll
need in my program, and as | run small examples, | can see
whether the data structures | have chosen are appropriate.

| tend to “grow” programs rather than think them out com-
pletely before writing them. This way | don’t tend to make large
mistakes before | discover that things have gone wrong. Above
all, it’s fun, | get immediate feedback, and | see whether my
ideas work as soon as | have typed in the program.

Once I've figured out how to do something in the shell, | usually
then go and write a makefile and some code that reproduces
what |'ve learned in the shell.

We can see how this function works by looking at the steps involved:

1> Buy = [{oranges,4}, {newspaper,1}, {apples, 10}, {pears,6},{milk,3}].
[{oranges,4}, {newspaper,1},{apples,10}, {pears,6},{miTlk,3}]

2> Ll=Tists:map(fun({What,N}) -> shop:cost(What) = N end, Buy).
[20,8,20,54,21]

3> Tlists:sum(Ll).

123

Note also the use of the -import and -export declarations in the module:

* The declaration -import(lists, [map/2, sum/1]). means the function
map/2 is imported from the module lists, and so on. This means
we can write map(Fun, ...) instead of lists:map(Fun, ...). cost/1 was not
declared in an import declaration, so we had to use the “fully qual-
ified” name shop:cost.

* The declaration -export([total/1]) means the function total/1 can be
called from outside the module shop2. Only functions that are
exported from a module can be called from outside the module.

By this time you might think that our fotal function cannot be further
improved, but you'd be wrong. Further improvement is possible. To do
so, we'll use a list comprehension.

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=60

LisT COMPREHENSIONS < 61

3.6 List Comprehensions

List comprehensions are expressions that create lists without having to
use funs, maps, or filters. This makes our programs even shorter and
easier to understand.

We'll start with an example. Suppose we have a list L:

1> L =[1,2,3,4,5].

[1,2,3,4,5]

And suppose we want to double every element in the list. We've done
this before, but I'll remind you:

2> Tists:map(fun(X) -> 2+X end, L).

[(2,4,6,8,10]

But there’s a much easier way that uses a list comprehension:

4> [2=X || X <- L].

[2!4!6,8,10]

The notation [F(X) || X <- L] means “the list of F(X) where X is taken from
the list L.” Thus, [2*X || X <- L] means “the list of 2*X where X is taken
from the list L.”

To see how to use a list comprehension, we can enter a few expressions
in the shell to see what happens. We start by defining Buy:

1> Buy=[{oranges,4}, {newspaper,1}, {apples, 10}, {pears,6},{milk,3}].
[{oranges,4}, {newspaper,1},{apples,10}, {pears,6},{milk,3}].

Now let’s double the number of every item in the original list:
2> [{Name, 2%Number} || {Name, Number} <- Buy].
[{oranges, 8}, {newspaper,2},{apples, 20}, {pears,12},{milk,6}]

Note that the tuple {Name, Number} to the right side of the (||) sign is a
pattern that matches each of the elements in the list Buy. The tuple to
the left side, {Name, 2*Number}, is a constructor.

Suppose we want to compute the total cost of all the elements in the
original list; we could do this as follows. First replace the name of every
item in the list with its price:

3> [{shop:cost(A), B} || {A, B} <- Buy].
[{5,4},{8,1},{2,10},{9,6},{7,3}]

Now multiply the numbers together:

4> [shop:cost(A) = B || {A, B} <- Buy].
[20,8,20,54,21]

http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=61

LisT COMPREHENSIONS <« 62

Then sum them:
5> Tists:sum([shop:cost(A) = B || {A, B} <- Buyl).
123
Finally, if we wanted to make this into a function, we’d write the follow-
ing:
total(L) ->

Tists:sum([shop:cost(A) = B || {A, B} <- L.
List comprehensions will make your code really short and easy to read.
Just for fun we can use them to give an even shorter definition of map:
map(F, L) -> [FCX) || X <- L].
The most general form of a list comprehension is an expression of the
following form:
[X || Qualifierl, Qualifier2, ...]

X is an arbitrary expression, and each qualifier is either a generator or
a filter.

* Generators are written as Pattern <- ListExpr where ListExpr must be
an expression that evaluates to a list of terms.

¢ Filters are either predicates (functions that return true or false) or
boolean expressions.

Note that the generator part of a list comprehension works like a filter,
so, for example:

1> [X || fa, X} <- [{a,1},{b,2},{c,3},{a,4},hello, "won"]].

[1,4]

We'll finish the section on list comprehensions with a few little exam-
ples:

Quicksort
Here’s how to write a sort algorithm!© using two list comprehensions:

DownToad lib_misc.erl

gsort([1) -> [1;

gsort([Pivot|T]) ->
gsort([X || X <= T, X < Pivot])
++ [Pivot] ++
gsort([X || X <- T, X >= Pivot]).

10. This code is shown for its elegance rather than its efficiency. Using ++ in this way is
not generally considered good programming practice.

http://media.pragprog.com/titles/jaerlang/code/lib_misc.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=62

LIST COMPREHENSIONS < 63

(where ++ is the infix append operator):

1> L=[23,6,2,9,27,400,78,45,61,82,14].
[23,6,2,9,27,400,78,45,61,82,14]

2> Tib_misc:qgsort(L).
[2,6,9,14,23,27,45,61,78,82,400]

To see how this works, we’ll step through the execution. We start with
a list L and call gsort(L). This matches the second clause of gsort:

3> [Pivot|T] = L.
[23,6,2,9,27,400,78,45,61,82,14]

with bindings Pivot — 23 and T — [6,2,9,27,400,78,45,61,82,14).

Now we split T into two lists, one with all the elements in T that are less
than Pivot, and the other with all the elements greater than or equal to
Pivot:

4> Smaller = [X || X <- T, X < Pivot].

[6,2,9,14]

5> Bigger = [X || X <- T, X >= Pivot].

[27,400,78,45,61,82]

Now we sort Smaller and Bigger and combine them with Pivot:

gsort([6,2,9,14]) ++ [23] ++ gsort([27,400,78,45,61,82])
= [2,6,9,14] ++ [23] ++ [27,45,61,78,82,400]
= [2,6,9,14,23,27,45,61,78,82,400]

Pythagorean Triplets
Pythagorean triplets are sets of integers {A,B,C} such that 4% + B2 = C2.

The function pythag(N) generates a list of all integers {AB.C} such that
A% + B? = (? and where the sum of the sides is less than or equal to N:

DownToad lib_misc.erl

pythag(N) ->

[{A,B,C} ||
A <- Tists:seq(1,N),
B <- Tists:seq(1,N),
C <- lists:seq(1,N),
A+B+C =< N,
AxA+B*B =:= CxC

1.

Just a few words of explanation: lists:seq(1, N) returns a list of all the
integers from 1 to N. Thus, A <- lists;seq(1, N) means that A takes all
possible values from 1 to N. So our program reads, “Take all values of

A from 1 to N, all values of B from 1 to N, and all values of C from 1 to N
such that A + B + C is less than or equal to N and A*A + B*B = C*C.”

http://media.pragprog.com/titles/jaerlang/code/lib_misc.erl
http://books.pragprog.com/titles/jaerlang/errata/add?pdf_page=63

ARITHMETIC EXPRESSIONS d 64

1> 1ib_misc:pythag(16).

[{3,4,5},{4,3,5}]

2> Tlib_misc:pythag(30).
[{3,4,5},{4,3,5},{5,12,13},{6,8,10},{8,6,10},{12,5,13}]

Anagrams

If you're interested in English-style crossword puzzles, you'll often find
yourself figuring out anagrams. Let’s use Erlang t